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Abstract
This paper deals with quadratic irrationals of the form m/q + √

v for fixed positive
integers v and q, v not a square, and varying integers m, (m, q) = 1. Two numbers
m/q + √

v, n/q + √
v of this kind are equivalent (in a classical sense) if their con-

tinued fraction expansions can be written with the same period. We give a necessary
and sufficient condition for the equivalence in terms of solutions of Pell’s equation.
Moreover, we determine the number of equivalence classes to which these quadratic
irrationals belong.
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1 Introduction and results

Let v and q be positive integers, v not a square. In this paper we study the equivalence
between numbers

x = m/q + √
v,

where m is an integer, (m, q) = 1. Thus, v and q are fixed, whereas m may vary.
The equivalence of two numbers x , y of this kindmeans that the (regular) continued

fractions of x and y can be written with the same period, say,

x = [a0, . . . , a j−1, [b1, . . . , bk]], y = [c0, . . . , cl−1, [b1, . . . , bk]], (1)
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where [b1, . . . , bk] is the common period. Here the pre-periods a0, . . . , a j−1 and
c0, . . . , cl−1 need not occur. In general, it is more likely that you find equivalent
numbers x and y than inequivalent ones, for example,

x = 1

12
+ √

7 = [2, [1, 2, 1, 2, 4, 5, 16, 47, 1, 1, 3, 1, 1, 4]],

y = 5

12
+ √

7 = [3, [16, 47, 1, 1, 3, 1, 1, 4, 1, 2, 1, 2, 4, 5]]
= [3, 16, 47, 1, 1, 3, 1, 1, 4, [1, 2, 1, 2, 4, 5, 16, 47, 1, 1, 3, 1, 1, 4]].

We write x ∼ y if x and y are equivalent. It is a classical result of Serret that x ∼ y
is the same as

y = ax + b

cx + d
, where

(
a b
c d

)
∈ GL(2, Z), (2)

i.e., a, b, c, d ∈ Z and ad − bc = ±1 (see [5, p. 54], [1, p. 38]).
Our first aim is the following theorem.

Theorem 1 Let x = m/q + √
v, y = n/q + √

v, (m, q) = (n, q) = 1. Let q1 =
(m − n, q). Then x ∼ y if, and only if, the equation

r2 − c2v = ±1 (3)

has a solution (r , c) ∈ Z
2 such that (c, q2) = qq1.

Of course, (3) is known as Pell’s equation.Our next question concerns the number of
equivalence classes towhich our quadratic irrationals belong. Since x+1 ∼ x , wemay
restrict ourselves to numbers x = m/q +√

v, y = n/q +√
v with 0 ≤ m, n ≤ q − 1.

Theorem 2 Let q0 be the smallest divisor of q such that there is a solution (r , c) of
(3) with (c, q2) = qq0. Then the numbers x = m/q + √

v, (m, q) = 1, 0 ≤ m ≤
q−1, belong to exactly ϕ(q0) equivalence classes, each of which contains ϕ(q)/ϕ(q0)
elements x.

Remarks 1. Note that every equivalence class contains many elements different from
the numbers x in question. For instance, 1/3+ √

2 ∼ 9
√
2/2, the latter not being

of the appropriate form for v = 2 and q = 3. Equivalent numbers have the same
discriminant (see [1, p. 41]). Since the discriminant of x = m/q+√

v, (m, q) = 1,
equals 4q4v, x cannot be equivalent to a numberm′/q ′+√

v, (m′, q ′) = 1, q ′ > 0,
q ′ �= q.

2. The unit group Z[√v]× of the ring Z[√v] is isomorphic to Z × Z/2Z and is
generated by a fundamental unit s+t

√
v together with−1. For r+c

√
v ∈ Z[√v]×

we have q | c if, and only if, r + c
√

v ∈ Z[q√
v]×, the unit group of the subring

Z[q√
v]. This group has a finite index k in Z[√v]× (see [4, p. 296]). Accordingly,

(s + t
√

v)k is an element of Z[q√
v]×.

3. It may happen that Z[q√
v]× coincides with Z[qq1√v]× for some divisor q1 of q,

q1 > 2. In this case c is divisible byqq1 for each r+c
√

v ∈ Z[q√
v]×. In particular,

qq1 | (c, q2) for all these units. Let q0 be the smallest divisor of q such that there
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is a unit r + c
√

v ∈ Z[q√
v]× with (c, q2) = qq0. Then qq1 | (c, q2) = qq0,

and, accordingly, q1 | q0. By Theorem 2, the numbers m/q + √
v, (m, q) = 1,

0 ≤ m ≤ q − 1, belong to ϕ(q0) ≥ ϕ(q1) > 1 equivalence classes. In particular,
not all of these numbers are equivalent.

Example Let v = 979 and q = 12. The fundamental unit in Z[√v] is s + t
√

v with
s = 360449 and t = 11520 = q2 · 80. Hence Z[√v]× = Z[q2√v]× and for every
r + c

√
v ∈ Z[√v]× we have q2 | c. Accordingly, the number q0 of Theorem 2 equals

q = 12, and the four numbersm/12+√
979,m ∈ {1, 5, 7, 12} belong to four different

equivalence classes. Indeed,

1

12
+ √

979 = [31, [2, 1, 2, 5, 2, 3, 6, 1, 4, 62]],
5

12
+ √

979 = [31, [1, 2, 2, 1, 1, 13, 1, 4, 1, 6, 1, 61]].

So these numbers have periods of different lengths. The numbers 7/12 + √
979 and

5/12 + √
979 have inverse periods, and 11/12 + √

979 and 1/12 + √
979, too. In

general, we say that x and y have inverse periods if they can be written as in (1), the
period of y being [bk, bk−1, . . . , b1], however.

Theorem 1 answers the question whether x = m/q + √
v and y = n/q + √

v have
inverse periods. This happens if, and only if, x ∼ y′ = n/q − √

v (see [5, p. 77]).
Since y′ ∼ −y′ = −n/q + √

v, we obtain the following corollary to Theorem 1.

Corollary 1 Let x = m/q + √
v, y = n/q + √

v be as above. Let q ′
1 = (m + n, q).

Then x and y have inverse periods if, and only if, the equation (3) has a solution
(r , c) ∈ Z

2 such that (c, q2) = qq ′
1.

We say that x has a self-inverse period if x can be written with a period [b1, . . . , bk]
but also with the period [bk, . . . , b1] (see [5, p. 78], [2]). From Corollary 1 we obtain

Corollary 2 Let x = m/q + √
v be as above. Put q ′

1 = 2 if q is even, and q ′
1 = 1,

otherwise. Then x has a self-inverse period if, and only if, the equation (3) has a
solution (r , c) ∈ Z

2 such that (c, q2) = qq ′
1.

Remarks 1. The reader may consult [3], where quadratic irrationals with self-inverse
periods are classified by certain equivalences.

2. Many examples show the following tendency, for which we have no precise
mathematical formulation. Namely, if the numbers m/q + √

v, (m, q) = 1,
0 ≤ m ≤ q − 1, belong to many equivalence classes, then their periods are
short. For instance, in the case v = 979, q = 12 of the above example we have
the largest possible number of equivalence classes, which is 4. The corresponding
period lengths of m/q + √

v are 10 or 12. If we choose q = 9 instead, then all
numbersm/q+√

v belong to the same equivalence class, and the common period
of the 6 elements m/q has length 78.
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2 Proofs

Proof of Theorem 1 Let x = m/q + √
v, y = n/q + √

v, (m, q) = (n, q) = 1. First

suppose x ∼ y, i.e., there is a matrix

(
a b
c d

)
∈ GL(2, Z) such that (2) holds. Then

comparison of the coefficients with respect to the Q-basis (1,
√

v) of Q[√v] shows
that (2) is equivalent to the identities

a = c(m + n)

q
+ d (4)

and

b = −d(m − n)

q
− cm2

q2
+ cv. (5)

Since b ∈ Z, (5) implies

d(m − n)q + cm2 ≡ 0 mod q2. (6)

However, (m, q) = 1, so (6) requires c ≡ 0 mod q. Then a ∈ Z, by (4). Let
m − n = q1m1 with q1 = (m − n, q) and (m1, q/q1) = 1. Accordingly, (6) can be
written

dm1qq1 + cm2 ≡ 0 mod q2. (7)

If q1 = q, this congruence yields c ≡ 0 ≡ qq1 mod q2. If q1 < q, we have qq1 | c.
In this case one easily checks that (c, q2) must be qq1 (observe that (d, q) = 1 since
q | c and the matrix in question has determinant ±1).

Moreover, the condition ad − bc = ±1 is the same as saying

d = −cm

q
+

√
c2v ± 1, (8)

where we do not fix a sign for the square root. Hence there is an integer r such that
(3) holds.

Conversely, suppose that (r , c) is a solution of (3) and c = qq1c1 for some integer
c1 with (c1, q/q1) = 1 (observe q2/(qq1) = q/q1). We define d in such a way that
(8) is satisfied, i.e.,

d = −cm

q
+ r = −q1c1m + r . (9)

Then condition (6) reads

(−q1c1m + r)(m − n)q + qq1c1m
2 ≡ 0 mod q2.

This congruence is equivalent to the congruence

c1mn + rm1 ≡ 0 mod q/q1. (10)
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Here (m, q) = (n, q) = (m1, q/q1) = 1. Observe that (c1, q/q1) = 1. By (3), we
have (r , q) = 1, since q | c. Of course, it may happen that our pair (r , c) does not
satisfy (10). In this case we consider r ′ + c′√v = (r + c

√
v)k for some positive

integer k prime to q. Since q | c, we obtain

r ′ + c′√v ≡ rk + krk−1c
√

v mod q2,

a congruence mod Z[√v]q2. It is easy to see that this congruence implies the congru-
ences

r ′ ≡ rk mod q2, c′ ≡ krk−1c mod q2, (11)

which are congruences mod Zq2. In particular, (c′, q2) = (kc, q2) = (c, q2), since
(k, q) = 1. The second of the congruences (11) shows that we may write c′ = qq1c′

1
with c′

1 ≡ krk−1c1 mod q/q1. The congruence (10), for r ′ and c′ instead of r and c,
reads

c′
1nm + r ′m1 ≡ 0 mod q/q1, (12)

or

krk−1c1nm + rkm1 ≡ 0 mod q/q1.

Because (r , q) = 1, this is equivalent to

kc1nm + rm1 ≡ 0 mod q/q1. (13)

Observe (c1, q/q1) = (m1, q/q1) = (m, q) = (n, q) = 1 and q/q1 | q. Therefore,
the number k (prime to q) can be chosen such that (13) holds. Then (12) holds, and,
thus, the congruence (6).

We define d by (9) with r ′, c′ instead of r , c. Finally, we define a, b by (4) and (5)
with c′ instead of c. Then a, b are integers, ad − bc′ = ±1, and (2) also holds. 
�
Example Let v = 7, q = 12, m = 1, n = 5. Hence x = 1/12+ √

7, y = 5/12+ √
7,

m−n = −4 = q1m1 with q1 = 4,m1 = −1 (see the example at the beginning of this
paper). The fundamental unit of Z[√7] is s + t

√
7 = 8 + 3

√
7. Since (s + t

√
7)2 =

127 + 48
√
7, we put r = 127, c = 48. In particular, (c, q2) = qq1 = 48. So x is

equivalent to y (what we already know). We have c1 = 1 and q/q1 = 3. However, the
congruence (10) does not hold, but (13) is true with k = 5, (k, q) = 1. This choice,
however, leads to rather large numbers. But we may also choose k = 2 (which is not
prime to q). Indeed, define r ′, c′ by

r ′ + c′√7 = (r + c
√
7)2 = 32257 + 12192

√
7.

Then (c′, q2) = (12192, 144) = 48 = qq1, as required. As in the proof of Theorem
1 we obtain d = 31241, a = 37337, and b = 95673. In this way ad − bc′ = 1 and
(ax + b)/(c′x + d) = y.

The proof of Theorem 2 requires the following lemmas.
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Lemma 1 Let (r1, c1) and (r2, c2) be solutions of (3) such that (c1, q2) = qq1 and
(c2, q2) = qq2 for divisors q1, q2 of q. Let q ′ = (q1, q2). Then there is a solution
(r ′, c′) of (3) such that (c′, q2) = q ′.

Proof Let j1, j2 be positive integers. We have

(ri + ci
√

v) ji ≡ r ji
i + ji r

ji−1
i ci

√
v mod q2,

i = 1, 2. We define r ′ + c′√v by

r ′ + c′√v = (r1 + c1
√

v) j1(r2 + c2
√

v) j2 .

Since

(r1 + c1
√

v) j1(r2 + c2
√

v) j2 ≡ r j1
1 r j2

2 + ( j1r
j1−1
1 r j2

2 c1 + j2r
j1
1 r j2−1

2 c2)
√

v mod q2,

we obtain
c′ ≡ r j1−1

1 r j2−1
2 ( j1r2c1 + j2r1c2) mod q2. (14)

Observe that (r1, q) = (r2, q) = 1, since q | c1, c2. We consider the idealZr2c1+Zq2

in Z. We have (r2c1, q2) = qq1. This can be written as

Zr2c1 + Zq2 = Zqq1.

In the same way, we obtain

Zr1c2 + Zq2 = Zqq2.

However, (qq1, qq2) = qq ′, and so Zqq1 + Zqq2 = Zqq ′. This yields

Zr2c1 + Zr1c2 + Zq2 = Zqq ′.

Accordingly, there are integers k1, k2 such that

k1r2c1 + k2r1c2 ≡ qq ′ mod q2. (15)

We put j1 = k1 + lq2 and j2 = k2 + lq2, where l is chosen such that both j1, j2 are
positive. Then (14) and (15) show that c′ satisfies (c′, q2) = qq ′. 
�
Lemma 2 Let q1 divide q. Let (r , c) be a solution of (3) such that (c, q2) = qq1. Let
p be a prime dividing q/q1. Define (r ′, c′) by r ′ + c′√v = (r + c

√
v)p. Then (r ′, c′)

is a solution of (3) such that (c′, q2) = qq1 p.

Proof Let l be a prime number. By vl(k) we denote the l-exponent of the integer k,
i.e., lvl (k) | k, lvl (k)+1

� k. If l divides q, we have vl(c) = vl(qq1), since qq1 | q2 and
(c, q2) = qq1.
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First let p = 2. Then c′ = 2rc and v2(2rc) = v2(c) + 1, since v2(r) = 0, by
(3). If l is a prime divisor of q different from 2, we see vl(2rc) = vl(c). Hence
(c′, q2) = qq1 p.

If p ≥ 3 we have

r ′ + c′√v ≡ r p + pr p−1c
√

v mod c2 p, (16)

since c j ≡ 0 mod c2 p for j ≥ 3 (recall p | c) and (p
2

)
c2 ≡ 0 mod c2 p. Thus,

vp(c′) = vp(pr p−1c) = vp(c) + 1, because vp(c2 p) > vp(c) + 1. For a prime
divisor l of q different from p we have vl(c2 p) = 2vl(c) > vl(c)(≥ 1). From (16) we
obtain vl(c′) = vl(pr p−1c) = vl(c). 
�
Proof of Theorem 2 Let q0 be the smallest divisor of q such that there is a solution
(r , c) of (3) with (c, q2) = qq0.

If q is even, then m − n is even for all m, n with (m, q) = (n, q) = 1. Hence
(m−n, q) is even. Accordingly, q0 cannot have the form q0 = (m−n, q) if q0 is odd.
Suppose that this holds. Then we replace q0 by 2q0. Since ϕ(2q0) = ϕ(q0), this does
not change the assertion of Theorem 2. Moreover, by Lemma 2, we have a solution
(r ′, c′) of (3) such that (c′, q2) = 2qq0.

Accordingly, we may assume that q0 is even if q is even and suppose that (r , c) is
a solution of (3) with (c, q2) = qq0.

Let y = n/q + √
v, (n, q) = 1. We show that the sets

X1 = {m/q + √
v : (m, q) = 1,m/q + √

v ∼ y}

and

X2 = {m/q + √
v : (m, q) = 1, q0 |m − n}

coincide. Indeed, if m/q + √
v is in X1 and (m − n, q) = q1, then there is a solution

(r ′, c′) of (3) such that (c′, q2) = qq1. On the other hand, we have a solution (r , c)
of (3) such that (c, q2) = qq0. By Lemma 1, there is a solution (r ′′, c′′) such that
(c′′, q2) = q(q0, q1). If (q0, q1) �= q0, then (q0, q1) < q0, which contradicts the
minimality of q0. Accordingly, (q0, q1) = q0 and q0 | q1 = (m − n, q). In particular,
q0 divides m − n and m/q + √

v ∈ X2.
Conversely, if m/q + √

v ∈ X2, then (m − n, q) = q0k for some positive integer
k. By Lemma 2, there exists a solution (r ′, c′) of (3) such that (c′, q2) = qq0k. This
implies m/q + √

v ∼ y and m/q + √
v ∈ X1.

We consider X = {m/q + √
v : (m, q) = 1, 0 ≤ m ≤ q − 1} and X ′

1 = X1 ∩ X .
Nowm/q+√

v ∈ X lies in X ′
1 if, and only if, q0 |m−n, i.e., the canonical surjection

π : (Z/qZ)× → (Z/q0Z)× : k �→ k

maps m onto n. Thereby, |X ′
1| = |π−1(n)| = ϕ(q)/ϕ(q0). Hence there are exactly

ϕ(q)/ϕ(q0) elements of X that are equivalent to y. This, however, implies that
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there must be exactly ϕ(q0) equivalence classes whose intersections with X are not
empty. 
�
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