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Abstract

Applying an averaging technique for the adapted Priifer angle, we obtain an oscillation
criterion for linear second order differential equations whose coefficients consist of
products of powers of natural logarithm and general (bounded or unbounded) contin-
uous functions. The presented criterion is illustrated by new corollaries and examples.
The novelty is caused by the used averaging technique over unbounded intervals.
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1 Introduction

We study the oscillation of linear second order differential equations
(R()x' (1)) + S()x(t) =0, (1.1)

where R > 0, § are continuous functions on aninterval [T, co). Werecall that Eq. (1.1)
is called oscillatory if all its solutions are oscillatory (which means that any solution
has zero points in any neighborhood of co); and we say that Eq. (1.1) is non-oscillatory

Communicated by Gerald Teschl.

B Michal Vesely
xvesely @math.muni.cz

Department of Mathematics and Statistics, Faculty of Science, Masaryk University, Kotlarskd 2,
611 37 Brno, Czech Republic

Mathematical Institute, Slovak Academy of Sciences, Stefanikova 49, 814 73 Bratislava,
Slovakia

Department of Mathematical Analysis and Numerical Mathematics, Faculty of Mathematics, Physics
and Informatics, Comenius University in Bratislava, Mlynskd dolina, 842 48 Bratislava, Slovakia

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00605-023-01910-6&domain=pdf
http://orcid.org/0000-0002-8039-688X
http://orcid.org/0000-0002-1071-3077
http://orcid.org/0000-0002-7487-5606
http://orcid.org/0000-0001-5306-7127

92 P. Hasil et al.

in the opposite case. Concerning the oscillation theory of Eq. (1.1), see, e.g., [1, 34]
with references cited therein.

In the studied equations, it suffices to consider only ¢ large enough because we
analyze oscillation properties. Thus, we consider only ¢ > e, where e is the base of the
natural logarithm. As usual, we put R, := [e, 00). Let log denote the natural logarithm
and let p > 0 be arbitrarily given. In this paper, we concentrate on linear second order
differential equations in the form

logPt , \'  logPt _
( o X (t)) + 2 s(Hx(@) =0 (1.2)

with continuous coefficients r : Re — (0, 00) and s : R — R.

In the oscillation theory of linear differential equations, a very useful tool is the
combination of the Riccati transformation and the Priifer angle. This approach enables
to describe the oscillation behavior of equations with non-constant coefficients. In
addition, very general oscillation criteria can be proved when the combination of the
Riccati transformation and the Priifer angle is followed by a non-trivial averaging
technique. We apply such a method to prove an oscillation criterion for Eq. (1.2),
where the obtained oscillation criterion can be used through computing averages of
treated coefficients.

In this paragraph, we collect an overview of the literature. We begin with strongly
relevant papers [10, 12-14, 16, 26-28] (see also [9, 19, 22, 25]). For other relevant
results about perturbed differential equations, we refer at least to [5, 7, 21, 23] (see
also [18, 33] in the discrete case); and for non-linear equations, to [3, 20, 29, 30]. Con-
cerning the oscillation of corresponding difference equations and dynamic equations
on time scales, see, e.g., [2, 6, 15, 31]. More general half-linear discrete equations are
treated in [11, 17, 24, 32].

We highlight that our criterion uses intervals of general lengths in the computing
averages. This situation is not treated in any previous research paper concerning the
studied equations. In this sense, our approach is quite new and the method allows
to obtain strong results. More precisely, this study obtained sharper results by using
averaging techniques over intervals with variable lengths. Comments on the method
are given at appropriate places in the text below. The novelty is demonstrated by three
corollaries together with simple examples at the end of this paper.

The basic motivations for the research presented in this paper come from [14, 16],
where the following results are proved.

Theorem 1.1 Let us consider Eq. (1.2), where r : Re — (0,00), s : Re = R are
periodic functions with period o > 0.

A If
| eto | eto
4 —/r(r)dr —/S(‘L')d‘l,' > 1,
o o

then Eq. (1.2) is oscillatory.
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B) If
e+o e+o
1 1
4 —/r(r)dr —/s(r)dt <1,
o o

then Eq. (1.2) is non-oscillatory.

Theorem 1.2 Let us consider Eq. (1.2), where r : Re — (0, 00), s : Re — R satisfy

t+1 t+1
d d
i A0 = i DL (-

Let X,Y,0 > 0. If4XY > 1 and if the inequalities

t+o t+o

lfr(r)drzx, l/s(t)drzY
o o

t t

are valid for all large t, then Eq. (1.2) is oscillatory.

Using Theorems 1.1 and 1.2, we can simply describe the aim of this paper. Our
goal is to significantly enlarge the set of oscillatory equations in the studied form, i.e.,
to modify Theorem 1.2. Theorem 1.1 shows that the oscillation criterion mentioned in
Theorem 1.2 cannot be improved by a modification of the inequality 4XY > 1. Thus,
via an averaging technique over intervals of general lengths, we prove a modification
of Theorem 1.2 which covers coefficients without average values over intervals of
finite lengths.

This paper is organized as follows. In the upcoming section, we recall the Riccati
method together with the Priifer angle. In Sect.3, we describe the used averaging
technique which is the main tool. In addition, we prove auxiliary results in Sect. 3.
Section 4 presents our main result with its corollaries and examples.

2 Riccati transformation and Priifer angle

In this section, we describe the used combination of the standard Riccati transformation
and the adapted Priifer angle. For arbitrary continuous functions R : R — (0, 00)
and S : R — R, let us consider Eq. (1.1). For a non-trivial solution x of Eq. (1.1),
applying the Riccati transformation

0 =ROZD w0
w(t) = ) x(t) #0,
we obtain the Riccati equation
w'(t) + S(t) + R~ (1)w’(r) = 0. Q2.1
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In addition, using the substitution

t
1) =
v(®) log? t

from Eq. (2.1), we obtain

V=" 122,

log ¢

Finally, for a non-trivial solution x of Eq. (1.1), we apply the adapted Priifer
transformation

2 = p@sing@®), 0 = pOR 0 E L cos ()

which yields the equation (of the adapted Priifer angle)

0 = 8 o o)
= COS —
¢ tR(t) ¢ tlogt

P8I P o5 ey sin () + - g()s1n2¢(t)- 22)

For the derivation of Eq. (2.2), we refer to [14].

3 Averaging function of Priifer angle

We consider two auxiliary functions f, g. Let a continuously differentiable function
f :Re — (0, 00) and a continuous function g : R — [1, 00) satisfy

f(g*()

lim f'(t)g(t) =0, lim =0. 3.D
t—00 t—00 t
Taking into account that g(¢#) > 1 for all # € R, from the second limit in (3.1), one

can see that

f0e® _ o

lim 0, ie., lim —— = o0o. (3.2)
oot t—c0 f(r)g(r)

We consider Eq. (1.2), where continuous functions r : R — (0, co) and s : R; —
R satisfy

1+f(1) 1+f(@)
r(r)dr s(r)| dr
7 := lim sup Ji () ,  §:=limsup &

el fngn el f(0g(0)
(3.3)
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Thus, we deal with Eq. (1.1) for R(t) = log? t/r (1), S(t) = s(t)logPt/t*, t € R,
i.e., for Eq. (1.2), Eq. (2.2) takes the form

logr —p

1
¢') = (r(t)COS pt) — 7
ogt

cos ¢(t) sin ¢(1) + s(7) sin’ (p(t)) . (34

Let ¢ be an arbitrary solution of Eq. (3.4) on R.. For the auxiliary function f :
Re — (0, 00), we define the averaging function ¢ : R — R as

1+ f (1)
pf(t) == f(t) / o(t)dr, t € Re. 3.5

t
Concerning the averaging function ¢ s, we prove the following properties.

Lemma 3.1 Let ¢ : Re — R be a solution of Eq. (3.4). The inequality

lim sup = f(t) @ 1P s 0] <o (3.6)

holds uniformly for T € [t,t + f(t)].

Proof From (3.5), we have

o) —er| < max  Jp(t+o) -+, Tl 1+ f(D)] t€Re.
01,02€[0, f(1)]

Considering (3.3), we obtain

i sup = e f(t) o 1P@ —es 0

t
<limsup ———— lp(t + 01) — ot + 02)|
r—>oop f®g) o1 926[0 110} ¢ ¢ ¢ @
t+o01

t
= lim sup —— / "(0)do
o’ f()g) e oael0. £ 1) v

t+02
t+ (1)
< lim su "(0)| do
s / ()]
t+ (1)

(r(o) cos? (o)

= limsup ———

=00 f(l)g(f) /

logo —

4 cos (o) sinp(o) + s(o) sin? (p(0)> ‘ do
log o
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t+f (1)

< lim sup ! / @)+ 14+ p+|s(o)])do
t

t—oo f()g)

o r+f (1)
r(o)do 1 s(o)| do
< lim sup u + lim sup +P + lim sup &
=00 F(0)g@) t—oo &) f—00 feg)

<F+14+p+5<oo,

where T € [t,t 4+ f(2)]. O
Remark 1 From (3.2) and from (3.6) in Lemma 3.1, we have

lim (¢(t) = @5 (1)) =0
for any solution ¢ : Re — R of Eq. (3.4) and ¢ defined in (3.5).

Lemma3.2 Lerp : Re — R bea solution of Eq. (3.4). Then, there exists a continuous
function ¥ : Re — R such that lim; . ¥ (¢t) = 0 and that

+£ (1)
ry =2 | eos? o) | / ryde | = 281 P ooy sing ()
t
t+f(1)
+ sin® g (1) % f s(rydr | + v (@) (3.7)

t
forallt > e.

Proof For any ¢ > e, it holds

t+f(1)

, 1
‘Pf(t)Z % / o(t)dr
o " (14 /() 9l + £(1)) — 9(1)
t (4 —Q
_— d
EON plodr+ 0
t+f(1) , t+£(1)
=— f w’(r)dr+f(t) <p(t+f(t))—L / p(r)dr
0 0 on
(3.8)
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Using (3.1) and (3.6) in Lemma 3.1, we have

t+f(1)

1
- d
e+ f(@©) 0 / p(r)dr

lim sup ¢
—>0o0

f’(t)‘
f@®

= limsup?
t—00

I )' |¢<r+f(r>)—¢f<t)|

= hm m sup THGIG]

f@ ) ) ot + f©) — s ()] =0. (3.9)

Next, (3.8) and (3.9) give

1+ f (1)
hm t(pf(t) f(t) / ¢ (r)dr| =0. (3.10)

t

Therefore, it is sufficient to consider

1+f(@)
m ¢ (t)dr.

t
‘We have

t+f(t)1 i
— <r(r) cosz<p(r) _Ler=p
T

logt

‘% cos ¢(7) sinp(7) +5(7) Sinzfp(r)) dr

t+f(t)1 |
0gT —

- — — (@) cos® p(r) —
@) t

t

P cos ¢(7) sin (1)

+s(7) sin? go(t)) dt

t+f(1)

<L <__
O ARVARENI0

) @)+ 14+p+|s(x)hdr

<3 [ e+ teprk@an rek
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| 1+ (1)
lim sup n / @)+ 14+ p+is(v)dr

11— 00
t
t+f(t)
= limsupM / r@)+14+p+is(r)hdr
t

t—oo Lf(1)g(1)

o 1+£(0)
= lim sup fDs®) (f’ rmdr  1+p n Ji ls ()] dr) _

f(0)g) g() f(0)g)

t—00 t

Therefore,
+£@) 1 1+ £ @)
t
lim |— / ¢'(t)dt — — / <r(r)cos2(p(t)
=00 | f(1) J f@® )
logr — p

cos ¢(7) sin (1) +s(t)sin2<p(r)>dr =0. (.11
logt

Altogether, (3.10) and (3.11) give

| t+ (1)
Jlim 1@ (1) — 0 / r(t) cos® (1)
t
1 _
_oet=p cos ¢(t) sin@(t) + s(7) sin? w(r))dr =0. (3.12)
logt
We use the Lipschitz continuity of the functions y = cos? x, y = sin x, and

y = cos x sin x with the Lipschitz constant L = 1. Considering (3.1), (3.3), and (3.6)
in Lemma 3.1, we have

1 £ () 1+ f (1)
lim sup |cos? ® | — / r(t)ydrt | — — r(r)cos2 (v)dr
i N VO f@ Y
| 1+f(0)
< limsup —— / r(t) ‘cos2 pr(t) — cosz<p(r) ‘dt
t—oo  f()
t
| t+f(1)
< lim sup — r(t t) —e(r)|dr
< Hoopfm/ (@) o) = o)

t
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1+ @)
1 g2(t 1 t ) —
=limsupf()g() /r(r)Mdr =0 (3.13)
00 t fg@) f)g@)
and
| t+f(1) | t+f(1)
lim sup |sin® @ £ (1) | — f s(ydr | - — f s(7) sin” ¢(1) dt
R VIO f@ ) Y
| t+1(1)
< lim sup — s(7)| | sin® 1) —sin® o(t) | dt
< limsup —— / 5Ol [sin? 1) —sin® ()|
| t+f (1)
< lim sup —— s(t (1) — (t)|dT
< ;_mpf(t) / Is(O| |@r (1) — ()]
t
) | +£(0) l07) — (@]
t t t t) —
— lim sup & ®) /|s(r)|udr 0
=00 t fg@) f()g@)
(3.14)
together with
1 1 H—f(t)l
. ogt —p . 0gT —p .
1 _— t 1) — d
ltriilip log 1 cos @y (t)singyr(r) 0 / log 7 cos (1) sing(r)dr
t
. logt — p .
<limsup | |[——— cosq(t)sings(t)
t—>00 logt
t+ (1)

1 logt —
NG / O(fo—g;pwsw(ﬂsimp(r)dr
t

t+ £ (1)

1 logt — p .
70 / log? cos ¢(t) sing(r)dr

t+f (1)

L logr——p (t)sing(z)d
_f(t) / log t cos (1) sing(t)dt
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t+f (1)
< (1 + p)limsup — / |cos @r(t)singy(t) — cos () sin go(r)| dr
1—00 f( ) J
| 1+f(1)
+ lim sup f P __P dr
t—oo | £ () logt logt
t
| t+f (1) | |
. og(t + f(¢)) —logt
< (1 + p)limsup — / |q0f(t) — <p(r)| dr + plimsup & f(z)) g
t—00 f() t—00 log t

t

fegm [ 1 Hmrl (1) — o(1)|
. 1)g(t Qf — T
=(1 1 d
(I pylimsup === 1 =5 / fngn

log (1 + @)
+ plim sup S —
t—00 10g t

=0.

Thus, using (3.12), (3.13), and (3.14), we obtain (3.7) for a continuous function ¥ :
R — R satisfying

Jim w0 =0

4 Oscillation criterion

To prove the main result (Theorem 4.1 below), we recall the following two known
lemmas, which are proved in [14].

Lemma 4.1 [f there exists a solution ¢ : Re — R of Eq. (3.4) satisfying

Jim (1) = oo, 4.1
then Eq. (1.2) is oscillatory.
Lemma4.2 Let A, B > 0. Let n : Re — R be a solution of the equation

1 logt —
w0 = (A cos? n(r) — —- L

cosn(t)sinn(t) + B sin? n(t)) .
logt

If4AB > 1, then
lim n(t) = oo
11— 00
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Theorem 4.1 Let a continuously differentiable function f : R, — (0, 00) and a
continuous function g : Re — [1, 00) satisfy (3.1). Let us consider Eq. (1.2), where
continuous functions r : Re — (0, 00) and s : R — R satisfy (3.3). Let

t+f(1) 1+ f ()
rei= 11m mf / r(t)dt e R, s7:= 11m mf / s(t)ydr e R.
a f( J a f( )
4.2)
If4rgsy > 1, then Eq. (1.2) is oscillatory.

Proof Considering Lemma 4.1, it suffices to show that a solution ¢ : Re — R of
Eq. (3.4) satisfies (4.1). Thus, we consider an arbitrary solution ¢ : Re — R of
Eq. (3.4) and the corresponding function ¢y introduced in (3.5). From Remark 1, we
know that it suffices to prove lim, .« @ () = oo which gives (4.1).

Using (3.7) in Lemma 3.2 and (4.2), for all t > e, we have

t+f(1)

w’f(t)z% cos® @ (1) % / r(r)dr
1 | 1+ f(1)
_Oi:g—tpCoswf(t)sinsﬁf(t)+sin2(pf(t) I0) / s(ryde | + v @)

t

Ogl—p ) . i ) )
ry cos® rt) — W cosr(t)singr(t) +spsin” @) +W(©) |,

N|>—A

where W : R — R is a continuous function with the property that lim,_, o W (¢) = 0.
There exists a sufficiently small ¢ > 0 that satisfies 4(ry — &)(sy — &) > 1 from
4r¢sy > 1. Therefore, we obtain the inequality

1 logt — .
go}(t) > " ((rf — 8) cos® pr(t) — oet=p cos@r(t)singyg(t)

log ¢
+ (Sf — 8) sin? (pf(t))

for ¢ greater than or equal to a sufficiently large 7. From the standard comparison
theorem, we have

pr(®) =0, =T,

where 7 is the solution of the equation

logt — p

, 1
n(t) = ” ((rf — &) cos® n(t) — oz

cos (t) sinn(t) + (s — ¢) sin® n(l))
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satisfying n(T) = ¢y (T). Lemma 4.2 guarantees that lim, o 7n(t) = o0.
Consequently, we have

Jim 070 = o

This completes the proof. O

Remark 2 The used processes differ from the previous ones applied in the oscillation
research of Eq. (1.2). Thus, Theorem 4.1 is not a simple generalization of any previous
result. Especially, Theorem 1.2 does not follow from Theorem 4.1. Indeed, in the
statement of Theorem 1.2, the auxiliary functions are f(¢) = 1, g(t) = Ji,t € Re.
For these functions, we have
o F020)
im —————= =1,
t—0o0 t
i.e., (3.1) is not satisfied. At the same time, for this choice, (1.3) from Theorem 1.2 is
replaced by the constraint

1+1 t+1
r(t)dr s(t)| dt
lim —ft (*) = lim —‘[’ (@) =0
f— 00 tB t—00 tB

for some 8 < 1/2.

Remark 3 We briefly discuss the role of the second auxiliary function g which is linked
to the first auxiliary function f. Roughly speaking, the smaller f is, the larger g may
become, and vice versa. This fact is documented in Corollary 4.3 and Example 3
below.

Remark 4 We conjecture that it is not possible to decide the oscillation behavior of
Eq. (1.2) for general coefficients r : R — (0, 00), s : Re — R satisfying

| 1+ (1) | t+f(1) |
tl—lfgo m / r(t) dt m / S('L') dr | = Z

for treated auxiliary functions f. This conjecture is based on oscillation results about
perturbed differential equations in [4, 8].

To explain the novelty of our main result, we mention the corollaries and examples
below. These oscillation criteria and examples are not covered by any previously
known result.

Corollary 4.1 Let o, B € (0, 1) be such that o + 28 < 1. Let us consider Eq. (1.2),
where continuous functions r : R — (0, 00) and s : R — R satisfy

f:Ha r(t)dr
t0(+/3

[ s(o)] de

o 43)

lim sup
—>0o0

< 00, lim sup
11— 00
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Let
{ 1+t ) t+1*
rie = liminf — / r(t)dr € R, s :=liminf — / s(t)dr € R.
t—oo % t—o0 %

t t
If Arjasie > 1, then Eq. (1.2) is oscillatory.

Proof The corollary follows from Theorem 4.1 for f(t) = t*, g(t) = B, t € Re. For
these auxiliary functions f, g, (3.1) is true and (3.3) reduces to (4.3). m]

Remark 5 1In the statement of Corollary 4.1, the finiteness of r;e and s« is considered.
In fact, for r,« > 0 and s;« = 00 or rye = 00 and s;« > 0, Eq. (1.2) is oscillatory as
well. It follows from the famous Sturm comparison theorem (see, e.g., [34]).

Example 1 For arbitrarily given numbers a > 1/4 and b > 0 and for all 7 € R., we
define

1— @ —2m, te[2,2"+n), neN;
r =1 - L@ t2m—1), te[2"+n 2" +2n], neN;
1, te(2"+2n,2") neN,
and
a—b(@t-2", te[2”,2”+n),neN;

s)=3a—-bQ2"+2n—1), te[2”+n,2”+2n],neN;

a, te (2” +2n,2"+1), n e N,

For these functions, let us consider Eq. (1.2) and apply Corollary 4.1 for arbitrary
a, B € (0, 1) satisfying @ + 28 < 1. One can easily compute

i j;ﬂrta r(r)dr i 1 _0
4 < R
ltnligp to+B oS tB
and
g e s@ldT f,’“"‘adr im e 5@ —al de
imsup——— < limsup ——— + limsu
t%oop reth - t%oop ot n—)OOp 2n(@+h)

2"+2n
" bndt
< lim % + lim sup f .

t—o00 t N 00 n(a+p)
2
_0+h,?l>sup2(a+ﬂ) 0,
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i.e., (4.3) is valid. In addition,

t+1*
N |
1> re =liminf — / r(t)dr
t—o0 %
t
2"42n
) 1 1
> 1 —limsup — —dt
n—oo 2" 2
27!
) n
=1—-limsup— =1
2}’!0(
n— oo
and
t+1*
1
a > s;e = liminf — / s(t)dr
t—oo t%
t
2"+2n
> a — lim sup bndr
2}1
n—>oo
2)1
. 2bn?
= a — lim sup =a,
2”(1
n—oo
i.e., 4res;c = 4a > 1. Hence, the treated equation is oscillatory. Note that its

oscillation does not follow from any previously known result for any a > 1/4.

We highlight that Corollary 4.1 gives new results in many special cases (for example,
for any p > 0). To illustrate this fact, we mention the following new result with a
concrete choice of p, when the leading coefficient is constant and the second one is
bounded and positive.

Corollary 4.2 Let a > 1. Let us consider the equation

logt
t2

(logz x'(1)) + s()x(t) = 0, (4.4)

where s : Re — (0, 00) is a continuous and bounded function. If

t
t+logat

f s(t)dr > ‘1—‘, 4.5)

t

log .t
lim inf —2¢
t—00 t

then Eq. (4.4) is oscillatory.
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Proof 1t suffices to consider Eq. (1.2) and Theorem 4.1 for p = 1 and r(¢) = 1,
f(@) =t/log,t, g(t) =1,t € Re. Especially, (3.3) follows from the boundedness of
r and s and

f (@) 1
1)=1, — = , t e R,
g() : log, 1 e
log, t — L
Fl) = —— e
log; ¢
give (3.1). Because of ry = 1, the inequality 47 rs s > 1 reduces to (4.5). O

In the example below, we solve the oscillation of a simple equation which is not
covered by any previous result (including Corollary 4.1).

Example 2 For arbitrarily given numbers ¢ > 1/4 and d € (—c, —c¢ + 1/4] and for all
t € R, we define

c, t €le, 128);
c+d@—2", re[22"+1),n>=7neN;
sy = letd. e[+ L 1) nzTneN;

n? n?

c+d(2”+i—§—t), te[2"+2—1,2"+2),nz7,neN;

c, te[Z"—{-i—Zﬂ”“),nzIneN.

For this function, let us consider Eq. (4.4) and apply Corollary 4.2 for a = 2. Using

t+log’2t
. log, t
¢ > lim sup £ / s(t)dr
t—00 t
t
[+10£2t
.. log,t
> lim inf £ / s(t)dr
t—00 t
t
2"
2n+log2 2n
.. log,2"
= lim inf £ f s(t)dr
n— 00 n
2}1

2 (1+1)

— lim inf / s(t)dt
2n

n—oo
on
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2 (1+:) 2 (1+1)

zliminfin f c+ddr + / cdt

n—0o0
: (i)
— 1 n 2" J . n o 1 1 .
= Jm g etdt im -2 e )=
we obtain
1+ fogy7

log, t 1
lim £ / s(t)dt =c¢c > —-.
t—oo t 4

t

Thus, the considered equation is oscillatory. We add that we cannot use Theorem 1.2,

because

| t+o
lim inf — / s(t)ydt =c+d <
t—o0 o

t

FN

forany o > 0.

To illustrate the role of the auxiliary function g, we mention the last corollary and

example.

Corollary 4.3 Let us consider the equation

2 ! 2
<log tx/(t)> n lo;g2 t (X () = 0.

r(t)
where continuous functions r : Rg — (0, 00) and s : R — R satisfy
r+1 t+1

—00 —00

lim sup logt/ r(t)dr < oo, lim sup logtf [s(7)] dt < 0.
t

Let

+ t+1
ry—1 :=liminf ¢ / r(r)dr e R, §;—1 := liminf ¢ / s(t)dr € R.
11— 00 11— 00

t t

If4r,-15,-1 > 1, then Eq. (4.6) is oscillatory.

@ Springer
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Proof The corollary is a consequence of Theorem 4.1 for p = 2 and f(¢t) = 1/t,
g() = t/logt, t € Re. These auxiliary functions satisfy (3.1) and (3.3) reduces to
4.7). O

Example 3 We put
r(t):=24cos (3 +1), reR.,
and
s(t) :=a+tsin2', teR.,

where a > 1/8. For these functions, let us consider Eq. (4.6) and use Corollary 4.3.
One can easily verify that (4.7) is valid and that

t+1 r+1

r-1 = lim ¢t / r(r)dr =2, §;—1 = lim ¢ / s(t)ydr = a.
—00 —00
t t

Considering 4r,-15,-1 = 8a > 1, we obtain the oscillation of the equation, where its
oscillation does not follow from any previously known result. In particular, we cannot
apply Theorem 1.2, because

i S B@IdT 2
t—00 \/; o T ’

i.e., (1.3) is not satisfied.
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