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Abstract
We introduce a family of dimensions, which we call the �-intermediate dimensions,
that lie between the Hausdorff and box dimensions and generalise the intermediate
dimensions introduced by Falconer, Fraser and Kempton. This is done by restricting
the relative sizes of the covering sets in a way that allows for greater refinement
than in the definition of the intermediate dimensions. We also extend the theory from
Euclidean space to a wider class of metric spaces. We prove that these dimensions can
be used to ‘recover the interpolation’ between the Hausdorff and box dimensions of
compact subsets for which the intermediate dimensions are discontinuous at θ = 0,
thus providing finer geometric information about such sets. We prove continuity-like
results involving the Assouad and lower dimensions, which give a sharp general lower
bound for the intermediate dimensions that is positive for all θ ∈ (0, 1] for sets with
positive box dimension.We also prove Hölder distortion estimates, a mass distribution
principle, and a Frostman type lemma, which we use to study dimensions of product
sets.
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1 Introduction

When studying the geometry of fractal subsets of a metric space, it is common to
consider different notions of dimension, which attempt to quantify the extent to which
the set fills up space at small scales. Two of themost familiar are the Hausdorff and box
dimensions. For many natural sets these differ, indicating (intuitively) that the set in
question has some inhomogeneity. The key difference between these two dimensions
it that in the definition of box dimension the covering sets are required to be of equal
size, but for Hausdorff dimension there is no such restriction. In [13], Falconer, Fraser
and Kempton introduced a family of dimensions, called the intermediate dimensions,
which depend on a parameter θ ∈ [0, 1], by insisting that the sizes of the covering
sets lie in intervals of the form [δ1/θ , δ]. The Hausdorff and box dimensions are the
two extreme cases θ = 0 and 1, respectively. The intermediate dimensions have been
studied in [4, 7, 9, 11, 12, 36] and other works. For classes of fractal sets such as
Bedford–McMullen carpets [3] and infinitely generated self-conformal sets [2], they
have been computed explicitly.

For every set, the intermediate dimensions are continuous at each θ ∈ (0, 1]. For
many sets, such as Bedford–McMullen carpets (see [13, Section 4] and [3]) and poly-
nomial sequences (see [13, Proposition 3.1]), they are also continuous at θ = 0, so fully
interpolate between the Hausdorff and box dimensions. Continuity of the intermediate
dimensions at θ = 0 has powerful consequences, in particular for the box dimensions
of projections of the set [6] and images of the set under stochastic processes such as
fractional Brownian motion [5]. However, for many sets the intermediate dimensions
are discontinuous at θ = 0, or even constant at the value of the box dimension, in
which case they give very little information about the set. One such set which is also
compact is {0}∪{ 1

log n : n ∈ N, n ≥ 3 }. In this paper, we introduce the�-intermediate
dimensions, by restricting the sizes of the covering sets to lie in a wider class of inter-
vals of the form [�(δ), δ] for more general functions �. These dimensions give even
more refined geometric information than the intermediate dimensions about sets for
which the intermediate dimensions are discontinuous at θ = 0. Indeed, in what is
perhaps the most important result of this paper (Theorem 6.1), we demonstrate that if
a set is compact then there will always be a family of functions � which interpolate
all the way between the Hausdorff and box dimensions. While many results for the
�-intermediate dimensions are similar to results for the intermediate dimensions, oth-
ers, such as the Hölder distortion estimates in Theorem 4.1, are rather different. We
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Generalised intermediate dimensions 467

believe that the results of this paper demonstrate that the �-intermediate dimensions
give rise to a rich and workable theory in their own right. It is natural to ask whether
the potential-theoretic methods in [5, 6] can be adapted to study the �-intermediate
dimensions. Feng [14] has recently shown that this is indeed the case, obtaining infor-
mation about dimensions of images of sets under projections and fractional Brownian
motion if for all ε > 0 the function � satisfies δε log�(δ) → 0 as δ → 0.

The intermediate dimensions are an example of dimension interpolation, an area
which was introduced relatively recently but has gathered significant interest. For a
survey of this topic we refer the reader to [17]. The idea is to consider two different
notions of dimension and find a geometrically meaningful family of dimensions which
lie between them and share some characteristics of both, but provide more information
about sets than either does in isolation. The hope is that, as well as being interesting
in its own right, dimension interpolation can help illuminate why for some sets the
two endpoint dimensions can give different values. A different example of dimension
interpolation is the Assouad spectrum, introduced by Fraser and Yu in [20], which
lies between the upper box and Assouad dimensions, giving information about the
‘thickest’ part of the set. A more general class of dimensions were also introduced
in [20], greatly developed by García, Hare and Mendivil in [23], and further studied
in [22, 24, 25, 37]. They are defined by fixing the relative scales in more general
ways than for the Assouad spectrum, thus giving more refined geometric information
about sets whose quasi-Assouad dimension is less that the Assouad dimension. These
Assouad-like dimensions were part of our original motivation for considering the
�-intermediate dimensions.

1.1 Summary and discussion of main results

In Sect. 2, we introduce the notation and the types of metric spaces that we work with,
and make some standing assumptions to reduce repetition. We also define the notions
of dimension that we will need.

In Sect. 3, we give relationships between the different notions of dimension (Propo-
sitions 3.1 and 3.15). In Theorem 3.5 and Proposition 3.6 we prove quantitative
continuity-like properties for the �-intermediate dimensions, which intuitively say
that if two functions� and�1 are ‘close’ to each other then the dimensions of subsets
do not differ too much. Interestingly, the precise bounds depend on the Assouad and
lower dimensions of the set, which give information about its extremal scaling proper-
ties. From this result we deduce a condition for the�- and�1-intermediate dimensions
to coincide for all subsets with finite Assouad dimension (Proposition 3.8 (ii)). Spe-
cialising to the θ -intermediate dimensions gives a continuity result (Theorem 3.12)
and sharp general lower bound (Proposition 3.14) which are proved directly in [4]
and improve bounds in [12, 13]. Notably, the lower bound is strictly positive for all
θ ∈ (0, 1] if the box dimension of the set is positive; there is a ‘mutual dependency’
(Proposition 3.11) between the box and intermediate dimensions (as in [12, (14.2.7)]).

In Sect. 4 we prove Hölder distortion estimates for the �-intermediate dimensions
(Theorem 4.1) which, interestingly, are different from the standard dim f (F) ≤
α−1 dim F bound for α-Hölder images which holds for the Hausdorff, box and θ -
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intermediate dimensions. The estimates imply bi-Lipschitz stability (Corollary 4.3),
which is an important property that most notions of dimension satisfy. This means that
the �-intermediate dimensions provide yet another invariant for the classification of
subsets up to bi-Lipschitz image.

In Sect. 5 we prove a mass distribution principle (Lemma 5.1) and a converse, a
Frostman type lemma (Lemma 5.2) for the �-intermediate dimensions. The latter is
an example of where the extension from Euclidean space to the more general metric
spaces in which we work is non-trivial; we use an analogue of the dyadic cubes in
general doubling metric spaces given in [28]. The mass distribution principle and
Frostman type lemma combine to give Theorem 5.3, a useful alternative definition of
the �-intermediate dimensions in terms of measures. We use this characterisation to
prove Theorem 5.4 on the dimensions of product sets, giving new bounds in terms of
the dimensions of the marginals, one of which we improve further in the case of self-
products. In particular, (dim�, dimB) and (dimθ , dimB) satisfy the inequalities (5.6)

that many ‘dimension pairs’ satisfy, although our upper bound for dim
�
(E × F) is

different to what might be expected. We also use the mass distribution principle to
prove in Proposition 5.5 that the lower versions of the intermediate and�-intermediate
dimensions are not finitely stable (in contrast to the upper versions).

Proposition 5.5 also gives an example of a set to which the important result The-
orem 6.1 can be applied. Theorem 6.1 shows that for every compact subset of an
appropriate space there is a family of functions � which fully interpolate between
the Hausdorff and box dimensions. Thus the �-intermediate dimensions give finer
geometric information about sets whose intermediate dimensions are discontinuous
at θ = 0 by ‘recovering the interpolation’ between Hausdorff and box dimension.
Moreover, there exists a single family of � which interpolate for both the upper and
lower versions of the dimensions, and whose dimensions vary monotonically for all
sets, but in Proposition 6.2 we show that it might not be possible to ensure that the
dimensions vary continuously for all other sets.

2 Preliminaries and definitions of dimensions

For x ∈ X and δ > 0, we denote the open balls in X and F respectively by

B(x, δ) = BX (x, δ):={ y ∈ X : d(x, y) < δ },
BF (x, δ):={ y ∈ F : d(x, y) < δ },

noting that these sets might have diameter less than 2δ. We denote by Nδ(F) the
smallest integer such that there exist x1, . . . , xNδ(F) ∈ F such that

F ⊆
Nδ(F)⋃

i=1

B(xi , δ/2).
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Generalised intermediate dimensions 469

The subset F is totally bounded if Nδ(F) < ∞ for all δ > 0. In the definitions in this
section, we will use the convention that inf ∅ = inf{∞} = ∞. Recall the following
definition.

Definition 2.1 The upper and lower box dimension of a non-empty, totally bounded
subset F of a metric space are defined respectively by

dimBF := lim sup
δ→0+

log(Nδ(F))

− log δ
; dimBF := lim inf

δ→0+
log(Nδ(F))

− log δ
.

If F ⊂ R
n then there is an alternative definition of upper box dimension,

dimBF = inf
{
s ≥ 0 : for all ε > 0 there exists δ0 ∈ (0, 1]such that for all δ ∈ (0, δ0)

there exists a cover {U1,U2, . . . } of F such that |Ui | = δ

for all i, and
∑

i

|Ui |s ≤ ε
}
,

(2.1)

see [10, Chapter 2]. One can define the Hausdorff dimension without using Hausdorff
measure by

dimH F = inf
{
s ≥ 0 : for all ε > 0 there exists a finite or countable cover

{U1,U2, . . . } of F such that
∑

i

|Ui |s ≤ ε
}
,

(2.2)

see [10, Section 3.2]. Motivated by the similarity between (2.1) and (2.2), Falconer,
Fraser and Kempton [13] made the following definition, upon which our main Defi-
nition 2.7 for the �-intermediate dimensions is based:

Definition 2.2 For 0 ≤ θ ≤ 1, the upper θ -intermediate dimension of a bounded set
F ⊂ R

n is

dimθ F = inf
{
s ≥ 0 : for all ε > 0 there exists δ0 ∈ (0, 1] such that for all δ ∈ (0, δ0)

there exists a cover {U1,U2, . . . } of F such that δ1/θ ≤ |Ui | ≤ δ

for all i, and
∑

i

|Ui |s ≤ ε
}
.

Similarly, the lower θ -intermediate dimensions dimθ F are defined in [13]. It is also
shown that for F ⊂ R

n , the maps θ 
→ dimθ F and θ 
→ dimθ F are monotonically
increasing in θ ∈ [0, 1] and continuous in θ ∈ (0, 1], but may be discontinuous
at θ = 0. Banaji and Rutar [4] have proved that a local derivative constraint gives a
necessary and sufficient condition for a given function to be realised as the intermediate
dimensions of a bounded subset ofR

n . In this paper we often require the metric spaces
we work with to satisfy certain properties.
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470 A. Banaji

Definition 2.3 For c ∈ (0, 1) we say a metric space X is c-uniformly perfect if for all
x ∈ X and R ∈ R such that 0 < R < |X |,

B(x, R) \ B(x, cR) �= ∅.

The space X is uniformly perfect if there exists c ∈ (0, 1) such that X is c-uniformly
perfect.

Intuitively, a metric space is uniformly perfect if it does not have islands which are
very separated from the rest of the space.

Definition 2.4 A metric space is said to be doubling if there exists a constant M ∈ N

(called the doubling constant) such that for every x ∈ X and r > 0, there exists
x1, . . . , xM ∈ X such that B(x, 2r) ⊆ ⋃M

i=1 B(xi , r).

The Assouad and lower dimensions, studied in detail in [15], are dual notions which
give information about the ‘thickest’ and ‘thinnest’ part of a set respectively:

Definition 2.5 Suppose a subset F of a metric space has more than one point. Then
the Assouad dimension of F is defined by

dimA F = inf{ a : there exists C > 0 such that Nr (B(x, R) ∩ F) ≤ C(R/r)a

for all x ∈ F and 0 < r < R }.

The lower dimension of F is defined by

dimL F = sup{ λ : there exists C > 0 such that Nr (B(x, R) ∩ F) ≥ C(R/r)λ

for all x ∈ F and 0 < r < R ≤ |F | }.

In [15, Section 13.1.1] it is shown that a metric space X with more than one point
is uniformly perfect if and only if 0 < dimL X . Such a space cannot have any isolated
points, so must be infinite. It is also shown that a space X is doubling if and only if
dimA X < ∞. In this case we will see in Proposition 3.1 that all dimensions of every
subset F will be finite, as we will need to assume for many of the results in this paper.
A metric space is said to be Ahlfors regular if there exists s > 0, C ≥ 1 and a Borel
regular measure μ supported on X such that C−1Rs ≤ μ(BR) ≤ CRs for all closed
balls BR of radius 0 < R < diam(X). By [26, Corollary 14.15], every Ahlfors regular
space with more than one point is uniformly perfect and doubling. A familiar example
of such a space is R

n with the Euclidean metric. An example of such a space which is
not bi-Lipschitz equivalent to any subset of R

n is the Heisenberg group with its usual
Carnot-Carathéodory metric, see [31, 33, 35].

For the purposes of this paper, we make the following definition.

Definition 2.6 A function � : (0,�) → R is admissible if � is monotonic, 0 <

�(δ) ≤ δ for all δ ∈ (0,�), and �(δ)/δ → 0 as δ → 0+.
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In some settings, for example when working with infinitely generated self-conformal
sets in [2], it is convenient to assume that �(δ)/δ → 0 monotonically as δ → 0+.
This is satisfied by many reasonable functions such as δ1/θ and e−δ−0.5

.
To minimise repetition, we make the following standing assumptions from this

point onwards:

• The letter � will represent an arbitrary admissible function (except in Proposi-
tion 3.10 where we explore the conditions on �).

• The underlying metric space is denoted by X (or sometimes Y ), and will be
assumed to have more than one point and be uniformly perfect. The letter c will
usually denote the constant from Definition 2.3.

• Subsets of X are denoted by F (or sometimes E or G), and are assumed to be
non-empty and totally bounded.

Using these conventions, and based onDefinition 2.2,we nowmake themain definition
of this paper:

Definition 2.7 We define the upper �-intermediate dimension of a subset F by

dim
�
F = inf

{
s ≥ 0 : for all ε > 0 there exists δ0 ∈ (0, 1] such that for all δ ∈ (0, δ0)

there exists a cover {U1,U2, . . . } of F such that

�(δ) ≤ |Ui | ≤ δ for all i, and
∑

i

|Ui |s ≤ ε
}
.

Similarly, we define the lower �-intermediate dimension of F by

dim�F = inf
{
s ≥ 0 : for all ε > 0 and δ0 ∈ (0, 1] there exists δ ∈ (0, δ0) and a cover

{U1,U2, . . . } of F such that �(δ) ≤ |Ui | ≤ δ for all i,

and
∑

i

|Ui |s ≤ ε
}
.

If these two quantities coincide, we call the common value the�-intermediate dimen-
sion of F and denote it by dim� F .

In the above definition, the cover {Ui } of F is a priori countable, but since it satisfies
0 < �(δ) ≤ |Ui | for all i , and ∑

i |Ui |s ≤ ε, it must be finite. If F were not totally
bounded then the�-intermediate dimensions of F would be infinite according to Def-

inition 2.7. If θ ∈ (0, 1) and �(δ) = δ1/θ for all δ ∈ [0, 1], then dim
�
F = dimθ F

and dim�F = dimθ F are the definitions of the upper and lower intermediate dimen-
sions of F at θ , respectively. Set dim0F = dim0F := dimH F , dim1F :=dimBF , and
dim1F :=dimBF . If dimθ F = dimθ F then the common value is called the interme-
diate dimension of F at θ and is denoted by dimθ F .
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3 Continuity and general bounds

3.1 The8-intermediate dimensions

In this section we examine general bounds and continuity-like properties for the
�-intermediate dimensions. They satisfy the following inequalities, as with the inter-
mediate dimensions.

Proposition 3.1 For a subset F,

0 ≤ dimH F ≤ dim�F ≤ dim
�
F ≤ dimBF ≤ dimA F ≤ dimA X , and

dim�F ≤ dimBF ≤ dimBF .

Proof We first prove dim
�
F ≤ dimBF . Recall that we denote by c ∈ (0, 1)

a constant such that X is c-uniformly perfect. Since �(δ)/δ → 0, there exists
� ∈ (0,min{|X |, 1}) such that �(δ)/δ < c/2 for all δ ∈ (0,�). Let s > dimBF and

ε > 0. Let t ∈ (dimBF, s), so we can reduce � further to assume that � < ε
1

s−t and
that for all δ ∈ (0,�) there exists a cover of F by δ−t or fewer sets {Ui }, each having
diameter at most δ. We may assume without loss of generality that each Ui intersects
F . If |Ui | ≥ δ/2 then leaveUi in the cover unchanged. If |Ui | < δ/2, then fix xi ∈ Ui

and yi ∈ B(xi , δ/2)\B(xi , cδ/2); add the point yi to Ui , and call the resulting cover
{Vi }. For each i ,

�(δ) ≤ cδ/2 ≤ |Vi | ≤ δ

by the triangle inequality. Moreover,

∑

i

|Vi |s ≤ δ−tδs < δs−t
0 < ε.

Thus dim
�
F ≤ s by Definition 2.7, so dim

�
F ≤ dimBF , as required.

The proof that dim�F ≤ dimBF is similar. Indeed, let s′ > dimBF and ε′ > 0. Let

t ′ ∈ (dimBF, s′), so for all �′ ∈ (0,min{(ε′)
1

s′−t ′ , |X |, 1}) there exists δ′ ∈ (0,�′)
and a cover of F by (δ′)−t ′ or fewer sets, each having diameter at most δ′. As above,
we can use this cover to form a cover {V ′

j } which satisfies �(δ′) ≤ |V ′
j | ≤ δ′ for all j

and
∑

j |V ′
j |s < ε′. Therefore dim�F ≤ s′, so dim�F ≤ dimBF .

The inequalities dimH F ≤ dim�F , dim�F ≤ dim
�
F and dimBF ≤ dimBF

follow directly from the definitions. The inequality dimBF ≤ dimA F holds by fixing
R = |F | in Definition 2.5. The inequality dimA F ≤ dimA X follows from Defini-
tion 2.5 since F ⊆ X . ��

We assume that the ambient metric space X is uniformly perfect with more than
one point, and that �(δ)/δ → 0 as δ → 0+, to ensure that Proposition 3.1 will
hold and to avoid cases like the two-point metric space, which would have infinite
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intermediate and �-intermediate dimensions according to Definition 2.7. There is no
general relationship between the lower box dimension and the upper intermediate
dimensions. It follows from Proposition 3.1 that if F ⊂ R

n is non-empty and bounded

then dim�F ≤ dim
�
F ≤ n, and if in addition F is open with respect to the Euclidean

metric then dim�F = dim
�
F = n, as one would expect. The dimensions satisfy the

following basic properties.

Proposition 3.2 (i) Both dim
�
and dim� are increasing for sets: if E ⊆ F then

dim
�
E ≤ dim

�
F and dim�E ≤ dim�F.

(ii) Both dim
�
and dim� are stable under closure: dim

�
F = dim

�
F and dim�F =

dim�F.

Proof This is straightforward from the definition. ��
Example 3.3 The set F :=Q ∩ [0, 1] ⊂ R is countable, so dimH F = 0, but dim�F =
dim

�
F = 1 for every admissible �, directly from Definition 2.7. This demonstrates

that:

• The dimensions dim� and dim
�
are different from dimH.

• There are subsets of R, such as F , for which there does not exist a family of
admissible functions forwhich the�-intermediate dimensions interpolate between
the Hausdorff and box dimensions of the set. This means that the assumption of
compactness in Theorem 6.1 cannot be removed in general.

• The dimensions dim� and dim
�
can take positive values for countable sets.

We will need the following sufficient condition for the �-intermediate dimension
always to equal the box dimension. As an example, the function�(δ):= δ

− log δ
satisfies

the assumptions of Proposition 3.4.

Proposition 3.4 Let � be an admissible function such that log δ
log�(δ)

→ 1 as δ → 0+.
Then for all subsets F, dim

�
F = dimBF and dim�F = dimBF.

Proof We prove that dim
�
F = dimBF ; the proof of dim�F = dimBF is similar.

Assume (for the purpose of obtaining a contradiction) that dim
�
F < dimBF , and let

s, t ∈ R be such that dim
�
F < s < t < dimBF . Then for all sufficiently small δ

there exists a cover {Ui } of F such that �(δ) ≤ |Ui | ≤ δ for all i , and
∑

i |Ui |s ≤ 1.
Therefore

Nδ(F)δt ≤
∑

i

δt
|Ui |s |Ui |t−s

|Ui |t ≤
∑

i

δt
|Ui |sδt−s

(�(δ))t
≤

(
δ1+(t−s)/t

�(δ)

)t

,

which converges to 0 as δ → 0+. This contradicts t < dimBF and completes the
proof. ��

We now consider continuity-like results for the �-intermediate dimensions. The
main such result is Theorem 3.5, which roughly implies that if two admissible func-
tions � and �1 are in a quantitative sense ‘close’ to each other, then the � and
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�1-intermediate dimensions of sets whose Assouad dimension is not too large do not
differ greatly. In a similar spirit, quantitative continuity results have been proven for
the intermediate dimensions in R

n , for example [13, Proposition 2.1], [12, (14.2.2)]
and [4, Theorem 2.6]. To obtain bounds involving the lower dimension, we will use
the following definition: the lower dimension of a Borel probability measure μ is

dimL μ:= sup { λ ≥ 0 : there exists A > 0 such that if 0 < r < R ≤ |supp(μ)|

and x ∈ supp(μ) then
μ(B(x, R))

μ(B(x, r))
≥ A

(
R

r

)λ
}

.

Ameasureμ is said to be doubling if there exists M ≥ 1, called the doubling constant,
such that μ(B(x, 2r)) ≤ Mμ(B(x, r)) for all x ∈ supp(μ) and r > 0. For further
details we refer the reader to [15, Section 4.1].

Theorem 3.5 Let � and �1 be admissible functions. Let F be a subset satisfying 0 <

dimA F < ∞, and assume that F is complete. Suppose that 0 < dim
�
F < dimA F,

and let η ∈ [0, dimA F − dim
�
F). Define

γ := dim
�
F − dimL F

dim
�
F + η − dimL F

; α:= dimA F − dim
�
F

dimA F − dim
�
F − η

. (3.1)

If

�1 (δ) ≤ (�(δ1/α))γ (3.2)

for all sufficiently small δ > 0, then dim
�1F ≤ dim

�
F +η. The same holds with dim

replaced by dim throughout.

By a similar argument, if we only assume that �1 (δ) ≤ (�(δ1/α))γ (with γ and
α as in (3.1)) holds only for a sequence of δ → 0+, then we can only conclude

dim�1F ≤ dim
�
F + η.

Proof Without loss of generality assume η > 0, so γ < 1 < α. The idea of the proof
is to convert a cover for the interval [�(δ), δ] into a cover for [�1(δ

α), δα]. We do this
by using the Assouad dimension to replace sets which are too large with sets of size δα

(corresponding to indices I1). We use the lower dimension to replace sets which are
too small with sets of size (�(δ))γ (corresponding to indices I3). We have chosen the
parameters γ and α so that the ‘cost’ of each of these actions in terms of how much
the dimension can increase is the same, namely η. This is similar to the strategy for
the proof of the bound [4, Theorem 2.6] for the intermediate dimensions in R

n .

Without loss of generality we assume that F is closed. Now for s ∈ (dim
�
F, dimA

F − η) let s′ ∈ (dim
�
F, s), a > dimA F and λ < dimL F satisfy

γ (s + η − λ) − (s′ − λ) > 0 and a − s′ − α(a − s − η) > 0. (3.3)
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Let c ∈ (0, 1/2) be such that X is c-uniformly perfect. Fix C ∈ (0,∞) such that
Nr (B(x, R) ∩ F) ≤ C(R/r)a for all x ∈ F and 0 < r < R. Since F is assumed to
be complete, by [29, Theorem 3.2] (which is very similar to the main result of [8]),
there exists a doubling Borel probability measure μ with supp(μ) = F and dimL μ ∈
(λ, dimL F]. In particular, there exists A ∈ (0, 1) such that if 0 < r < R ≤ |F | and
x ∈ X then

μ(B(x, R))

μ(B(x, r))
≥ A

(
R

r

)λ

.

Fix M > 1 such that μ is M-doubling.
Let ε > 0. Choose � > 0 such that for all δ ∈ (0,�) there exists a cover {Ui }i∈I

of F such that �(δ) ≤ |Ui | ≤ δ for all i , and

∑

i

|Ui |s′ ≤ (c−(s+η)M2A−110s+η + 3s+η + 2aC)−1ε.

We may reduce � to assume that (3.2) and δ/�1(δ) ≥ 5/c hold for all δ ∈ (0,�),
and � < 1, � < |X |. Write I as a disjoint union I = I1 ∪ I2 ∪ I3 where

I1:={ i ∈ I : �(δ) ≤ |Ui | < �1(δ
α) }

I2:={ i ∈ I : �1(δ
α) ≤ |Ui | ≤ δα/2 }

I3:={ i ∈ I : δα/2 < |Ui | ≤ δ },

noting that some of these sets may be empty. Let z1, . . . , zK be a maximal 4�1(δ
α)-

separated subset of

F \
⎛

⎝
⋃

i∈I2∪I3

S�1(δα)(Ui )

⎞

⎠ ,

where Sr (U ):= ∪x∈U B(x, r) is the r -neighbourhood of U .
For each k ∈ I3 pick xk,1, . . . , xk,�C(2|Uk |/δα)a� ∈ F such that

S�1(δα)(Uk) ∩ F ⊆
�2aC|Uk |aδ−aα�⋃

l=1

B(xk,l , δ
α/2).

Define

U1:={ B(zm, 5�1(δ
α)/c) : 1 ≤ m ≤ K },

U2:={S�1(δα)(Uj ) : j ∈ I2 },
U3:=

⋃

k∈I3
{ B(xk,l , δ

α/2) : 1 ≤ l ≤ �2aC |Ul |aδ−aα� }.
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Then U1 ∪ U2 ∪ U3 is a cover of F , and for sufficiently small δ the diameter of each
covering set lies in the interval [�1(δ

α), δα].
We bound the (s + η)-powers of the diameters of each part of the cover separately.

First consider U1. For m ∈ {1, . . . , K } let Jm :={ i ∈ I1 : Ui ∩ B(zm,�1(δ
α)) �= ∅ }.

If i ∈ Jm , let ui,m ∈ Ui ∩ B(zm,�1(δ
α)). Then

μ(Ui ) ≤ μ(B(ui,m, 2|Ui |)) ≤ A−1μ(B(ui,m, 2�1(δ
α)))

(
�1(δ

α)

|Ui |
)−λ

≤ M2A−1μ(B(zm,�1(δ
α)))

(
�1(δ

α)

|Ui |
)−λ

.

Therefore

μ(B(zm ,�1(δ
α))) ≤

∑

i∈Jm

μ(Ui ) ≤ M2A−1μ(B(zm ,�1(δ
α))) · (�1(δ

α))−λ ·
∑

i∈Jm

|Ui |λ.

Since supp(μ) = F , we can cancel through by the positive numberμ(B(zm ,�1(δ
α))).

Note also that if i ∈ I1 then there is at most onem for whichUi ∩B(zm,�1(δ
α)) �= ∅.

Therefore

∑

U∈U1

|U |s+η ≤ K (10c−1�1(δ
α))s+η

≤ c−(s+η)M2A−110s+η(�1(δ
α))s+η−λ

∑

i∈I
|Ui |λ

≤ c−(s+η)M2A−110s+η(�1(δ
α))s+η−λ(�(δ))−(s′−λ)

∑

i∈I
|Ui |s′

≤ c−(s+η)M2A−110s+η(�(δ))γ (s+η−λ)−(s′−λ)
∑

i∈I
|Ui |s′

< c−(s+η)M2A−110s+η
∑

i∈I
|Ui |s′ ,

where we used (3.3) in the last step.
For U2,

∑

U∈U2

|U |s+η ≤
∑

j∈I2
(3|Uj |)s+η ≤ 3s+η

∑

j∈I
|Uj |s′ .

Finally, consider U3. Since |Uk | ≤ δ for k ∈ I3,

∑

k∈I3

�2aC|Uk |aδ−aα�∑

l=1

|B(xk,l , δ
α/2)|s+η ≤

∑

k∈I3
2aC |Uk |aδ−aαδα(s+η)

≤ 2aCδ−aα+α(s+η)+a−s′ ∑

k∈I3
|Uk |s′
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≤ 2aC
∑

k∈I
|Uk |s′ .

Bringing the above bounds together, for all δ ∈ (0,�),

∑

U∈U1∪U2∪U3

|U |s+η ≤ (c−(s+η)M2A−110s+η + 3s+η + 2aC)
∑

i∈I
|Ui |s′ ≤ ε.

It follows that dim
�1F ≤ s + η, as required. The proof for when dim is replaced by

dim is similar. ��
The following is a similar result for the case when the �-intermediate dimension

of F is 0.

Proposition 3.6 Let �,�1 be admissible functions, assume 0 < dimA F < ∞, let
η ∈ (0, dimA F), and let b > 0. If for all sufficiently small δ,

�1(δ) ≤
(
�(δ1/α)

)b
where α = α(η):= dimA F

dimA F − η
(3.4)

holds, then if dim�F = 0 then dim�1F ≤ η, and if dim
�
F = 0 then dim

�1F ≤ η.

If we assume only that (3.4) holds for a subsequence of δ → 0+, then if dim
�
F = 0

then dim�1F ≤ η.

Proof This is a straightforward modification of the proof of Theorem 3.5. A cover for
[�(δ), δ] is converted into a cover for [�1(δ

α), δα] by breaking up the largest sets
using the Assouad dimension of F , and fattening the smallest sets. The details are left
to the reader. ��
In particular, if �1(δ) ≤ (�(δ))b holds for some b > 0 and all sufficiently small δ,

then dim
�
F = 0 implies dim

�1F = 0. The following Corollary of Theorem 3.5 and
Proposition 3.6 says that if the underlying metric space is doubling, then if � and �1
are ‘close’ in a way that depends only on X , then the difference between the �- and
�1-intermediate dimensions of subsets will be small, independently of the particular
subset.

Corollary 3.7 Let X be a doubling metric space and suppose F ⊆ X is bounded. If

�1

(
δ

dimA X
dimA X−η

)
≤ (�(δ))

dimA X
dimA X+η (3.5)

holds for all sufficiently small δ, then if dim
�
F < dimA F and η ∈ [0, dimA F −

dim
�
F) then dim

�1F ≤ dim
�
F + η, and the same holds with dim replaced by dim

throughout. If we only assume that (3.5) holds for a subsequence of δ → 0+, and if

dim
�
F < dimA F and η ∈ [0, dimA F − dim

�
F), then dim�1F ≤ dim

�
F + η.
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Proof Using notation from (3.1), by Proposition 3.1,

γ ≤ dimA X

dimA X + η
≤ 1 ≤ dimA X

dimA X − η
≤ α,

so the result follows from Theorem 3.5 in the cases dim
�
F > 0 and dim�F > 0, and

from Proposition 3.6 in the cases dim
�
F = 0 and dim�F = 0. ��

We write �1 � �2 if dim
�1F ≤ dim

�2F and dim�1F ≤ dim�2F for all subsets
F with dimA F < ∞ of every underlying space X . If �1 � �2 and �2 � �1, write
�1 ≡ �2. Corollary 3.8 gives a condition for the dimensions to coincide for all sets.

Corollary 3.8 Let �,�1 be admissible functions.

(i) If for all α ∈ (1,∞) there exists � > 0 such that for all δ ∈ (0,�) we have

�1(δ) ≤ (�(δ1/α))1/α (3.6)

(noting that this will be the case if, for example, there exists C ∈ (0,∞) such
that lim supδ→0+ �1(Cδ)

�(δ)
< ∞), then �1 � �. If we only assume that for all

α ∈ (1,∞) and δ0 > 0 there exists δ ∈ (0, δ0) such that (3.6) holds, then we can
only conclude that dim�1F ≤ dim

�
F for every subset F with finite Assouad

dimension.
(ii) If for all α ∈ (1,∞) there exists � > 0 such that for all δ ∈ (0,�),

(�(δα))α ≤ �1(δ) ≤ (�(δ1/α))1/α (3.7)

holds, then � ≡ �1.

Proof In the cases dim
�
F = 0 and dim

�
F = dimA F , (i) follows from Proposi-

tions 3.6 and 3.1. If 0 < dim
�
F < dimA F then for all η ∈ [0, dimA F − dim

�
F),

by the case of (3.6) with

α:=min

{
dimA F − dim

�
F

dimA F − dim
�
F − η

,
dim

�
F + η

dim
�
F

}
,

it follows that dim
�1F ≤ dim

�
F + η by Theorem 3.5. Since η was arbitrary,

dim
�1F ≤ dim

�
F . Similarly, in all cases dim�1F ≤ dim�F , so �1 � �. The

case when we only assume (3.7) along a subsequence is proved similarly, and (ii)
follows from (i). ��

We now use Corollary 3.8 to explore the conditions that can be imposed on the
function �, and show that nothing is really lost by only considering functions which
are strictly increasing, invertible and continuous.
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Proposition 3.9 For every admissible function � there exists an admissible function
�1 : (0, 1) → (0, 1) that is a strictly increasing, C∞ diffeomorphism, such that � ≡
�1.

Proof Fix N ∈ N such that� is positive and increasing on (0, 2−N ]with�(2−N ) < 1.
We construct a strictly increasing function �2 : (0, 1] → (0, 1] by defining �2
to be linear on [2−N , 1] with �2(2−N ) = �(2−N ) and �2(1) = 1 and defining
�2 inductively on (0, 2−N ) as follows. Suppose we have defined �2 on [2−n, 1]
for some n ≥ N . If �(2−n−1) < �2(2−n) then define �2(2−n−1) = �(2−n−1)

and �2 linear on [2−n−1, 2−n]. If, on the other hand, �(2−n−1) = �2(2−n),
then let m > n be the smallest integer such that �(2−m) < �(2−n), define
�2(2−m):=max{�2(2−n)/2,�(2−m)}, and define �2 to be linear on [2−m, 2−n].
Then by construction �2 is strictly increasing on (0, 1] with �2(δ/4) ≤ �(δ) and
2�2(2δ) ≥ �(δ) for all δ ∈ (0, 2−N−1). Each of the countably many points of
non-differentiability of �2 can be locally made smooth to give an admissible func-
tion �1 : (0, 1) → (0, 1) that is C∞ on (0, 1), still strictly increasing, and such that
�2(δ)/2 ≤ �1(δ) ≤ 2�2(δ) for all δ ∈ (0, 2−N ). Then

�1(δ)/δ ≤ 2�2(δ)/δ ≤ 2�(4δ)/δ = 8�(4δ)/(4δ) −−−→
δ→0+ 0,

so �1 is admissible. Moreover,

�(δ/2)/4 ≤ �2(δ)/2 ≤ �1(δ) ≤ 2�2(δ) ≤ 2�(4δ)

for all δ ∈ (0, 2−N−3), so �1 ≡ � by Corollary 3.8 (ii). By the smooth inverse
function theorem, �1 has a C∞ inverse, as required. ��
The following proposition shows that the assumption that � is monotonic and strictly
positive does not really lose anything.

Proposition 3.10 Let � : (0,�] → [0,∞) be any function (not necessarily mono-
tonic) such that �(δ)/δ → 0 as δ → 0+, and define the �-intermediate dimensions
as in Definition 2.7. Let F be a subset.

(i) If �1 is defined by �1(δ):= sup{ �(δ′) : δ′ ∈ [0, δ] } then dim
�
F = dim

�1F.
(ii) (1) If there is a sequence of δ → 0+ forwhich�(δ) = 0 thendim�F = dimH F.

(2) Suppose �(δ) > 0 for all δ ∈ (0,�) but for all δ2 ∈ (0,�) there exists
δ3 ∈ (0, δ2) such that inf{ �(δ) : δ ∈ [δ3, δ2] } = 0. Then if F is compact
then dim�F = dimH F. In particular, if F is any non-empty, bounded subset
of X = R

n then dim�F = dimH F.
(3) If �2 : (0,�) → R defined by �2(δ):= inf{ �(δ′) : δ′ ∈ [δ,�] } is positive

for all δ ∈ (0,�), then dim�F = dim�2F.

Proof We may assume that � < min{1, |X |} and that �(δ) ≤ (1 + 2/c)−1δ for all
δ ∈ (0,�). In the proofs of the different parts of the proposition, the same symbols
may take different values.
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(i) For all δ ∈ (0,�),

�1(δ)/δ = sup{ �(δ′)/δ : δ′ ∈ (0, δ] } ≤ sup{ �(δ′)/δ′ : δ′ ∈ (0, δ] } −−−→
δ→0+ 0,

and �1(δ) is monotonic, so �1 is admissible. Also, �(δ) ≤ �1(δ), so dim
�
F ≤

dim
�1F . It remains to prove the reverse inequality. Let s > dim

�
F and ε > 0. Then

there exists δ0 > 0 such that for all δ ∈ (0,min{δ0,�}) there exists a cover {Ui } of F
such that �(δ) ≤ |Ui | ≤ δ for all i , and

∑

i

|Ui |s ≤ 2−s(1 + 1/c)−sε. (3.8)

Then if δ′ ∈ (0, δ0) then there exists δ ∈ (0, δ′] such that �(δ) ≥ �1(δ
′)/2. Let {Ui }

be the cover corresponding to δ as above. For each i , if |Ui | ≥ �1(δ
′) then leave |Ui |

in the cover unchanged, noting that �1(δ
′) ≤ |Ui | ≤ δ ≤ δ′. If �1(δ

′) > |Ui |, on the
other hand, then fix pi ∈ Ui , and qi ∈ X such that �1(δ

′) ≤ d(pi , qi ) ≤ �1(δ
′)/c.

Replace Ui in the cover by Ui ∪ {qi }, and denote the new cover of F by {Vi }i . Then
�1(δ

′) ≤ d(pi , qi ) ≤ |Ui ∪ {qi }| < (1 + 1/c)�1(δ
′) ≤ δ′.

Also,

|Ui ∪ {qi }| ≤ 2(1 + 1/c)�(δ) ≤ 2(1 + 1/c)|Ui |.
Therefore

∑

i

|Vi |s ≤
∑

i

(2(1 + 1/c)|Ui |)s = 2s(1 + 1/c)s
∑

i

|Ui |s ≤ ε

by (3.8), so dim
�1F ≤ s, hence dim�1F ≤ dim

�
F as required.

(ii) (1) Follows directly from (2.2) and Definition 2.7.
(ii) (2) Assume that F is compact. Let s > dimH F , ε > 0 and δ2 ∈ (0, 1], so

there exists δ3 ∈ (0, δ2) such that inf{ �(δ) : δ ∈ [δ3, δ2] } = 0. There exists a
countable cover {Ui } of F such that

∑
i |Ui |s ≤ min{δs3, ε}. In particular, |Ui | ≤ δ3.

Since F is compact, there is a finite subcover {Vi }, so mini {|Vi |} > 0, and each
|Vi | ≤ δ3. Since inf{ �(δ) : δ ∈ [δ3, δ2] } = 0, there exists δ4 ∈ [δ3, δ2] such that
�(δ4) ∈ (0,mini {|Vi |}). Then 0 ≤ �(δ4) ≤ mini {|Vi |}) ≤ |Vi | ≤ δ3 ≤ δ4 for
each i , and

∑
i |Vi |s ≤ ∑

i |Ui |s ≤ ε. As ε and δ2 were arbitrary, dim�F ≤ s, so
dim�F = dimH F .

(ii) (3) Clearly �2 is admissible and dim�2F ≤ dim�F , so it remains to
prove the reverse inequality. Let s > dim�2F and ε > 0. Let δ1 > 0 and let
δ0 ∈ (0,�2(min{�, δ1})/2). Then there exists δ ∈ (0, δ0) and a cover {Ui } of F
such that �2(δ) ≤ |Ui | ≤ δ for all i , and

∑

i

|Ui |s ≤ 2−s(1 + 1/c)−sε. (3.9)
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By the definition of �2, there exists δ2 ∈ [δ,�] such that �(δ2) < 2�2(δ). But since
�2(δ) ≤ �(δ) ≤ δ0 < �2(min{�, δ1})/2, it must be the case that δ2 < min{�, δ1}.
If |Ui | ≥ �(δ2) then leave Ui in the cover unchanged. If |Ui | < �(δ2) then fix
pi ∈ Ui and qi ∈ X such that �(δ2) ≤ d(pi , qi ) ≤ �(δ2)/c; replace Ui in the cover
with Ui ∪ {qi } and call the new cover {Vi }. Now, �(δ2) ≤ |Ui ∪ {qi }| < δ2. Also,
|Ui ∪ {qi }| ≤ 2(1 + 1/c)�2(δ) ≤ 2(1 + 1/c)|Ui |. Therefore

∑

i

|Vi |s ≤
∑

i

(2(1 + 1/c)|Ui |)s = 2s(1 + 1/c)s
∑

i

|Ui |s ≤ ε,

by (3.9). It follows that dim�F ≤ s, as required. ��

3.2 The intermediate dimensions

In this section explore the consequences of general results proved for the �-
intermediate dimensions in Sect. 3.1 for the special case of the θ -intermediate
dimensions. By Proposition 3.6, the following mutual dependency between the box
and intermediate dimensions holds.

Proposition 3.11 If 0 < dimBF ≤ dimA F < ∞ then dimθ F > 0 for all θ ∈ (0, 1].
The same holds with dim replaced by dim throughout.

Proof Assume 0 < dimA F < ∞, let θ ∈ (0, 1), and suppose that dimθ F = 0.
Then if �(δ) = δ1/θ and �1(δ) = δ/(− log δ) then �1(δ) ≤ δ = (�(δ))θ , so

0 = dim
�1F = dimBF by Propositions 3.6 and Proposition 3.4. The proof for the

lower versions of the dimensions is similar. ��
For subsets of Euclidean space, Proposition 3.11 also follows from [12, (14.2.7)].

Proposition 3.11 means that in order to check that the box dimension of a set is 0,
it suffices to check the a priori weaker condition that the θ -intermediate dimension
of the set is 0 at a small θ ∈ (0, 1]. It would be interesting to know if there are sets
whose box dimension has resisted calculation by other methods but can be calculated
in this way. Another mutual dependency result between different notions of dimension
is that the upper box dimension of a set is 0 if and only if its Assouad spectrum and
quasi-Assouad dimensions are 0, which follows from work in [19–21].

Theorem 3.12 is a quantitative continuity result for the intermediate dimensions
which improves [13, Proposition 2.1] and [12, (14.2.2)]. The proof of [13, Propo-
sition 2.1] involves breaking up the largest sets in the cover, while [12, (14.2.2)] is
proved by ‘fattening’ the smallest sets in the cover. The novelty in the proof of The-
orem 3.5 (from which Theorem 3.12 follows) is to deal with the smallest and largest
sets at the same time in such a way that the ‘cost’ of each (in terms of how much the
dimension can increase) is the same. Banaji and Rutar recently gave a direct proof of
Theorem 3.12 in the Euclidean setting in the proof of [4, Theorem 2.6].

Theorem 3.12 If 0 ≤ dimL F < dimA F < ∞ and 0 < θ ≤ φ ≤ 1 then

dimθ F ≤ dimφF ≤ dimθ F + (dimθ F − dimL F)(dimA F − dimθ F)

φ(dimθ F − dimL F) + θ(dimA F − dimθ F)
(φ − θ).
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The same holds with dim replaced by dim throughout. Furthermore, the functions
θ ′ 
→ dimθ ′F and θ ′ 
→ dimθ ′F are continuous for θ ′ ∈ (0, 1]; indeed they are both
Lipschitz on [θ, 1] with Lipschitz constant dimA F

4θ .

Therefore by Lipschitz continuity and Rademacher’s theorem, or alternatively by
monotonicity and Lebesgue’s theorem, the functions θ ′ 
→ dimθ ′F and θ ′ 
→ dimθ ′F
are differentiable at Lebesgue-almost every θ ′ ∈ (0, 1).

Proof We prove the version for dim; the version for dim is similar. The inequal-
ity dimθ F ≤ dimφF is immediate from the definitions. The only non-trivial case
of the other inequality is when 0 < θ < φ ≤ 1 and 0 < dimθ F < dimA F .
Define �(δ):=δ1/θ . If φ < 1, define �1(δ):=δ1/φ , but if φ = 1 then define
�1(δ):=δ/(− log δ). Then dim

�
F = dimθ F and dim

�1F = dimφF . Define

η:= (dimθ F − dimL F)(dimA F − dimθ F)

φ(dimθ F − dimL F) + θ(dimA F − dimθ F)
(φ − θ).

Using notation from (3.1), a direct manipulation now shows that α/φ = γ /θ . There-
fore

�1(δ
α) ≤ δα/φ = δγ/θ = (�(δ))γ /θ .

Thus dim
�1F ≤ dim

�
F + η by Theorem 3.5, as required. To deduce Lipschitz

continuity on [θ, 1], note that if 0 < θ ≤ θ ′ ≤ φ ≤ 1 then

dimφF−dimθ ′F≤ (dimA F−dimL F)/2)2

(dimA F−dimL F)θ
(φ−θ ′) ≤ dimA F−dimL F

4θ
(φ−θ ′),

as required. ��
Falconer noted that his continuity result [12, (14.2.2)] shows that dimθ F

θ
and dimθ F

θ

are monotonically decreasing in θ ∈ (0, 1], so the graphs of θ → dimθ F and θ →
dimθ F for θ ∈ (0, 1] are starshaped with respect to the origin. Corollary 3.13 shows
that in fact the graphs are strictly starshaped, and every half-line from the origin in the
first quadrant intersects the graphs in a single point.

Corollary 3.13 If 0 < dimBF ≤ dimA F < ∞ then (dimθ F)/θ is strictly decreasing
in θ ∈ (0, 1]. The same holds with dim replaced by dim throughout.

Proof The only non-trivial case is when dimL F < dimA F . Suppose 0 < θ < φ ≤
1. By Proposition 3.11, dimθ F > 0, so by Theorem 3.12 and a direct algebraic
manipulation,

dimφF

φ
≤ 1

φ

(
dimθ F + (dimθ F − dimL F)(dimA F − dimθ F)

φ(dimθ F − dimL F) + θ(dimA F − dimθ F)
(φ − θ)

)

<
dimθ F

θ
,
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as required. ��
If we know the value of dimθ F or dimθ F for one value of θ ∈ (0, 1] then Theorem3.12
gives an upper bound for dimφF or dimφF respectively, for allφ ∈ [θ, 1]. Rearranging
this bound gives

dimφF(φ(dimθ F − dimL F) + θ(dimA F − dimθ F))

≤ dimθ F(φ(dimθ F − dimL F) + θ(dimA F − dimθ F))

+ (dimθ F − dimL F)(dimA F − dimθ F)(φ − θ).

Expanding brackets, cancelling terms and rearranging, we obtain what can be thought
of as a lower bound for for dimθ F in terms of dimφF :

dimθ F ≥ θ dimA F(dimφF − dimL F) + φ dimL F(dimA F − dimφF)

θ(dimφF − dimL F) + φ(dimA F − dimφF)
. (3.10)

Of particular interest is the lower bound for the intermediate dimensions in terms of
the box dimension, because the box dimension of many sets is known independently.
The following bound is given for subsets of R

n in [4, Corollary 2.8].

Corollary 3.14 If dimL F < dimA F < ∞ then for all θ ∈ (0, 1],

dimθ F ≥ θ dimA F(dimBF − dimL F) + dimL F(dimA F − dimBF)

θ(dimBF − dimL F) + (dimA F − dimBF)
.

The same holds replacing dim with dim throughout.

Proof Set φ = 1 in (3.10). ��
We make several remarks about this bound.

• In the bounds in Sects. 3.1 and 3.2, if every instance of dimL F is replaced by 0
and every instance of dimA F is replaced by n, then we obtain bounds which hold
for all non-empty bounded F ⊂ R

n .
• If dimθ F ∈ {0, dimL F, dimA F} for some θ ∈ (0, 1] then dimθ F is constant on

(0, 1]. This extends results in [4, 12, 13] to more general metric spaces.
• Assume dimL F < dimB F < dimA F . Then one can differentiate the bound
and show that it is real analytic, strictly increasing, strictly concave, and takes
value dimL F at θ = 0 and dimB F at θ = 1. In this sense, it is a quantitative
improvement of Proposition 3.11.

• As dimB F approaches dimA F or dimL F respectively, so does the lower bound
pointwise.

• The dimension theory of the self-affine Bedford–McMullen carpets has received
considerable attention [16]. Banaji and Kolossváry recently proved a precise for-
mula for the intermediate dimensions in [3], which have previously been studied
in [13, Section 4] and [30]. For some carpets, in particular when the maps in the
defining iterated function system are very unevenly distributed in the different
columns, Corollary 3.14 can give non-trivial information when θ is close to 1.
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484 A. Banaji

We now show that the above bounds are sharp (in contrast to the bounds [13, Proposi-
tion 2.1] and [12, (14.2.7)]). Working in R, for p ∈ (0,∞) let Fp:={0} ∪ { n−p :
n ∈ N }. It is straightforward to verify that dimL Fp = 0, dimA Fp = 1 and
dimB Fp = 1

p+1 . Falconer, Fraser and Kempton [13, Proposition 3.1] showed that
dimθ Fp = θ/(p + θ) for all θ ∈ [0, 1]. Therefore if 0 < θ ≤ φ ≤ 1 then by a direct
algebraic manipulation,

dimθ Fp + (dimθ F − dimL F)(dimA F − dimθ F)

φ(dimθ F − dimL F) + θ(dimA F − dimθ F)
(φ − θ)

= θ

p + θ
+

θ
p+θ

(
1 − θ

p+θ

)

(φ − θ) θ
p+θ

+ θ
(φ − θ) = φ

p + φ
= dimφ Fp,

so the upper bound of Theorem 3.12 is attained. Similarly, this family of examples
shows that the Lipschitz constant in Theorem 3.12 and the lower bound Corollary 3.14
cannot be improved in general. These bounds are also sharp for certain lattice sets
which generalise the Fp sets to higher dimensions. In [2, Proposition 3.8], Banaji and
Fraser used the bound in Corollary 3.14 to calculate the intermediate dimensions of
these lattice sets without needing to use a mass distribution argument as in the proof
of [13, Proposition 3.1]. The bound can also be used to calculate the intermediate
dimensions of the graph of the popcorn function [1].

A certain converse to Theorem 3.12 was proved by Banaji and Rutar as the main
result of [4] using aMoran set construction. In particular, if d ∈ N and 0 ≤ λ ≤ α ≤ d
and h : [0, 1] → [0, d] is an arbitrary increasing function satisfying

h(φ) ≤ h(θ) + (h(θ) − λ)(α − h(θ))

φ(h(θ) − λ) + θ(α − h(θ))
(φ − θ)

for all 0 < θ ≤ φ ≤ 1, then there exists a compact perfect set F ⊂ R
d such that

dimA F = α, dimL F = λ, and dimθ F = h(θ) for all θ ∈ [0, 1].
A consequence of Corollary 3.8 is the following relationships between the �-

intermediate and intermediate dimensions.

Proposition 3.15 Let � be any admissible function, and let

θ1:= lim inf
δ→0+

log δ

log�(δ)
; θ2:= lim sup

δ→0+

log δ

log�(δ)
, (3.11)

noting that 0 ≤ θ1 ≤ θ2 ≤ 1. If dimA F < ∞ then the following bounds hold:

• If 0 = θ2 = limδ→0+ log δ
log�(δ)

then dim�F ≤ dimθ F and dim
�
F ≤ dimθ F for

all θ ∈ (0, 1].
• If 0 = θ1 < θ2 then dimθ2

F ≤ dim
�
F ≤ dimθ2F (so if dimθ2 F exists then

dim
�
F = dimθ2 F), and dim�F ≤ min{dimθ F, dimθ2

F} for all θ ∈ (0, 1].
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• If 0 < θ1 ≤ θ2 then

dimθ1
F ≤ dim�F ≤ min{dimθ1F, dimθ2

F},
max{dimθ1F, dimθ2

F} ≤ dim
�
F ≤ dimθ2F .

• If 0 < θ1 = θ2 then dim�F = dimθ1
F and dim

�
F = dimθ1 .

Proof As an example, we prove dim
�
F ≤ dimθ2F under the assumption that θ2 > 0;

the other bounds are proved similarly. If θ2 = 1 then this follows from Proposition 3.1,
so assume θ2 ∈ (0, 1). Then letting η ∈ (0, 1 − θ2), by the definition of θ2,

lim sup
δ→0+

�(δ)

δ1/(θ2+η)
= 0 < ∞.

Corollary 3.8 (i) now gives dim
�
F ≤ dimθ2+ηF . The intermediate dimensions are

continuous at θ2 > 0 by Theorem 3.12 so the result follows upon letting η → 0+. ��
For sets whose upper intermediate dimensions are continuous at θ = 0, usually we

will not study the �-intermediate dimensions, because much information about the
general �-intermediate dimensions of such sets can be obtained directly from results
about their intermediate dimensions and these inequalities.

4 Hölder and Lipschitz maps

4.1 Hölder distortion

We now investigate how these dimensions behave under Hölder and Lipschitz maps.
We say that a map f : X → Y is Hölder, α-Hölder or (C, α)-Hölder if

dY ( f (x1), f (x2)) ≤ CdX (x1, x2)
α for all x1, x2 ∈ X

for constants α ∈ (0, 1] and C ∈ [0,∞), and we call α the exponent. Interestingly,
the familiar upper bound dim f (F) ≤ α−1 dim F for the image of a ‘reasonable’ set
F under an α-Hölder map f , which holds for the Hausdorff, box and intermediate
dimensions (see Corollary 4.2), is different to the bound that is obtained for the �-
intermediate dimensions in the main result of this section, Theorem 4.1. Fraser [18]
uses the Assouad spectrum to give bounds on the possible Hölder exponents of maps
from an interval to a natural class of spirals. These bounds are better than bounds that
have been obtained using any other notion of dimensions. A possible direction for
future research would be to give similar applications of results in this section to obtain
information about the possible Hölder exponents of maps between sets.

Theorem 4.1 Let � and �1 be admissible functions and let (X , dX ) and (Y , dY ) be
uniformly perfect. Let f : F → Y be a Hölder map with exponent α ∈ (0, 1] for some
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486 A. Banaji

F ⊆ X, assume dimA f (F) < ∞, and let γ ∈ [1, 1/α]. Assume that

�1(δ) ≤ (�(δ1/(αγ )))α (4.1)

for all sufficiently small δ, and suppose dim
�
F < α dimA f (F). Then

dim
�1 f (F) ≤ dim

�
F + α(γ − 1) dimA f (F)

αγ
.

The same holds with dim replaced by dim throughout.

Proof The idea of the proof is to consider a cover of F with diameters in [�(δ), δ],
consider the cover of f (F) formed by the images under f of this cover, and ‘fatten’
the smallest sets in the new cover to size �1(δ

αγ ) and break up the largest sets in the
new cover to size δαγ . Assume that f is (C, α)-Hölder with C ≥ 1. Let ε > 0. Let

t >
dim

�
F + α(γ − 1) dimA f (F)

αγ
.

Then there exist s > dim
�
F and a > dimA f (F) such that s < αa and t > (s +

α(γ − 1)a)/(αγ ). Define

g(η):=ηs + αa(γ − η)

αγ
.

Since a > dimA f (F), there existsM ∈ N such that Nr (B(y, R)∩ f (F)) ≤ M(R/r)a

for all y ∈ f (F) and 0 < r < R. Let c ∈ (0, 1) be such that X and Y are c-uniformly
perfect. For all small enough δ we have �(δ)/δ < c/2 and �1(δ)/δ < c/2, and there
exists a cover {Ui } of F such that �(δ) ≤ |Ui | ≤ δ for all i , and

∑

i

|Ui |s ≤ ((C + c−1)s/α + M(2C)a+γ g(1))−1ε/2. (4.2)

Without loss of generality assume Ui ∩ F �= ∅ for all i . Now, { f (Ui )} covers f (F),
and | f (Ui )| ≤ C |Ui |α for all i . There are two cases.

Case 1: Suppose i is such that | f (Ui )| ≤ δαγ /2. Fix any yi ∈ f (Ui ). There exists
y′
i ∈ Y such that�1(δ

αγ ) ≤ dY (yi , y′
i ) ≤ �1(δ

αγ )/c, hence dY (yi , y′
i ) ≤ (�(δ))α/c.

Let Vi := f (Ui ) ∪ {y′
i }. By the triangle inequality,

�1(δ
αγ ) ≤ dY (yi , y

′
i ) ≤ |Vi | ≤ | f (Ui )| + �1(δ

αγ )/c ≤ δαγ . (4.3)

Moreover, by the assumption (4.1) about �1,

|Vi | ≤ | f (Ui )| + �1(δ
αγ )/c ≤ C |Ui |α + (�(δ))α/c ≤ (C + c−1)|Ui |α. (4.4)
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Case 2: Now suppose that i is such that δαγ /2 < | f (Ui )| ≤ Cδα . Then
(2C)−1/αδγ < |Ui | ≤ δ so there exists βi ∈ [1, γ ] such that (2C)−1/αδβi < |Ui | ≤
δβi . Then δαγ /2 < | f (Ui )| ≤ Cδαβi ≤ Cδα . There exists a collection of

M(2C)aδα(βi−γ )a ≤ M(2C)a |Ui |αa(1−γ /βi )

or fewer balls, each of diameter at most δαγ /2, which cover f (Ui ) ∩ f (F). For each
ball we can add a point in Y whose distance from the centre of the ball is between
�1(δ

αγ ) and �1(δ
αγ )/c. Each of the new sets, which we call {Wi, j } j , will satisfy

�1(δ
αγ ) ≤ |Wi, j | ≤ δαγ . (4.5)

Moreover,

|Wi, j | ≤ δαγ = (2C)γ /βi ((2C)−1/αδβi )αγ/βi ≤ (2C)γ /βi |Ui |αγ/βi . (4.6)

Note that g(η) is linear and decreasing in η, so t > g(1) ≥ g(η) ≥ g(γ ) = s/α for
all η ∈ [1, γ ], and in particular t > g(βi ) for all i . Therefore using (4.4) and (4.6),

∑

k

|Vk |t +
∑

i, j

|Wi, j |t <
∑

k

|Vk |s/α +
∑

i, j

|Wi, j |g(βi )

≤
∑

k

((C + c−1)|Uk |α)s/α

+
∑

i

M(2C)a |Ui |αa(1−γ /βi )((2C)γ /βi |Ui |αγ/βi )g(βi )

≤ (C + c−1)s/α
∑

k

|Uk |s + M(2C)a+γ g(βi )/βi
∑

i

|Ui |s

≤ ε,

where the last equality follows from (4.2). Also, {Vk}k ∪ {Wi, j }i, j covers f (F), and

noting (4.3) and (4.5), we have dim
�1 f (F) ≤ t , as required. ��

We make several comments about Theorem 4.1.

• An important special case is when γ = 1/α and �1 = �. Then we can conclude

dim
�
f (F) ≤ dim

�
F + (1 − α) dimA f (F).

• Another special case is for the �1 which satisfy (4.1) with γ = 1, when we can

conclude dim
�1 f (F) ≤ α−1dim

�
F .

• If dim
�
F ≥ α dimA f (F) (contrary to the assumption of Theorem 4.1) then the

simple bound dim
�
f (F) ≤ α−1dim

�
F follows immediately.
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• If dim
�
F < α dimA f (F) but we only assume that (4.1) holds along a subse-

quence of δ → 0+, then we can conclude only that

dim�1 f (F) ≤ dim
�
F + α(γ − 1) dimA f (F)

αγ
.

Setting �(δ) = δ1/θ gives a Hölder distortion estimate for the intermediate dimen-
sions in Corollary 4.2. For subsets of Euclidean space, Corollary 4.2 was noted in [12,
Section 14.2.1 5.], and it also follows from the stronger result [5, Theorem 3.1] which
is proven using capacity theoretic methods and dimension profiles, but we include it
nonetheless because our proof works for more general metric spaces.

Corollary 4.2 If f : F → Y is an α-Hölder map with exponent α ∈ (0, 1] and
dimA f (F) < ∞, then dimθ f (F) ≤ α−1dimθ F and dimθ f (F) ≤ α−1dimθ F for
all θ ∈ [0, 1].
Proof These estimates hold for the Hausdorff and lower and upper box dimensions
(similar to [10, Exercise 2.2 and Proposition 3.3]), so assume that θ ∈ (0, 1) and let
�(δ) = �1(δ) = δ1/θ . If dimθ F ≥ α dimA f (F) then dimθ f (F) ≤ dimA f (F) ≤
α−1dimθ F . If dimθ F < α dimA f (F) then since

�1(δ) = �(δ) = δ1/θ = ((δ1/α)1/θ )α = �(δ1/α)α,

the case γ = 1 of Theorem 4.1 gives that dimθ f (F) ≤ α−1dimθ F . Similarly, the
bound for the lower intermediate dimensions follows from the version of Theorem 4.1
for the lower �-intermediate dimensions. ��

4.2 Lipschitz stability

Recall that a map is Lipschitz if it is 1-Hölder, and bi-Lipschitz if it is Lipschitz with
a Lipschitz inverse. Corollary 4.3 shows that the �-intermediate dimensions cannot

increase under Lipschitz maps. We also show that dim
�
and dim� are stable under

bi-Lipschitz maps, which is an important property that most notions of dimension
satisfy. This shows that the �-intermediate dimensions provide further invariants for
the classification of sets up to bi-Lipschitz image. Bi-Lipschitz stability has already
been proven for the Hausdorff and box dimensions in [10, Propositions 2.5 and 3.3]
and, for subsets of R

n , for the intermediate dimensions in [17, Lemma 3.1].

Corollary 4.3 Let X and Y be underlying spaces, let F ⊆ X, let f : F → Y be
Lipschitz, and assume that dimA f (F) < ∞. Then

1. We have dim
�
f (F) ≤ dim

�
F and dim� f (F) ≤ dim�F.

2. If moreover f is bi-Lipschitz then dim
�
f (F) = dim

�
F and dim� f (F) =

dim�F.

In 2, the assumption dimA f (F) < ∞ is equivalent to dimA F < ∞ since theAssouad
dimension is stable under bi-Lipschitz maps.
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Proof If dim
�
F ≥ dimA f (F) then dim

�
f (F) ≤ dimA f (F) ≤ dim

�
F by Proposi-

tion 3.1; if dim
�
F < dimA f (F) then the case α = γ = 1, �1 = �, of Theorem 4.1

gives dim
�
f (F) ≤ dim

�
F . The proof that dim� f (F) ≤ dim�F is similar, and 2.

follows from 1. ��

5 Amass distribution principle

In this section we prove a mass distribution principle for the �-intermediate dimen-
sions and a converse result (a Frostman type lemma),which together give an alternative
characterisation of the intermediate dimensions. We then prove some applications
regarding product sets and finite stability.

5.1 Amass distribution principle

The mass distribution principle is a useful tool to bound dimensions from below by
putting a measure on the set. The original version was for the Hausdorff dimension
(see [10, page 67]), and a version was proved for the intermediate dimensions in
[13, Proposition 2.2]. The following natural generalisation for the �-intermediate
dimensions holds.

Lemma 5.1 Let F be a subset and let s, a, c, δ0 > 0 be positive constants.

(i) If there exists a positive decreasing sequence δn → 0 such that for each
n ∈ N there exists a Borel measure μn with support supp(μn) ⊆ F with
μn(supp(μn)) ≥ a, and such that for every Borel subset U ⊆ X with

�(δn) ≤ |U | ≤ δn we have μn(U ) ≤ c|U |s , then dim
�
F ≥ s.

(ii) If, moreover, for all δ ∈ (0, δ0) there exists a Borel measure μδ with support
supp(μδ) ⊆ F with μδ(supp(μδ)) ≥ a, and such that for every Borel subset
U ⊆ X with �(δ) ≤ |U | ≤ δ we have μδ(U ) ≤ c|U |s , then dim�F ≥ s.

Proof We prove (i); the proof of (ii) is similar. If n ∈ N and {Ui } is a cover of
F such that �(δn) ≤ |Ui | ≤ δn for all i , then the closures Ui are Borel, satisfy
�(δn) ≤ |Ui | = |Ui | ≤ δn , and cover supp(μn), so

a ≤ μn(supp(μn)) = μn

(
⋃

i

Ui

)
≤

∑

i

μn(Ui ) ≤ c
∑

i

|Ui |s = c
∑

i

|Ui |s .

(5.1)

Therefore
∑

i |Ui |s ≥ a/c > 0, so dim
�
F ≥ s. ��

5.2 A Frostman type lemma

Another powerful tool in fractal geometry and geometricmeasure theory is Frostman’s
lemma, dual to the mass distribution principle. The following analogue of Frostman’s
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490 A. Banaji

lemma for the �-intermediate dimensions holds, generalising [13, Proposition 2.3]
for the intermediate dimensions both to more general functions� and to more general
metric spaces. In the proof, we use notation from [28, Theorem 2.2], where δ denotes
a certain constant.

Lemma 5.2 Assume that dimA F < ∞.

(i) If dim
�
F > 0 then for all s ∈ (0, dim

�
F) there exists a constant c ∈ (0,∞)

such that for all δ0 > 0 there exist δ′ ∈ (0, δ0) and a Borel probability measure
μδ′ with finite support supp(μδ′) ⊆ F such that if x ∈ X and �(δ′) ≤ r ≤ δ′
then

μδ′(B(x, r)) ≤ crs .

(ii) If dim�F > 0 then for all s ∈ (0, dim�F) there exists c ∈ (0,∞) such that
for all sufficiently small δ′ there exists a Borel probability measure μδ′ with
finite support supp(μδ′) ⊆ F such that if x ∈ X and �(δ′) ≤ r ≤ δ′ then
μδ′(B(x, r)) ≤ crs .

Proof We prove (ii); the proof of (i) is similar. The idea of the proof is to put point
masses on an analogue of dyadic cubes of size approximately �(δ′) so that the mea-
sure of sets with diameter approximately �(δ′) is controlled by the �-intermediate
dimension of F , and then iteratively reduce the masses so that the mass of larger
cubes is not too large either. The proof is based on the proof of [13, Proposition 2.3]
for the intermediate dimensions, which is in turn based on [32, pages 112–114]. In
[13, Proposition 2.3], the assumption that the set F is closed is not necessary as it is
not used in the proof.

The main difference with the proof of [13, Proposition 2.3] is that in R
n there are

the dyadic cubes to work with, but here we use the fact that dimA F < ∞, and use an
analogue of the dyadic cubes constructed in [28] for general doubling metric spaces.
We now state a special case of [28, Theorem 2.2], using notation from that theorem.
We take the quasi-metric ρ simply to be the metric d restricted to F (so the usual
triangle inequality holds and A0 = 1). Fix δ:=1/20 (in fact any δ ∈ (0, 1/12) will
do). Since dimA F < ∞, for each k ∈ N we have Nδk/3(F) < ∞. Therefore there
exists a finite δk-separated subset {zkα}α of F , of maximum possible cardinality. Then
applying [28, Theorem 2.2] with c0 = C0 = 1, c1 = 1/3, C1 = 2, for each k ∈ N

there exist subsets Qk :={Qk
α}α of F such that:

1. for all k ∈ N, F = ⋃
α Qk

α with the union disjoint;
2. BF (zkα, (20)−k/4) ⊆ BF (zkα, c1(20)−k) ⊆ Qk

α ⊆ BF (zkα,C1(20)−k) =
BF (zkα, 2(20)−k), recalling that BF denotes the open ball in F ;

3. if k, l ∈ N with k ≤ l then for all α, β, either Qk
α ∩ Ql

β = ∅ or Ql
β ⊆ Qk

α , and in

the latter case, also BF (zlβ, 2(20)−l) ⊆ BF (zkα, 2(20)−k). We call Qk
α a parent of

Ql
β .

We say that Qk
α is a dyadic cube with centre zkα .
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Let c2 ∈ (0, 1) be such that X is c2-uniformly perfect. Suppose dim�F > 0 and
let s ∈ (0, dim�F). Then there exists ε > 0 such that for all sufficiently small δ′ and
all covers {Ui } of F satisfying �(δ′) ≤ |Ui | ≤ δ′ for all i ,

∑

i

|Ui |s ≥ ε. (5.2)

Let δ′ be small enough such that this is the case, andmoreover that�(δ′)/δ′ < c2/320.
Define m = m(δ′) to be the largest natural number satisfying �(δ′) ≤ 1

2 (20)
−m .

Define the Borel measure μm by

μm :=
∑

α

20−msMzkα

where Mzkα
is a unit point mass at zkα .

Let l be the largest integer such that 8(20−(m−l)) ≤ δ′, noting that l ≥ 1. In
particular, |Qm−l | ≤ δ′/2 for all Qm−l ∈ Qm−l . In order to reduce the mass of cubes
which carry too much measure, having defined μm−k for some k ∈ {0, 1, . . . , l − 1},
inductively define the Borel measure μm−k−1, supported on the same finite set as μm ,
by

μm−k−1|Qm−k−1 :=min

{
1,

20−(m−k−1)s

μm−k(Qm−k−1)

}
μm−k |Qm−k−1

for all Qm−k−1 ∈ Qm−k−1. By construction, if k ∈ {0, 1, . . . , l} and Qm−k ∈ Qm−k

then

μm−l(Qm−k) ≤ 20−(m−k)s ≤ 4sc−s
2 |Qm−k |s (5.3)

by condition 2. Moreover, each Qm ∈ Qm satisfies μm(Qm) = 20−ms . If k ∈
{0, 1, . . . , l − 1} and Qm−k ∈ Qm−k satisfies μm−k(Qm−k) = 20−(m−k)s and
Qm−k−1 ∈ Qm−k−1 is the parent of Qm−k , then by the construction of μm−k−1,
either μm−k−1(Qm−k) = 20−(m−k)s or μm−k−1(Qm−k−1) = 20−(m−k−1)s . There-
fore for all y ∈ F there is at least one k ∈ {0, 1, . . . , l} and Qy ∈ Qm−k with y ∈ Qy

such that

μm−l(Qy) = 20−(m−k)s ≥ 4−s |Qy |s, (5.4)

where the inequality is by condition 2.
For each y ∈ F , choosing Qy such that (5.4) is satisfied and moreover Qy ∈

Qm−k for the largest possible k ∈ {0, 1, . . . , l} yields a finite collection of cubes {Qi }
which cover F . For each i , let zi be the centre of Qi , and by the uniformly perfect
condition there exists pi ∈ X such that�(δ′) ≤ d(pi , zi ) ≤ �(δ′)/c2 ≤ δ′/2. Letting
Ui :=Qi ∪ {pi }, by condition 2 we have �(δ′) ≤ |Ui | ≤ δ′. Then {Ui } covers F , and
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each |Ui | ≤ |Qi | + �(δ′)/c2 ≤ (1 + 1/c2)|Qi |. Therefore by (5.2) and (5.4),

μm−l(F) =
∑

i

μm−l(Qi ) ≥
∑

i

4−s |Qi |s

≥ 4−s(1 + 1/c2)
−s

∑

i

|Ui |s ≥ 4−s(1 + 1/c2)
−sε. (5.5)

Define μδ′ :=(μm−l(F))−1μm−l , which is clearly a Borel probability measure with
finite support supp(μδ′) ⊆ F .

Now, since dimA F < ∞ there existsC ∈ N such that Nd(BF (p, 13d)) ≤ C for all
p ∈ F and d > 0. Let x ∈ X and r ∈ [�(δ′), δ′]. Let j = j(r) be the largest integer
in {0, 1, . . . , l} such that 20−(m− j+1) < r ; such an integer exists by the definition of
m. If BX (x, r) ∩ F = ∅ then μδ′(BX (x, r)) = 0, so suppose that there exists some
x1 ∈ BX (x, r) ∩ F , so BX (x, r) ⊆ BF (x1, 2r). Suppose BX (x, r) ∩ Qm− j �= ∅ for
some Qm− j ∈ Qm− j , with centre zm− j , say. Then there exists z ∈ BX (x, r)∩ Qm− j ,
and by condition 2 and the definition of j ,

d(x1, zm− j ) ≤ d(x1, z) + d(z, zm− j ) ≤ 2r + 2(20)−(m− j) ≤ 6(20)−(m− j).

Therefore zm− j ∈ BF (x1, 6(20)−(m− j)), and the centres of the cubes in Qm− j which
intersect BX (x, r) form a 20−(m− j)-separated subset of BF (x1, 6(20)−(m− j)). But

N6(20)−(m− j)/13(B
F (x1, 6(20)

−(m− j))) ≤ C .

Therefore there are most C such centres, so at most C elements of Qm− j which
intersect BX (x, r). Therefore by (5.3) and (5.5) and the definition of j ,

μδ′(BX (x, r)) = (μm−l(F))−1μm−l(B
X (x, r)) ≤ C(μm−l(F))−120−(m− j)s ≤ crs,

where c:=C4s(1 + 1/c2)sε−1(20)s , as required. ��
Putting Lemmas 5.1 and 5.2 together, we obtain a useful characterisation of the

�-intermediate dimensions.

Theorem 5.3 If � is an admissible function and dimA F < ∞ then

(i) dim
�
F = sup{s ≥ 0 : there exists C ∈ (0,∞) such that for all δ1 > 0

there exists δ ∈ (0, δ1) and a Borel probability measure μδ

with support supp(μδ) ⊆ F such that if U is a Borel subset of

X which satisfies �(δ) ≤ |U | ≤ δ then μδ(U ) ≤ C |U |s}
(i i) dim�F = sup{s ≥ 0 : there exist C, δ1 ∈ (0,∞) such that for all δ ∈ (0, δ1) there

exists a Borel probability measure μδ with support

supp(μδ) ⊆ F such that if U is a Borel subset satisfying

�(δ) ≤ |U | ≤ δ then μδ(U ) ≤ C |U |s}

123



Generalised intermediate dimensions 493

Proof We prove (ii) using Lemma 5.1 (ii) and Lemma 5.2 (ii); (i) follows from
Lemma 5.1 (i) and Lemma 5.2 (i) in a similar way. We denote by sup the supre-
mum on the right-hand side of the equation (ii). Fix y ∈ F . If s = 0, then lettingC :=1
and letting μδ be a unit point mass at y for all sufficiently small δ, we see that sup
is well-defined and non-negative. Suppose that dim�F > 0 and let s ∈ (0, dim�F).
Then by the Frostman type Lemma 5.2 (ii), there exist constants c, δ1 ∈ (0,∞) such
that for all δ ∈ (0, δ1) there exists a Borel probability measure μδ with finite support
supp(μδ) ⊆ F such that if x ∈ X and �(δ) ≤ r ≤ δ then μδ(B(x, r)) ≤ crs . If
U is a Borel subset of X satisfying �(δ) ≤ |U | ≤ δ, then U ∩ F = ∅ implies
μδ(U ) = 0. Suppose there exists some x ∈ U ∩ F . Let M be the doubling constant of
F . Then U ∩ supp(μδ) ⊆ B(x, 2|U |), so there exist x1, . . . , xM ∈ BF (x, 2|U |) such
that U ∩ supp(μδ) ⊆ BF (x, 2|U |) ⊆ ⋃M

i=1 B
F (xi , |U |). Therefore

μδ(U ) ≤
M∑

i=1

μδ(B
F (xi , |U |)) =

M∑

i=1

μδ(B
X (xi , |U |)) ≤ C |U |s,

where C :=Mc. Thus s ≤ sup.
For the reverse inequality, if sup > 0 and t ∈ (0, sup) then by the mass distribution

principle Lemma 5.1 (ii), t ≤ dim�F . Therefore if max{sup, dim�F} > 0 then in
fact sup = dim�F . But both sup and dim�F are non-negative, so they must always
be equal. ��

5.3 Product formulae

It is a well-studied problem to bound the dimensions of product sets in terms of the
dimensions of the marginals. Very often, dimensions come in pairs (dim, Dim) which
satisfy dim F ≤ DimF and

dim E + dim F ≤ dim(E × F) ≤ dim E + DimF ≤ Dim(E × F)

≤ DimE + DimF (5.6)

for all ‘reasonable’ sets E and F and ‘reasonable’ metrics on the product space. Exam-
ples are (Hausdorff, packing) [27], (lower box, upper box) [34], (lower, Assouad) and
(modified lower, Assouad) [15, Corollary 10.1.2] and, for any fixed θ ∈ (0, 1), (lower
spectrum at θ , Assouad spectrum at θ ) and (modified lower spectrum at θ , Assouad
spectrum at θ ) [20, Proposition 4.4]. In Theorem 5.4 we show that for any given � or
θ , (lower �-intermediate, upper box) and (lower θ -intermediate, upper box) are also

such pairs. However, our upper bound for dim
�
(E × F) is dim

�
E + dimBF , rather

than the expected dim
�
E + dim

�
F . Theorem 5.4 generalises [13, Proposition 2.5]

on the intermediate dimensions of product sets to more general functions � and more

general metric spaces, and also gives an improved lower bound for dim
�
(E × F)

and an improved upper bound for dim�(E × F). We improve the lower bound for

dim
�
(E × F) further for self-products in (iii). A possible direction for future research

would be to investigate the sharpness of the bounds in Theorem 5.4.
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Theorem 5.4 Consider uniformly perfectmetric spaces (X , dX )and (Y , dY ). Let dX×Y

be a metric on X × Y such that there exist constants c1, c2 ∈ (0,∞) such that

c1 max(dX , dY ) ≤ dX×Y ≤ c2 max(dX , dY ). (5.7)

Then if E ⊆ X and F ⊆ Y have finite Assouad dimension, then

(i) dim
�
E + dim�F ≤ dim

�
(E × F) ≤ dim

�
E + dimBF;

(ii) dim�E + dim�F ≤ dim�(E × F) ≤ dim�E + dimBF.

In the case of self-products, (i) can be improved to

(iii) 2dim
�
F ≤ dim

�
(F × F) ≤ dim

�
F + dimBF.

Note that (5.7) is the same condition as [34, (2.4)], and familiar metrics which
satisfy this are dX×Y :=max{dX , dY } and dX×Y :=(d p

X + d p
Y )1/p for p ∈ [1,∞).

Proof The idea of the proof of the upper bounds is to consider a cover of one of the
sets E with diameters in [�(δ), δ], and, for each set Ui in that cover, to form a cover
of that other set F with all the diameters approximately equal to |Ui |, with the number
of sets in this cover controlled by dimBF . We can then cover the product set with
approximate squares with sizes between �(δ) and δ to obtain the result. The idea of
the proof of the lower bounds is to use the Frostman type lemma to put measures
on each of the marginal sets such that the measure of sets with diameter in [�(δ), δ]
is controlled by the �-intermediate dimensions of the sets, and then apply the mass
distribution principle with the product measure on the product set.

Since X and Y each have more than one point, so does X × Y . A straightforward
calculation shows that since (X , dX ) is uniformly perfect, so is (X×Y , dX×Y ). Another
routine calculation shows that since E and F have finite Assouad dimension, so does
E × F .

(i) We first prove the upper bound of (i), following the proof of the upper bound in
[13, Proposition 2.5]. Let ε > 0. Let cp ∈ (0, 1) be such that X × Y is cp-uniformly
perfect, and without loss of generality assume 0 < cp < c1 < 1 < c2 < ∞. Since
dimA(E × F) < ∞ there exists A ∈ N such that Nr (BE×F (p, 4c2r)) ≤ A for all
p ∈ E × F and r > 0. Let � > 0 be such that �(δ)/δ < cp/2 for all δ ∈ (0,�). Fix

s > dim
�
E and d > dimBF . Let δ1 ∈ (0,�) be such that for all r ∈ (0, δ1) there is

a cover of F by r−d or fewer sets, each having diameter at most r . Let δ0 ∈ (0, δ1) be
such that for all δ ∈ (0, δ0) there exists a cover {Ui } of E such that �(δ) ≤ |Ui | ≤ δ

for all i , and

∑

i

|Ui |s ≤ A−1(c2 + c−1
p )−(s+d)ε. (5.8)

For such a cover, for each i let {Ui, j } j be a cover of F by |Ui |−d or fewer sets, each
having diameter |Ui, j | ≤ |Ui |. Then for all i and j ,

|Ui ×Ui, j | ≤ c2 max{|Ui |, |Ui, j |} = c2|Ui | ≤ c2δ, (5.9)
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so Ui ×Ui, j can be covered by A sets {Ui, j,k}k , each having diameter at most

min{δ/2, |Ui ×Ui, j |}.

Wemay assume that each of these sets is non-empty, andfix pi, j,k ∈ Ui, j,k . Fixqi, j,k ∈
X×Y such that�(δ) ≤ dX×Y (pi, j,k, qi, j,k) ≤ �(δ)/cp. Let Vi, j,k :=Ui, j,k∪{qi, j,k},
so by the triangle inequality

�(δ) ≤ dX×Y (pi, j,k, qi, j,k) ≤ |Vi, j,k | ≤ δ/2 + �(δ)/cp ≤ δ, (5.10)

since δ < δ0 < �. Also, by (5.9),

|Vi, j,k | ≤ c2|Ui | + �(δ)/cp ≤ (c2 + c−1
p )|Ui |. (5.11)

Therefore by (5.11) and (5.8),

∑

i, j,k

|Vi, j,k |s+d ≤
∑

i

A|Ui |−d((c2 + c−1
p )|Ui |)s+d ≤ A(c2 + c−1

p )s+d
∑

i

|Ui |s ≤ ε.

Also

E × F ⊆
⋃

i, j,k

Ui, j,k ⊆
⋃

i, j,k

Vi, j,k .

This gives dim
�
(E × F) ≤ s + d, so dim

�
(E × F) ≤ dim

�
E + dimBF . The bound

dim
�
(E × F) ≤ dimBE + dim

�
F follows similarly.

The proof of the lower bound is somewhat similar to the proof of the lower bound
in [13, Proposition 2.5]. First assume dim�F = 0. Fix any f ∈ F . By (5.7), the
natural embedding E ↪−→ X × Y , x 
→ (x, f ), is bi-Lipschitz onto its image, so by
Corollary 4.3 2. and Proposition 3.2 (i),

dim
�
E + dim�F = dim

�
E = dim

�
(E × { f }) ≤ dim

�
(E × F).

Now assume that dim
�
E > 0 and dim�F > 0. Fix t1 ∈ (0, dim

�
E) and t2 ∈

(0, dim�F). By Lemma 5.2 (i) there exists cE ∈ (0,∞) such that for all δ2 > 0 there
exists δ3 ∈ (0, δ2) and a Borel probability measure μδ3 with supp(μδ3) ⊆ E such that
if x ∈ X and �(δ3) ≤ r1 ≤ δ3 then μδ3(B

X (x, r1)) ≤ cEr
t1
1 . By Lemma 5.2 (ii) there

exist cF , δ4 ∈ (0,∞) such that for all δ5 ∈ (0, δ4) there exists a Borel probability
measure νδ5 with supp(νδ5) ⊆ F such that if y ∈ Y and �(δ5) ≤ r2 ≤ δ5 then
νδ5(B

Y (y, r2)) ≤ cFr
t2
2 . If δ7 > 0, then there exists δ6 ∈ (0,min{δ7, δ4}) and Borel

probability measures μδ6 and νδ6 as above. Let μδ6 × νδ6 be the product measure,
which satisfies supp(μδ6 × νδ6) ⊆ E × F .

IfU ⊆ X×Y is Borel and satisfies�(δ6) ≤ |U | ≤ δ6 then if we fix any (x, y) ∈ U
then

U ⊆ BX×Y ((x, y), 2|U |) ⊆ BX (x, 2|U |/c1) × BY (y, 2|U |/c1). (5.12)
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Fix x1, . . . , xC ∈ E and y1, . . . , yC ∈ F such that

E ∩ BX (x, 2|U |/c1) ⊆
C⋃

i=1

BX (xi , |U |); F ∩ BY (y, 2|U |/c1) ⊆
C⋃

i=1

BY (yi , |U |).

Now,

(E × F) ∩ (BX (x, 2|U |/c1) × BY (y, 2|U |/c1))
= (E ∩ BX (x, 2|U |/c1)) × (F ∩ BY (y, 2|U |/c1))

⊆
(

C⋃

i=1

BX (xi , |U |)
)

×
⎛

⎝
C⋃

j=1

BY (y j , |U |)
⎞

⎠

=
C⋃

i=1

C⋃

j=1

(BX (xi , |U |) × BY (y j , |U |)).

Then by (5.12) and the definition of the product measure,

(μδ6 × νδ6)(U ) ≤ (μδ6 × νδ6)(B
X (x, 2|U |/c1) × BY (y, 2|U |/c1))

≤ (μδ6 × νδ6)

⎛

⎝
C⋃

i=1

C⋃

j=1

(BX (xi , |U |) × BY (y j , |U |))
⎞

⎠

≤
C∑

i=1

C∑

j=1

(μδ6 × νδ6)(B
X (xi , |U |) × BY (y j , |U |))

= C2cEcF |U |t1+t2 .

Therefore by the mass distribution principle Lemma 5.1 (i), dim
�
(E × F) ≥ t1 + t2,

as required.
(ii) The proof of (ii) is a straightforward modification of the proof of (i).
(iii) The upper bound is just the upper bound of (i) with E = F ; the improved bound

is the lower bound. Assume dim
�
F > 0 and let t ∈ (0, dim

�
F). By Lemma 5.2 (i)

there exists cF ∈ (0,∞) such that for all δ0 > 0 there exists δ ∈ (0, δ0) and a Borel
probability measure μδ with supp(μδ) ⊆ F such that if x ∈ X and �(δ) ≤ r ≤ δ

then μδ(BX (x, r)) ≤ cFr t . Then supp(μδ × μδ) ⊆ F × F , and as in the proof of the
lower bound of (i), if �(δ) ≤ |U | ≤ δ then (μδ × μδ)(U ) ≤ C2c2F |U |2t . Therefore
by Lemma 5.1, dim

�
(F × F) ≥ 2t , as required. ��

In the particular case �(δ):= δ
− log δ

, Proposition 3.4 gives dim
�
G = dimBG and

dim�G = dimBG for a subset G of an underlying space X . Therefore from (i) and
(ii) we recover the inequalities for the upper and lower box dimensions of product
sets in [34, Theorem 2.4] (which is proven directly, without putting measures on the
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sets). Note also that bounds on the dimensions of products of more than two sets can
be obtained by applying Theorem 5.4 iteratively, for example

dim
�
(E × F × G) ≥ dim

�
(E × F) + dim�G ≥ dim

�
E + dim�F + dim�G.

5.4 Finite stability

Our next application of the mass distribution principle is Proposition 5.5, which illus-
trates an important difference between the upper and lower versions of the dimensions.
It was stated in [12, Section 14.2.1 2.] that in Euclidean space, the upper intermediate
dimensions are finitely stable but the lower intermediate dimensions are not.

Proposition 5.5 Let � be any admissible function.

(i) The dimension dim
�
is finitely stable: we always have

dim
�
(E ∪ F) = max{dim�

E, dim
�
F}.

(ii) The dimension dim� is not finitely stable: there exist compact sets E, F ⊂ R

such that

dim�(E ∪ F) > max{dim�E, dim�F}.
Proof It is a straightforward exercise to prove (i) directly from Definition 2.7, so we
prove only (ii). To do so,we take inspiration from [10, Exercises 2.8, 2.9]. The idea is to
construct generalised Cantor sets E and F , each of which looks ‘large’ on most scales
but ‘small’ on some sequence of scales. We do this in such a way that the sequences
of scales where the two sets look small do not even approximately coincide, so for
each small δ, either E looks large at every scale between δ and �(δ), or F looks large
at every scale between δ and �(δ).

We assumewithout loss of generality that� : (0, 1] → R.We inductively define the
numbers kn ∈ {0, 1, 2, . . . } and e10kn , f10kn > 0, for n = 0, 1, 2, . . . , as follows. Let
k0:=0, e10k0 = f10k0 = 1. Having defined kn, e10kn , f10kn for some n = 0, 1, 2, . . . ,
there are two cases depending on the parity of n. If n is even, let kn+1 be the smallest
integer such that kn+1 > kn and

(1/3)10
kn+1−10kn f10kn < �

(
(1/5)10

kn+1−10kn (1/3)10
kn+2−10kn+1

e10kn
)

, (5.13)

and let

e10kn+1 :=(1/5)10
kn+1−10kn (1/3)10

kn+1−10kn+1
e10kn ,

f10kn+1 :=(1/3)10
kn+1−10kn f10kn .

If, on the other hand, n is odd, then let kn+1 > kn be the smallest integer such that

(1/3)10
kn+1−10kn e10kn < �

(
(1/5)10

kn+1−10kn (1/3)10
kn+2−10kn+1

f10kn
)

, (5.14)
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and let

f10kn+1 :=(1/5)10
kn+1−10kn (1/3)10

kn+1−10kn+1
f10kn ,

e10kn+1 :=(1/3)10
kn+1−10kn e10kn .

Now let E1:=[0, 1] and for j ∈ N, if 10kn < j ≤ 10kn+1 for some even
n ∈ {0, 2, 4, . . . } then obtain E j by removing the middle 3/5 of each interval in
E j−1, otherwise obtain E j by removing the middle 1/3 of each interval in E j−1. Let
F1:=[2, 3] and for j ∈ N, if 10kn < j ≤ 10kn+1 for some odd n ∈ {1, 3, 5, . . . }
then obtain Fj from removing the middle 3/5 of each interval in Fj−1, otherwise
obtain Fj by removing the middle 1/3 of each interval in Fj−1. Define E := ⋂∞

j=1 E j

and F := ⋂∞
j=1 Fj , noting that both are non-empty and compact subsets of R. For all

j ∈ N, let e j and f j be the lengths of each of the 2 j intervals in E j and Fj respectively,
noting that for each n ∈ N, the two different definitions that we have given for e10kn
and f10kn agree by induction. The sequences e j and f j lie in (0, 1] by induction and
converge monotonically to 0.

We now find an upper bound for dimBE . Let n ∈ N be even. Then E10kn+1

is made up of 210
kn+1

intervals, each of length e10kn+1 = (1/5)10
kn+1−10kn e10kn ≤

(1/5)10
kn+1−10kn . Covering E with these intervals, we see that for all n ∈ N,

log Ne10kn+1 F(E)

− log(e10kn+1)
≤ log 210

kn+1

log 510kn+1−10kn
= 10 log 2

9 log 5
.

Therefore dimBE ≤ 10 log 2
9 log 5 , and similarly using F10kn+1 for n odd to cover F gives

dimBF ≤ 10 log 2
9 log 5 . Therefore

10 log 2

9 log 5
≥ max{dimBE, dimBF}. (5.15)

To bound dim�(E ∪ F) from below, we use the mass distribution principle. Define
the sequence (rn)n≥0 by

rn :=
{
e10kn+2 = (1/5)10

kn+1−10kn (1/3)10
kn+2−10kn+1

e10kn if n even,

f10kn+2 = (1/5)10
kn+1−10kn (1/3)10

kn+2−10kn+1
f10kn if n odd.

This sequence is strictly decreasing, because if n ≥ 0 is even then by (5.13),

rn+1 = f10kn+1+2 < f10kn+1 < �(e10kn+2) ≤ e10kn+2 = rn,

and similarly if n is odd then rn+1 < rn by (5.14). Let δ ∈ (0, r0). Define nδ ∈ N by
rnδ ≤ δ < rnδ−1.

There are two cases depending on the parity of nδ . If nδ is even, then let μδ be any

Borel probability measure on F which gives mass 2−10
knδ+1

to each of the 210
knδ+1
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intervals in F
10

knδ+1 . LetU be a Borel subset ofRwith�(δ) ≤ |U | ≤ δ. Define j ∈ N

(depending on |U |) by f j ≤ |U | < f j−1. By (5.13),

f
10

knδ+1 ≤ �(e10knδ +2) = �(rnδ ) ≤ �(δ) ≤ |U | < f j−1,

so j − 1 < 10knδ+1 . Also, f j ≤ |U | ≤ δ < rnδ−1 = f
10

knδ−1+2 , so in fact 10knδ−1+2 <

j ≤ 10knδ+1 . Therefore by the construction of F ,

f j ≥
(
1

5

)10
knδ−1+1 (

1

3

) j−10
knδ−1+1

>

(
1

5

) j/2 (
1

3

) j/2

.

SinceU has diameter less than f j−1, it can intersect at most two of the 2 j−1 intervals

in Fj−1. Therefore U can intersect at most 2(210
knδ+1− j ) of the 210

knδ+1
intervals in

F
10

knδ+1 . Therefore

μδ(U ) ≤ 2(210
knδ+1− j )(2−10

knδ+1
) = 2

((
1

3

) j/2 (
1

5

) j/2
) 2 log 2

log 15

≤ 2 f
2 log 2
log 15
j ≤ 2|U | 2 log 2log 15 .

If, on the other hand, nδ is odd, then let μδ be a Borel probability measure on E

which gives mass 2−10
knδ+1

to each of the 210
knδ+1

intervals in E
10

knδ+1 . As above, if

�(δ) ≤ |U | ≤ δ thenμδ(U ) ≤ 2|U | 2 log 2log 15 . Therefore by themass distribution principle
Lemma 5.1 (ii) and Proposition 3.1 and (5.15),

dim�(E ∪ F) ≥ 2 log 2

log 15
>

10 log 2

9 log 5
≥ max{dimBE, dimBF} ≥ max{dim�E, dim�F},

as required. ��

It follows from Propositions 5.5 and 3.1 and the fact that the Hausdorff dimension of
every countable set is 0 that for any two admissible functions �1 and �2, the three

notions of dimension dimH, dim�1 and dim
�2 are pairwise-distinct, even just working

in R.
Letting E, F be as in Proposition 5.5, applying the mass distribution principle as

in the proof of that result at the scales δ:= f10kn+2 shows that

dimH F ≤ dim�F ≤ 10 log 2

9 log 5
<

2 log 2

log 15
≤ dim

�
F ≤ dimBF,
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and similarly for E . Suppose F is the set corresponding to a� satisfying log δ
log�(δ)

→ 0

as δ → 0+ (for example �(δ) = e−δ−0.5
). Then by Proposition 3.15,

dimH F <
2 log 2

log 15
≤ dim

�
F ≤ dimθ F

for all θ ∈ (0, 1], so dimθ F is discontinuous at θ = 0. Let �1 be an admissible
function such that �1( f10kn+1) ≤ �1( f10kn+2+1) for all sufficiently large n. Then for
all sufficiently small δ, there exists an odd integer n(δ) such that�(δ) ≤ f10kn(δ)+1 ≤ δ,

and the natural cover of F10kn(δ)+1 with 210
kn(δ)+1

intervals gives dim
�1F ≤ 10 log 2

9 log 5 <

2 log 2
log 15 . This gives an indication of how one might construct the admissible functions
from Theorem 6.1 below which recover the interpolation for this particular set.

6 Recovering the interpolation

It is clear from [13, Proposition 2.4], Corollary 3.14 and the proof of Proposition 5.5
that there are many compact sets with intermediate dimensions discontinuous at θ =
0. For these sets the intermediate dimensions do not fully interpolate between the
Hausdorff and box dimensions. The main result of this section, Theorem 6.1, shows
that for every compact set there is indeed a family of functions � for which the
�-intermediate dimensions interpolate all the way between the Hausdorff and box
dimensions of the set. Moreover, there exists a family of � which interpolates for
both the upper and lower versions of the dimensions, and forms a chain in the partial
order introduced in Sect. 3.1. In forthcoming work, Banaji, Rutar and Troscheit prove
that the Assouad-like dimensions studied in [23] fully interpolate between the quasi-
Assouad and Assouad dimensions of all non-empty, bounded subsets of a doubling
space.

Theorem 6.1 For every non-empty, compact subset F, there exists a family

{�s}s∈[dimH F,dimBF]

of admissible functions such that if s, t are such that dimH F ≤ s ≤ t ≤ dimBF then
the following three conditions hold:

(i) dim
�s F = s;

(ii) dim�s F = min{s, dimBF};
(iii) �s � �t .

The key definition in the proof is (6.1). The assumption of compactness allows us to
take a finite subcover in Definition 2.2 of Hausdorff dimension, which ensures that
�s(δ) is well-defined and positive.

Proof Define�dimBF
(δ):= δ

− log δ
, so (i) and (ii) are satisfied for s = dimBF by Propo-

sition 3.4. We henceforth assume that dimH F < dimBF , or else there is nothing more
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to prove. The same symbols may take different values in the proofs of parts (i), (ii),
(iii).

(i) Let � ∈ (0, 1/5) be such that 0 < δ
− log δ

< cδ/3 for all δ ∈ (0,�). For

now, let s ∈ (dimH F, dimBF). For each δ ∈ (0,�) there exists a countable cover
{Vi }i≥1 of F such that |Vi | ≤ δ for all i , and

∑
i |Vi |s ≤ 2−1−2 s . We may assume that

each Vi is non-empty and fix pi ∈ Vi . Each Vi ⊆ B(pi ,max{2|Vi |, 2−1−2i/s)}), so
{B(pi ,max{2|Vi |, 2−1−2i/s})}i≥1 is an open cover for F . Since F is compact, there
is a finite subset

{Ui } ⊆ {B(pi ,max{2|Vi |, 2−1−2i/s})}

which also covers F . Now,

∑

i

|Ui |s ≤
∑

i≥1

|B(pi ,max{2|Vi |, 2−1−2i/s})|s ≤
∞∑

i=1

(2−2i/s)s +
∑

i≥1

(4|Vi |)s

= 1/3 + 4s
∑

i

|Vi |s

< 1.

Since {Ui } is a finite collection of sets, and each has positive diameter as X is uniformly
perfect, it follows that mini |Ui | > 0. Therefore�s : (0,�) → R is positive and well-
defined by

�s(δ):= sup{ x ∈ [0, δ/(− log δ)] : there exists a finite cover {Ui } of F
such that x ≤ |Ui | ≤ δ for all i and

∑

i

|Ui |s ≤ 1 }.

(6.1)

By construction, �s(δ)/δ ≤
(

δ
− log δ

)
/δ → 0 as δ → 0+, and �s is increasing in δ,

so �s is admissible.
Wenowshow that dim

�s F ≤ s.Givenη, ε > 0, define δ0:=min{ε1/ηcs/η4−s/η,�}.
Then for all δ ∈ (0, δ0) there exists a finite cover {Wi } of F satisfying �s(δ)/2 ≤
|Wi | ≤ δ for all i , and

∑
i |Wi |s ≤ 1. If |Wi | ≥ �s(δ) then leave Wi in the

cover unchanged. If |Wi | < �s(δ) then pick any wi ∈ Wi and qi ∈ X such that
�s(δ) ≤ d(qi , wi ) ≤ �s(δ)/c. Replace Wi in the cover by Wi ∪ {qi }. Call the new
cover {Yi }. By the triangle inequality,

�s(δ) ≤ d(qi , wi ) ≤ |Wi ∪ {qi }| < �s(δ) + �s(δ)/c ≤ 2δ/(−c log δ) ≤ δ.

Also

|Wi ∪ {qi }| ≤ 2�s(δ)/c ≤ (4/c)�s(δ)/2 ≤ 4|Wi |/c.
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Therefore

∑

i

|Yi |s+η ≤
∑

i

|Yi |sδη ≤ δ
η
0 (4/c)

s
∑

i

|Wi |s ≤ ε.

It follows that dim
�s F ≤ s + η, so in fact dim

�s F ≤ s.
To prove the reverse inequality, assume for a contradiction that dim

�s F < s. Then
there exists δ1 ∈ (0,�) such that for all δ2 ∈ (0, δ1) there exists a cover {Zi } of F
such that �s(δ2) ≤ |Zi | ≤ δ2 for all i , and

∑
i |Zi |s ≤ 3−scs . By Proposition 3.4

there exists δ2 ∈ (0, δ1) such that �s(δ2) < δ2/(− log δ2), and let {Zi } be the cover
corresponding to this δ2, as above. Choose any zi ∈ Zi and let xi ∈ X be such that
2|Zi | ≤ d(zi , xi ) ≤ 2|Zi |/c. Then by the triangle inequality,

2�s(δ2) ≤ 2|Zi | ≤ d(zi , xi ) ≤ |Zi ∪ {xi }| ≤ |Zi | + 2|Zi |/c
≤ (3/c)δ2/(− log δ2) < δ2.

Moreover, {Zi ∪ {xi }}i covers F , and
∑

i

|Zi ∪ {xi }|s ≤
∑

i

(3|Zi |/c)s ≤ 3sc−s
∑

i

|Zi |s ≤ 1.

Therefore

�s(δ2) ≥ min{2�s(δ2), δ2/(− log δ2)} > �s(δ2),

a contradiction. Hence dim
�s F ≥ s for all s ∈ (dimH F, dimBF), so dim

�s F = s.
Now consider the case s = dimH F . Let N ∈ N satisfy

N > max

{
1

dimBF − dimH F
,
1

�

}
.

For δ ∈ (0, 1/N ], let n ≥ N be such that δ ∈ ( 1
n+1 ,

1
n ], and define

�s(δ):=min{�s+1/N (δ), . . . , �s+1/n(δ)}.

Then �s(δ) ≤ �s+1/N (δ) ≤ δ/(− log δ) for all δ ∈ (0, 1/N ], so �s(δ)/δ → 0 as
δ → 0+. For all n ≥ N and δ ∈ (0,�) we have �s+1/n(δ) > 0, so if δ > 0 then
�s(δ) > 0. Moreover, if δ1 ≤ δ2, say δ1 ∈ ( 1

n+1 ,
1
n ] and δ2 ∈ ( 1

m+1 ,
1
m ] where

n ≥ m ≥ N , then

�s(δ1) ≤ min{�s+1/N (δ1), . . . , �s+1/m(δ1)} ≤ �s(δ2)

by the monotonicity of each �s+1/i . Thus �s is monotonic, so admissible. For all
n ≥ N and δ ∈ (0, 1/n), clearly �s(δ) ≤ �s+1/n(δ). Therefore by Proposition 3.1

123



Generalised intermediate dimensions 503

and Corollary 3.8 (i),

s = dimH F ≤ dim�s F ≤ dim
�s F ≤ dim

�s+1/n F = s + 1

n
.

Letting n → ∞ gives dim�s F = dim
�s F = s = dimH F , as required.

(iii) By construction, (iii) holds since if dimH F ≤ s ≤ t ≤ dimBF then �s(δ) ≤
�t (δ) for all sufficiently small δ.

(ii) It suffices to prove dim�s F ≥ min{s, dimBF}, since the opposite inequality
follows fromProposition 3.1 and (i). If s = dimH F or s = dimBF thenwe are done by
Propositions 3.1 and 3.4. Suppose s ∈ (dimH F, dimBF]∩(dimH F, dimBF). Assume
for a contradiction that dim�s F < s. Let t, t ′ be such that dim�s F < t < t ′ < s.
Since t ′ < dimBF , there exists � ∈ (0,min{1, |X |}) such that Nδ(F) ≥ δ−t ′ for

all δ ∈ (0,�). Reducing � if necessary, we may assume further that δt−t ′
(− log δ)t

>

(1 + 2/c)−s and − log δ ≥ 2(1 + 2/c) for all δ ∈ (0,�). Since t > dim�s F , for all
δ0 > 0 there exists δ ∈ (0,min{�, δ0}) and a cover {Ui } such that �s(δ) ≤ |Ui | ≤ δ

for all i , and

(1 + 2/c)−s ≥
∑

i

|Ui |t ≥
∑

i

|Ui |s . (6.2)

But

(1 + 2/c)−s <
δt−t ′

(− log δ)t
= δ−t ′

(
δ

− log δ

)t

,

so there exists i such that δ/(− log δ) > |Ui | ≥ �s(δ). If i is such that

|Ui | ≥ min

{
2�s(δ),

δ

− log δ

}

then leave Ui in the cover unchanged. If, however, i is such that |Ui | <

min{2�s(δ), δ/(− log δ)} then fix pi ∈ Ui . Fix qi ∈ X such that 2�s(δ) ≤ d(p, q) ≤
2�s(δ)/c, replace Ui in the cover by Ui ∪ {qi }, and call the new cover {Vi }i . In the
case |Ui | < min{2�s(δ), δ/(− log δ)},

2�s(δ) ≤ d(pi , qi ) ≤ |Ui ∪ {qi }| ≤ |Ui | + 2�s(δ)/c < 2(1 + 2/c)�s(δ)

≤ 2(1 + 2/c)δ

− log δ
≤ δ.

Then min{δ/(− log δ), 2�s(δ)} ≤ |Vi | ≤ δ for each i , and

∑

i

|Vi |s ≤
∑

i

((1 + 2/c)|Ui |)s = (1 + 2/c)s
∑

i

|Ui |s ≤ 1,
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by (6.2). This means that �s(δ) ≥ min{2�s(δ), δ/(− log δ)} > �s(δ), a contradic-
tion. Hence dim�s F ≥ s for all s ∈ (dimH F, dimBF].

Now suppose s ∈ (dimBF, dimBF). By (iii), �dimBF � �s , so by what we have
just proved,min{s, dimBF} = dimBF ≤ dim�dimBF F ≤ dim�s F . Together, the cases
show that for all s ∈ [dimH F, dimBF]we have dim�s F ≥ min{s, dimBF} and hence
dim�s F = min{s, dimBF}, as required. ��

In the definition (6.1) of �s , any positive constant would work in place of the
constant 1, so there are many different �s that will work. The family of dimensions

dim
�s and dim�s may not vary continuously for all sets, as shown by the following

proposition.

Proposition 6.2 There exist non-empty, compact subsets F,G of R such that:

(i) if (�s)s∈(dimH F,dimBF) is any family of admissible functions such that dim
�s F = s

for all s ∈ (dimH F, dimBF) then the function s 
→ dim
�s G is not continuous on

(dimH F, dimBF), and
(ii) if (�s)s∈(dimH F,dimBF) is such that dim�s F = s for all s ∈ (dimH F, dimBF)

then the function s 
→ dim�s G is not continuous on (dimH F, dimBF).

Proof Let G:={0} ∪ {1/n : n ∈ N}, so dimθ G = θ
1+θ

for all θ ∈ [0, 1] by [13,
Proposition 3.1]. Let F = E∪G for any compact countable set E ⊂ Rwith dimBE =
dimA E = 1/4, so as in [13, Example 3] dimH F = 0 and dimθ F = max

{
θ

1+θ
, 1/4

}

for all θ ∈ (0, 1]. We now prove (i) using Proposition 3.15; the proof of (ii) is similar.

Suppose (�s)s∈(dimH F,dimBF) satisfies dim
�s F = s for all s ∈ (dimH F, dimBF).

Then if s > 1/4 then dim
�s F = s > 1/4 = dim1/3 F , so by Proposition 3.15,

lim sup
δ→0+

log�s(δ)

log δ
> 1/3

and dim
�s G ≥ dim1/3 G = 1/4. For all s < 1/4, log�s (δ)

log δ
→ 0 as δ → 0+, so since

dimθ G = θ
1+θ

→ 0 as θ → 0, it follows that dim�s G = 0. Therefore the function

s 
→ dim
�s G is not continuous at s = 1/4. ��
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