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Abstract
We prove that there exists essentially one minimal differential algebra of distribu-
tions A, satisfying all the properties stated in the Schwartz impossibility result [L.
Schwartz, Sur l’impossibilité de la multiplication des distributions, 1954], and such
that C∞

p ⊆ A ⊆ D′ (where C∞
p is the set of piecewise smooth functions and D′ is the

set of Schwartz distributions over R). This algebra is endowed with a multiplicative
product of distributions, which is a generalization of the product defined in [N.C.Dias,
J.N.Prata, A multiplicative product of distributions and a class of ordinary differential
equations with distributional coefficients, 2009]. If the algebra is not minimal, but sat-
isfies the previous conditions, is closed under anti-differentiation and the dual product
by smooth functions, and the distributional product is continuous at zero then it is
necessarily an extension of A.
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1 Introduction

The Schwartz famous impossibility result [17] states that:

Theorem 1.1 There is no associative algebra (G,+,�) satisfying the following prop-
erties:

(A1) The space of Schwartz distributions D′ over R is linearly embedded into G.
(A2) The function f (x) = 1 is the identity in G.
(A3) There exists a linear derivative operator D : G → G that:

(a) satisfies the Leibniz rule, and
(b) coincides with the usual distributional derivative Dx in G ∩ D′.

(A4) The multiplication � coincides with the usual product of functions in (G ∩C)×
(G ∩ C), C is the space of continuous functions over R.

If we replace (A1) by:

(A1’) C∞
p ⊆ G ⊆ D′

where C∞
p is the set of piecewise smooth functions, then:

Theorem 1.2 LetA ≡ ∪∞
i=0D

i
x [C∞

p ] be the minimal space containing C∞
p and closed

for Dx , and let ∗M, M ⊆ R, be the multiplicative product of distributions given in
Definition 2.7. The family of associative algebras (A,+,∗M), M ⊆ R satisfies the
conditions (A1’) and (A2)-(A4).

The products ∗M , M ⊆ R (cf. Definition 2.7) are extensions (to the case of possible
intersecting singular supports) of the product of distributions with disjoint singular
supports presented by Hörmander in [11, p. 55]. Theorem 1.2 was proved by two of
us for the case M = R in [4], and will be (easily) extended to the general case M ⊆ R

in Sect. 2.3.
In this paper we want to study the related problem of whether the associative

algebras (A,+, ∗M ) are unique, i.e. the only ones satisfying the conditions (A1’) and
(A2)–(A4).

Let us introduce the following notation: We say that in G ⊆ D′ the product � by
smooth functions is continuous (or simply that � is partially continuous) at F ∈ G iff

for every ξ ∈ C∞, and every sequence (Fn)n∈N, Fn
D′−→ F in G, we have: ξ � Fn

D′−→
ξ � F , and Fn � ξ

D′−→ F � ξ , where
D′−→ denotes convergence in distribution sense.

We note that the dual product and the family of products ∗M (defined in A) are all
partially continuous (cf. Theorem 2.11(vi)). We also remark that if � (defined in G) is
partially continuous at zero then it is partially continuous everywhere in G (because
� is bilinear, and G is a vector space).

Our results are summarized in the following Theorem and Corollary:

Main Theorem Let (G,+,�) be an associative algebra of distributions that satisfies
the conditions (A1’), (A2)–(A4) given above, and

(A5.1) Every F ∈ G is locally a finite order derivative of some G ∈ G ∩ C,
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(A5.2) The product � is partially continuous at zero;

then A ⊆ G and the restriction of � to A is given by ∗M for some M ⊆ R. In other
words,(A,+, ∗M ) is a subalgebra of (G,+,�).

Remark 1.3 Notice that every F ∈ D′ is locally a finite order derivative of some
continuous function G ∈ C (cf. Theorem 3.4.2, [19]). The condition (A5.1) adds the
requirement that if F ∈ G then also G ∈ G. This condition can be replaced by (cf.
Remark 3.3):

(A5.1’) Anti-differentiation and the dual product by smooth functions are inner oper-
ations in G.

The conditions (A5.1) and (A5.1’) are both satisfied by G = D′ and G = A.
We also note that the conditions (A5.1) and (A5.2) can be replaced by the single,

stronger condition (cf. Remark 3.2):

(A6) Every F ∈ G is globally a finite order derivative of some G ∈ G ∩ C;
which is satisfied by G = A and by G = D′(�) for arbitrary compact sets � ⊂ R.
We will see that (A6) implies (A5.2) (and, of course, also (A5.1)). The imposition
of one of the conditions (A5.1,A5.2), (A5.1’,A5.2) or (A6) is required for the proof
of Theorem 3.1 which is an important intermediate result in the proof of the Main
Theorem.

Corollary 1.4 For A as defined above, let (A,+,�) be an associative algebra satis-
fying the conditions (A2)-(A4). Then � = ∗M for some M ⊆ R.

The proof of this Corollary is straightforward: since the space A satisfies (A1’) and
(A6), and thus (cf. Remark 1.3) also (A5.1) and (A5.2), it follows from the Main
Theorem that � = ∗M for some M ⊆ R.

The problem of proving the uniqueness of the algebras (A,+, ∗M ) was considered
before in an article by B. Fuchssteiner that was published in Mathematische Annalen
[8] (see also [9]) and recently reviewed in the Ph.D thesis [18]. The main result of [8]
is basically our Corollary 1.4. Unfortunately, the paper [8] is not so well-known and
came to our knowledge only after we have concluded our own proof of the uniqueness
result. In spite of the obvious intersection with the results of [8], we have decided to
write down our own results because: (i) our proof is different and, in our view, simpler
than the one presented in [8, 18]; and (ii) our results are more general, because they
do not apply only to the space A, but instead to the family G ⊆ D′. In practice this
means that we do not impose the restriction that the product � is an inner operation
in A; instead we prove that this is a consequence of the properties (A1’), (A2)-(A5)
for a general space G ⊆ D′.

Finally, we remark that the algebras (A,+, ∗M ) provide an interesting setting to
obtain intrinsic formulations (i.e. defined within the space of Schwartz distributions)
for someclasses of differential operators anddifferential equationswith singular coeffi-
cients. This approach has been explored namely for Schrödinger operators with point
interactions and for ODEs with singular coefficients [5–7]. It yields a formulation
which is more general than the ones based on other intrinsic products like the model
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46 N. C. Dias et al.

products [1, 12, 15], and alternative to the non-intrinsic formulations like the ones in
terms of Colombeau generalized functions [2, 3, 10, 13, 15, 16].

In the next section we study the main properties of the product ∗M and show that for
all M ⊆ R, the algebras (A,+, ∗M ) satisfy the conditions in Theorem 1.2. In Sect. 3
we prove the Main Theorem.

Notation 1.5 Spaces of functions or distributions over R are denoted by calligraphic
capital letters A, C, D, D′,....

Capital roman letters F, G and J denote general distributions; φ, ψ and ξ are
smooth functions; and f , g and h are locally integrable functions or regular distri-
butions (we normally use the same notation for both objects). If we need to be more
specific, we use the subscript D′ for regular distributions; for instance fD′ is the
regular distribution associated to the locally integrable function f .

The characteristic function of � ⊆ R is written χ�; the Heaviside step function is
H = χR+ . As usual δx is the Dirac measure with support at x; if x = 0 we write only
δ.

2 The algebras (A,+, ∗M)
2.1 General definitions

LetD be the space of smooth functions with support on a compact subset ofR, andD′
is its dual (the space of Schwartz distributions). As usual, supp F denotes the support
of F ∈ D′, and sing supp F denotes its singular support.

For every locally integrable function f ∈ L1
loc one defines a regular distribution

fD′ ∈ D′ by

〈 fD′ , t〉 =
∫
R

f (x)t(x) dx , t ∈ D .

By abuse of notation, we will usually identify fD′ with f . The nth-order Schwartz
distributional derivative of the distribution F is defined by

〈
Dn
x F, t

〉 = (−1)n
〈
F, dnx t

〉
, t ∈ D

where dnx t denotes the nth-order classical (pointwise) derivative of t . If f is abso-
lutely continuous, the Schwartz distributional derivative and the classical pointwise
derivative (defined a.e.) coincide, i.e.

Dx fD′ = (dx f )D′ . (2.1)

The dual product of a function φ ∈ C∞ by a distribution F ∈ D′ is defined by

〈φF, t〉 = 〈F, φt〉 , t ∈ D (2.2)
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and it is a generalization of the standard product of functions, i.e.

φ(hD′) = (φh)D′ , for all h ∈ L1
loc . (2.3)

The dual product is bilinear. Moreover, the distributional derivative Dx satisfies the
Leibniz rule with respect to the dual product:

Dx (φF) = (dxφ)F + φDx F . (2.4)

2.2 Themultiplicative product ∗

For a detailed presentation and proofs of the main results, the reader should refer to
[4]. Let C∞

p be the space of piecewise smooth functions on R: f ∈ C∞
p iff there is a

finite set I ⊂ R such that f ∈ C∞(R\I ) and the lateral limits limx→x±
0
f (n)(x) exist

and are finite for all x0 ∈ I and all n ∈ N0. We have of course C∞
p ⊂ L1

loc.

Definition 2.1 Let A be the space of piecewise smooth functions C∞
p (regarded as

regular distributions) together with their distributional derivatives to all orders.

All the elements of A are distributions with finite singular supports. They can be
written explicitly in the form:

Lemma 2.2 F ∈ A iff there is a finite set I = {x1 < x2 < ... < xm} associated with a
set of open intervals�i = (xi , xi+1), i = 0, ..,m (where x0 = −∞ and xm+1 = +∞)
such that:

F = f + �F (2.5)

where f ∈ C∞
p is of the form (χ�i is the characteristic function of �i ):

f =
m∑
i=0

fiχ�i , fi ∈ C∞ (2.6)

and �F has support on a subset of I :

�F =
m∑
i=1

�F
xi =

m∑
i=1

n∑
j=0

Fi jδ
( j)
xi , Fi j ∈ R . (2.7)

We have, of course, sing supp F ⊆ I .

Let us recall the definition of the Hörmander product of distributions with non-
intersecting singular supports [11, p. 55].

Definition 2.3 Let F,G ∈ D′ be two distributions such that sing supp F and
sing supp G are finite disjoint sets. Let {�i ⊂ R, i = 1, . . . , d} be a finite covering of
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R such that, on each open set �i , either F or G is a smooth function. The Hörmander
product of F by G is defined by

F · G : (F · G)|�i = F |�i G|�i

where F |�i denotes the restriction of the F to the set �i , and likewise for the other
distributions. Moreover, the product F |�i G|�i is the dual product defined in (2.2).

Let us emphasise that the Hörmander product is well-defined for all F,G ∈ A
provided that sing supp F and sing supp G are finite disjoint sets. We now extend the
Hörmander product to the case of distributions with intersecting singular supports (see
[4] for details)

Definition 2.4 Let F,G ∈ A. The product ∗ is defined by

F ∗ G = lim
ε↓0 F(x) · G(x + ε) (2.8)

where the product F(x) ·G(x + ε) is the Hörmander product and the limit is taken in
the distributional sense.

Notice that for sufficiently small ε > 0, F(x) and G(x + ε) have disjoint singular
supports, hence the Hörmander product in (2.8) is well-defined.

The next theorem provides an explicit formula for F ∗ G. Let F,G ∈ A, let
I = (sing supp F ∪ sing supp G) = {x1 < .. < xm}, and consider the associated set
of open intervals �i = (xi , xi+1), i = 0, ..,m (with x0 = −∞ and xm+1 = +∞).
Then, in view of Lemma 2.2, F and G can be written in the form:

F =
m∑
i=0

fiχ�i +
m∑
i=1

�F
xi , G =

m∑
i=0

giχ�i +
m∑
i=1

�G
xi (2.9)

where fi , gi ∈ C∞ and �F
xi = 0 if xi ∈ I\sing supp F, and likewise for �G

xi . Then we
have:

Theorem 2.5 Let F,G ∈ A be written in the form (2.9). Then F ∗G is given explicitly
by

F ∗ G =
m∑
i=0

fi giχ�i +
m∑
i=1

[
gi�

F
xi + fi−1�

G
xi

]
. (2.10)

Finally, the main properties of the product ∗ are summarized in the following
Theorem (cf. Theorems 3.16 and 3.18, [4]):

Theorem 2.6 The product ∗ is an inner operation in A, it is associative, distributive,
non-commutative and it reproduces the product of continuous functions inA ∩ C. The
distributional derivative Dx is an inner operator in A and satisfies the Leibniz rule
with respect to the product ∗.
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We conclude that the space A, endowed with the product ∗, is an associative
(but non-commutative) differential algebra of distributions that satisfies the proper-
ties stated in Theorem 1.2. It is, however, not the unique algebra that satisfies these
conditions, as we now show.

2.3 The algebras (A,+, ∗M)

Let F,G ∈ A be written in the form:

F = f +
∑
xi∈IF

�F
xi , G = g +

∑
yi∈IG

�G
yi (2.11)

where f , g ∈ C∞
p , IF = supp �F and IG = supp �G . Then:

F ∗ G = f g +
∑
yi∈IG

f ∗ �G
yi +

∑
xi∈IF

�F
xi ∗ g (2.12)

and, likewise

G ∗ F = f g +
∑
yi∈IG

�G
yi ∗ f +

∑
xi∈IF

g ∗ �F
xi . (2.13)

We can combine both formulas and obtain a slightly more general product (one that
acts as F ∗ G on the points that belong to a given set M ⊆ R, and as G ∗ F on the
points that don’t belong to M):

Definition 2.7 Let M ⊆ R and F,G ∈ A. The product ∗M is defined by

F ∗M G = f g +
∑

yi∈IG∩M

f ∗ �G
yi +

∑
xi∈IF∩M

�F
xi ∗ g

+
∑

yi∈IG\M
�G

yi ∗ f +
∑

xi∈IF\M
g ∗ �F

xi (2.14)

Notice that for M = Rwe have F ∗M G = F ∗G and for M = ∅, F ∗M G = G ∗F .
The next Remark provides some explicit formulas:

Remark 2.8 Let n,m ∈ N0 and s, t ∈ R. Let M ⊆ R and let H be the Heaviside step
function. It follows from (2.10) and (2.14) that:

H(x − t) ∗M δ(n)
s = δ(n)

s ∗M H(x − t) =
{

δ
(n)
s if s > t
0 if s < t

δ
(n)
t ∗M H(x − t) = H(t − x) ∗M δ

(n)
t = χM (t) δ

(n)
t

H(x − t) ∗M δ
(n)
t = δ

(n)
t ∗M H(t − x) = (1 − χM (t)) δ

(n)
t

δ(n)
s ∗M δ

(m)
t = 0.
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Let us introduce the following distributions:

Definition 2.9 LetM ⊆ R and let F ∈ A bewritten in the form (2.11). The distribution
FM ∈ A associated with F is defined by

FM =
√
2

2
f + √

2 �FM where �FM =
∑

xi∈IF∩M

�F
xi . (2.15)

We can now write F ∗M G in a compact form:

Lemma 2.10 Let F,G ∈ A and let FM ,GM be the associated distributions of the
form (2.15). Then

F ∗M G = FM ∗ GM + GR\M ∗ FR\M . (2.16)

Proof Using (2.15), we have

FM ∗ GM = 1

2
f g + f ∗ �GM + �FM ∗ g

and likewise:

GR\M ∗ FR\M = 1

2
f g + �GR\M ∗ f + g ∗ �FR\M .

Hence, (cf. (2.14)):

FM ∗ GM + GR\M ∗ FR\M = F ∗M G .

��
We now study the main properties of ∗M :

Theorem 2.11 For all M ⊆ R, the product ∗M is (i) an inner operation in A, (ii)
distributive and (iii) associative. Moreover, (iv) it reproduces the usual product of
continuous functions in A ∩ C, and (v) the dual product of smooth functions by dis-
tributions in A. (vi) It is also partially continuous at zero and (vii) Dx satisfies the
Leibniz rule with respect to ∗M.

Proof Let F,G, J ∈ A and let FM ,GM , JM be the associated distributions defined
by (2.15). Then:
(i) By Lemma 2.2 we have FM ,GM , FR\M ,GR\M ∈ A. Since (A,+, ∗) is an algebra
it follows that FM ∗ GM + GR\M ∗ FR\M ∈ A and therefore F ∗M G ∈ A.
(ii) From (2.16) we have:

F ∗M J + G ∗M J = FM ∗ JM + JR\M ∗ FR\M + GM ∗ JM + JR\M ∗ GR\M .
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Since ∗ is distributive and FM + GM = (F + G)M for all M ⊆ R, we get

F ∗M J + G ∗M J = (F + G)M ∗ JM + JR\M ∗ (F + G)R\M
= (F + G) ∗M J

which proves that the product is right-distributive. Equivalently, one proves that it is
also left-distributive.
(iii) We have for F,G, J ∈ A

(F ∗M G) ∗M J = (F ∗M G)M ∗ JM + JR\M ∗ (F ∗M G)R\M

Since

(F ∗M G)M =
√
2

2
f g + √

2
(
�FM ∗ g + f ∗ �GM

)

and

(F ∗M G)R\M =
√
2

2
f g + √

2
(
g ∗ �FR\M + �GR\M ∗ f

)

a simple calculation shows that:

(F ∗M G) ∗M J = f g j + ( f ∗ g) ∗ �JM + ( f ∗ �GM ) ∗ j + (�FM ∗ g) ∗ j

+ �JR\M ∗ ( f ∗ g) + j ∗ (g ∗ �FR\M ) + j ∗ (�GR\M ∗ f )

Using the associativity of ∗ we get

(F ∗M G) ∗M J = f g j + f ∗ (g ∗ �JM ) + f ∗ (�GM ∗ j) + �FM ∗ (g ∗ j)

+ (�JR\M ∗ f ) ∗ g + ( j ∗ �GR\M ) ∗ f + ( j ∗ g) ∗ �FR\M

which is exactly F ∗M (G ∗M J ). Hence the product ∗M is associative.
(iv) If F,G ∈ (A∩C) then F = f and G = g with f , g ∈ C ∩C∞

p [cf. (2.5)]. Hence,
from (2.14), F ∗M G = f g.
(v) If F ∈ C∞ then in (2.11) we have F = f . It follows from (2.10) that F ∗ G =
G ∗ F = f G for all G ∈ A and so, from (2.14), that F ∗M G = G ∗M F = f G.
(vi) Since ξ ∗M F = F ∗M ξ = ξF for all ξ ∈ C∞ and F ∈ A, the partial continuity of

∗M follows from the same property for the dual product. Let then (Fn)n∈N, F
D′−→ 0

be a sequence in A. We have:

lim
n→+∞〈ξFn, t〉 = lim

n→+∞〈Fn, ξ t〉 = 0 , ∀t ∈ D

and so ξFn
D′−→ 0.
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(vii) Let us write F ∗M G in the form

F ∗M G = F ∗ G +
√
2

2
JR\M (2.17)

where J = G ∗ F − F ∗ G, and JR\M is defined by (2.15). Notice that from (2.12)
and (2.13) we have explicitly:

√
2

2
JR\M =

∑
yi∈IG\M

(
�G

yi ∗ f − f ∗ �G
yi

)
+

∑
xi∈IF\M

(
g ∗ �F

xi − �F
xi ∗ g

)
.

Moreover, since J is of finite support (supp J ⊆ IF ∪ IG ), we have

Dx
(
JR\M

) = (Dx J )R\M .

It follows that

Dx (F ∗M G) = Dx (F ∗ G) +
√
2

2
(Dx (G ∗ F) − Dx (F ∗ G))R\M

and since Dx satisfies the Leibniz rule with respect to the product ∗, by using (2.17)
the terms on the r.h.s can be easily shown to yield (Dx F) ∗M G + F ∗M (DxG),
concluding the proof. ��

Theorem 1.2 in the Introduction is a simple corollary of the previous result.

3 Main Theorem

In this sectionweprove theMainTheorem. Several preparatory results that are required
for the proof will be given in Sect. 3.1 (Theorems 3.1, 3.5, 3.6 and 3.7).

3.1 Preparatory results

Theorem 3.1 Let ξ ∈ C∞ and F ∈ G. Then

ξ � F = ξF = F � ξ . (3.1)

Proof If F ∈ G ∩ C then from (A4)

ξ � F = ξF .

Moreover, if (3.1) is valid for some F ∈ G (and all ξ ∈ C∞) then it is valid for
F ′ = Dx F :

(ξ � F)′ = (ξF)′ ⇐⇒ ξ ′ � F + ξ � F ′ = ξ ′F + ξF ′

⇐⇒ ξ � F ′ = ξF ′
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An existence and uniqueness result about algebras… 53

since ξ ′ � F = ξ ′F by (3.1), and the dual product satisfies the Leibniz rule. This
proves that

ξ � g(k) = ξg(k) (3.2)

for all g ∈ G ∩ C, ξ ∈ C∞ and all k ∈ N0.
We now extend the previous result to all F ∈ G. We will need to impose the extra

conditions (A5.1) and (A5.2). Let (φi )i be a countable family of smooth real functions
satisfying:

(P1)
∑+∞

i=1 φi (x) = 1, ∀x ∈ R.
(P2) supp φi is compact.
(P3) If� ⊂ R is compact then�∩ supp φi �= ∅ only for a finite number of functions

φi .

Then, ∀F ∈ G we have

F =
(+∞∑

i=1

φi

)
F =

+∞∑
i=1

φi F =
+∞∑
i=1

φi g
(ki )
i

where (cf. (A5.1)) ki ∈ N0 and gi ∈ C ∩ G is such that for some bounded open set
�i ⊃ supp φi we have F |�i = g(ki )

i |�i . Using (3.2) we get:

F =
+∞∑
i=1

φi � g(ki )
i .

Let Fi = φi � g(ki )
i . Then Fi ∈ G and is of compact support (because φi � g(ki )

i =
φi g

(ki )
i and supp φi is compact). Hence Fi = h(si )

i for some hi ∈ G ∩ C, si ∈ N0 (cf.
(A5.1)), and thus, for every F ∈ G, ξ ∈ C∞ and n ∈ N:

ξ � F = ξ �
+∞∑
i=1

h(si )
i = ξ �

n∑
i=1

h(si )
i + ξ �

+∞∑
i=n+1

h(si )
i . (3.3)

Let zn = ∑+∞
i=n+1 h

(si )
i . Then zn = F − ∑n

i=1 h
(si )
i ∈ G, and zn

D′−→ 0 (since

F = limn→+∞
∑n

i=1 h
(si )
i in D′).

We then rewrite (3.3) in the form

ξ � F = ξ � zn + ξ �
n∑

i=1

h(si )
i = ξ � zn +

n∑
i=1

ξ � h(si )
i
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54 N. C. Dias et al.

and take the limit n → +∞. Using the partial continuity of the product (cf. (A5.2)),
we find:

ξ � F = lim
n→+∞

n∑
i=1

ξ � h(si )
i =

+∞∑
i=1

ξ h(si )
i = ξ

+∞∑
i=1

h(si )
i = ξ F

where we used (3.2) in the second step. In the same manner one proves that F � ξ =
ξF . ��
Remark 3.2 Notice that if we assume that G satisfies (A6), the proof of the previous
Theorem is concluded in Eq. (3.2) since every F ∈ G is (globally) a finite order
derivative of some g ∈ G ∩ C. The condition (A6) is satisfied by G = A, and also by
G = D′(�) for � ⊆ R a compact set. If G satisfies (A6) we can also conclude that
� is partially continuous (i.e. it also satisfies (A5.2)). This follows from the partial
continuity of the dual product and the fact that from (3.2), ξ � F = ξF for all ξ ∈ C∞
and F ∈ G.
Remark 3.3 Theorem 3.1 still holds if in the definition of G the condition (A5.1) is
replaced by (A5.1’). To prove this let us consider the partition of unity (φi )i defined
above by (P1)-(P3). For F ∈ G we have

F =
(+∞∑

i=1

φi

)
F =

+∞∑
i=1

φi F .

Let Fi = φi F ; since Fi is of compact support and Fi ∈ G (cf. (A5.1’)) we have
Fi = h(si )

i for some si ∈ N0 and hi ∈ C (cf. Corollary 3.4-2a, [19]). Moreover, since
anti-differentiation is an inner operation in G (cf. (A5.1’)), we also have hi ∈ G. Hence
F ∈ G can be written in the form:

F =
+∞∑
i=1

h(si )
i , hi ∈ C ∩ G , si ∈ N0

and the rest of the proof follows from Eq. (3.3).

Lemma 3.4 Let F,G ∈ G. Then supp (F � G) ⊆ supp F ∩ supp G.

Proof We will prove that supp (F � G) ⊆ supp F (the same result is valid for G).
The previous statement is equivalent to proving that (�c denotes the complement of
�):

〈F � G, t〉 = 0 , ∀t ∈ D : supp t ⊂ (supp F)c (3.4)

with the obvious exception of the case supp F = R for which the result is trivial. Let
us consider a partition of unity φ1, φ2 ∈ C∞ such that:

(i) φ1 + φ2 = 1,
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(ii) φ1(x ∈ supp F) = 0,
(iii) φ2(x ∈ supp t) = 0 .

Then

〈F � G, t〉 = 〈(φ1 + φ2) � (F � G), t〉
= 〈(φ1 � F) � G, t〉 + 〈φ2 (F � G), t〉

where we used (3.1) to obtain the second term. It follows that:

〈F � G, t〉 = 〈(φ1F) � G, t〉 + 〈F � G, φ2t〉 = 0

because, by (ii) and (iii), φ1F = 0 and φ2t = 0, respectively. ��
Theorem 3.5 Let s, t ∈ R. Then H(x − s) � H(x − t) = H(x − max {s, t}).
Proof Let us first consider s < t . Since supp H(s−x)∩supp H(x− t) = ∅, it follows
from Lemma 3.4 that

H(s − x) � H(x − t) = 0 . (3.5)

Taking into account that H(s − x) = 1 − H(x − s), we easily obtain H(x − s) �
H(x − t) = H(x − t). The other case s > t is proved in the same way.

Let now s = t . It follows from (A4) that

|x − s| � |x − s| = (x − s)2 (3.6)

Twice differentiating this equation, we get

δs � |x − s| + (Dx |x − s|) � (Dx |x − s|) + |x − s| � δs = 1 (3.7)

where we took into account that

D2
x |x − s| = 2δs . (3.8)

We now prove that δs � |x − s| = 0. To make it simple let s = 0. We have:

δ � |x | = δ � (x � H − x � H(−x))

= (δ � x) � H − (δ � x) � H(−x) = 0 .

Notice that x � H = xH and δ � x = x � δ = xδ = 0 (cf. Theorem 3.1). In the same
way one proves that |x − s| � δs = 0. Hence Eq. (3.7) reduces to

(2H(x − s) − 1) � (2H(x − s) − 1) = 1

⇐⇒ H(x − s) � H(x − s) = H(x − s)

which concludes the proof. ��
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Before we proceed to the next Theorem, let us recall the following useful formula
which is valid for all n,m ∈ N0 (Eq. (26), Sect. 2.6, [14]):

xnδ(m) =
{
0 , m < n
(−1)n m!

(m−n)!δ
(m−n) , m ≥ n

(3.9)

where we used the convention 0! = 1. The casem ≥ n can be easily inverted, yielding

δ( j) = (−1)n
j !

( j + n)! x
nδ( j+n) , ∀ j, n ∈ N0 . (3.10)

Theorem 3.6 For every s, t ∈ R, and every i, j ∈ N0 we have

δ(i)
s � δ

( j)
t = 0 . (3.11)

Proof Since supp (δ
(i)
s � δ

( j)
t ) ⊆ supp δ

(i)
s ∩ supp δ

( j)
t (cf. Lemma 3.4), for t �= s we

have δ
(i)
s � δ

( j)
t = 0. Moreover, if t = s, we get:

δ(i)
s � δ

( j)
s =

n∑
k=0

akδ
(k)
s (3.12)

for some n ∈ N0 and ak ∈ R, k = 0, .., n. To simplify the presentation, assume that
s = 0 and i ≤ j . Then:

xi+1 � (δ(i) � δ( j)) = (xi+1 � δ(i)) � δ( j)

= (xi+1δ(i)) � δ( j) = 0

where we used (3.9). Substituting (3.12) in the previous expression:

xi+1 �
n∑

k=0

akδ
(k) = xi+1

n∑
k=0

akδ
(k) = 0 �⇒ ak = 0, ∀k ≥ i + 1 (3.13)

and so

δ(i) � δ( j) =
∑
k≤i

akδ
(k) . (3.14)

Let us return to (3.10) and set n = i + 1:

δ( j) = bi jδ
( j+i+1)xi+1 where bi j = (−1)i+1 j !

( j+i+1)! . (3.15)

It follows that:

δ(i) � δ( j) = bi j
(
δ(i) � δ( j+i+1)

)
� xi+1 (3.16)
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where we used (3.1) and the associativity of�. Since (3.14) is valid for all j , we have:

δ(i) � δ( j+i+1) =
∑
k≤i

a′
kδ

(k) (3.17)

for some a′
k ∈ R. Substituting in (3.16) and using (3.9), we finally get

δ(i) � δ( j) = bi j

⎛
⎝∑

k≤i

a′
k δ(k)

⎞
⎠ � xi+1 = bi j

∑
k≤i

a′
k δ(k)xi+1 = 0

which concludes the proof. ��
Theorem 3.7 For all n ∈ N0 and s, t ∈ R we have:

(1) H(x − t) � δ
(n)
s = δ

(n)
s � H(x − t) =

{
δ
(n)
s if s > t
0 if s < t

(2) H(x − t) � δ
(n)
t = ctδ

(n)
t , δ

(n)
t � H(x − t) = (1 − ct )δ

(n)
t where ct is some

function ct : R −→ {0, 1}.
Proof (1) For s < t , supp H(x − t) ∩ supp δ

(n)
s = ∅ and thus the product is zero. For

s > t , we have H(x − t) = 1 − H(t − x) and since supp H(t − x) ∩ supp δ
(n)
s = ∅

we get:

H(x − t) � δ(n)
s = δ(n)

s � H(x − t) = δ(n)
s .

(2) Let us begin by proving that the formulas are true for n = 0. Assume for simplicity
that t = 0. Since supp H(x) ∩ supp δ = {0} we have H(x) � δ = ∑m

k=0ckδ
(k), for

some m ∈ N0 and ck ∈ R. As before

(H � δ) � x = H � (δ � x) = 0 �⇒
m∑

k=0

ck(δ
(k) � x) = 0 �⇒ ck = 0, ∀k �= 0

and thus H � δ = cδ for some c ∈ R. Moreover (cf. Theorem 3.5)

H � (H � δ) = (H � H) � δ = H � δ

⇐⇒ H � cδ = cδ ⇐⇒ c2δ = cδ ⇐⇒ c = 0 ∨ c = 1.

Generalizing now for t ∈ R: H(x − t) � δt = ctδt where ct is an arbitrary function
ct : R −→ {0, 1}. Each function ct defines a particular �-product. Let us denote it by
�ct . Thus H(x − t) �ct δt = ctδt .

Let us proceed. Differentiating H(x − t) �ct H(x − t) = H(x − t) we get:

δt �ct H(x − t) + H(x − t) �ct δt = δt

⇐⇒ δt �ct H(x − t) = (1 − ct )δt
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which completes the proof of (2) for n = 0.
Assume now that

H(x − t) �ct δ
(n)
t = ctδ

(n)
t (3.18)

holds for some n ∈ N. Differentiating (3.18) we get

δt �ct δ
(n)
t + H(x − t) �ct δ

(n+1)
t = ctδ

(n+1)
t

and since the first term is zero (cf. Theorem 3.6) we conclude that (3.18) is valid for
n + 1, and thus for all n ∈ N0. In the same way one proves that δ

(n)
t � H(x − t) =

(1 − ct )δ
(n)
t , for all n ∈ N0. ��

3.2 Main Theorem

We can now easily prove the Main Theorem.

Proof The inclusionA ⊆ G follows directly from (A1’) and the fact that the distribu-
tional derivative Dx is an inner operator in G.

Let then F,G ∈ A, we want to prove that F � G = F ∗M G for some M ⊆ R.
Let us write F,G in the form (2.5). From the distributive property of �:

F � G = ( f + �F ) � (g + �G)

= f � g + f � �G + �F � g + �F � �G . (3.19)

Let us consider each term separately:
1) We first prove that

f � g = f ∗M g , ∀ f , g ∈ C∞
p , ∀M ⊆ R . (3.20)

Since (cf. Theorem 3.1):

ξH(x − a) = ξ � H(x − a) = H(x − a) � ξ , ∀ξ ∈ C∞

and also (cf. Theorem 3.5):

H(x − a) � H(x − b) = H(x − max{a, b})

wehave for f = fi H(x−a) and g = g j H(x−b), fi , g j ∈ C∞, using the associativity
of �:

f � g = f g = f ∗M g (3.21)

where the second identity follows from (2.14) and holds for all M ⊆ R. Moreover,
for f or g smooth, (3.21) also holds (cf. Theorem 3.1). Since every f , g ∈ C∞

p is the
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sum of a smooth function with a finite number of functions of the form ξH(x − a),
ξ ∈ C∞, a ∈ R, using the distributive property of � and ∗M we get (3.20).

2) We now prove that for some M ⊆ R

f � �G = f ∗M �G , ∀ f ∈ C∞
p , ∀G ∈ A . (3.22)

It follows from Theorem 3.7 and Remark 2.8 that

H(x − t) � δ(n)
s = H(x − t) ∗M δ(n)

s (3.23)

where M = {t ∈ R : ct = 0}. Since (cf. Theorem 2.11(v) and Theorem 3.1)

ξ � F = ξ ∗M F = ξF , ∀ξ ∈ C∞ , ∀F ∈ A (3.24)

we get

(ξH(x − t)) � δ(n)
s = ξ � (H(x − t) � δ(n)

s )

= ξ ∗M (H(x − t) ∗M δ(n)
s )

= (ξH(x − t)) ∗M δ(n)
s (3.25)

where in the first and last steps we used (3.24) and the associativity of � and ∗M , and
in the second step we used (3.23) and (3.24).

Moreover, �G is of the form (2.7) and every f ∈ C∞
p is the sum of some ψ ∈ C∞

with a finite linear combination of terms of the form ξH(x − t), ξ ∈ C∞. Hence,
using the distributive property of � and ∗M , we get (3.22). An equivalent proof shows
that

�F � g = �F ∗M g , ∀F ∈ A , ∀g ∈ C∞
p . (3.26)

Notice that once the set M is fixed for the product g��F , the product in the reversed
order is also fixed, i.e. �F � g = �F ∗M g (with the same M); this follows from
Theorem 3.7(2), which determines that the function ct (and thus the set M) is the same
in both products.

3) Finally, we have

�F � �G = �F ∗M �G = 0 (3.27)

which is true because�F and�G are both of the form (2.7) and so, from the distributive
property of �, Theorem 3.6 and the definition of ∗M (2.14), we easily conclude that
both products in (3.27) are zero.

Substituting (3.20), (3.22), (3.26), (3.27) in (3.19) we obtain F � G = F ∗M G,
concluding the proof. ��
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