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Abstract
We study the generic behavior of the method of successive approximations for set-
valued mappings in separable Banach spaces. We consider the case of nonexpansive
mappings with convex and compact point images and show that for the typical such
mapping and typical points of its domain the sequence of successive approximations
is unique and converges to a fixed point of the mapping.

Keywords Banach space · Generic property · Set-valued nonexpansive mapping ·
Successive approximations
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1 Introduction

Brouwer’s fixed point theorem implies that every continuous self-mapping of a
bounded, closed and convex subset of a Euclidean space has a fixed point. Unfor-
tunately, this is no longer true in infinite dimensions. There are even nonexpansive
self-mappings of bounded closed and convex subsets of a Banach space which do not
have a fixed point. This motivates the question of whether this is at least true for typical
nonexpansive mappings. In [7] F. S. de Blasi and J. Myjak gave a positive answer to
this question. More precisely, given a Banach space X and a bounded, closed and con-
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vex subset C ⊂ X , they show that the set of nonexpansive self-mappings of C having
a unique fixed point is the complement of a meagre set in the space of all nonexpansive
self-mappings equipped with the metric of uniform convergence. In addition, they also
showed that this fixed point of the nonexpansive mapping f can be reached by starting
with an arbitrary point x0 and then iteratively setting xk+1 = f (xk) for k = 1, 2, . . ..

This motivates the question of whether the typical nonexpansive mapping actually
has Lipschitz constant smaller than one. In the case of Hilbert spaces, F. S. de Blasi
and J. Myjak already answered this question negatively in [7] by showing that to
the contrary the typical nonexpansive mapping has the maximal possible Lipschitz
constant one. This result was later generalised to Banach spaces in [2] and more
general settings in [3].

In [18], S. Reich and A. Zaslavski gave an explanation of de Blasi and Myjak’s
result by showing that the typical nonexpansive mapping satisfies the assumptions of
Rakotch’s fixed point theorem [17].

The results on generic existence of fixed points of nonexpansive mappings have
been generalised to set-valued mappings in [8] and [15]. Recall that a fixed point of a
set-valued mapping

F : C → 2C \ {∅}

is an element x ∈ C satisfying x ∈ F(x). The proofs of these results use iterations
of a mapping defined on suitable hyperspaces, i.e. spaces of sets equipped with the
Hausdorff distance. More precisely, let B(C) be a hyperspace of certain nonempty
and closed subsets of C , and let F : C → B(C) be a nonexpansive mapping. Then the
mapping

F̃ : B(C) → B(C), A �→
⋃

x∈A

F(x),

is considered. In some sense this means that the problem is transferred to a question
on a self-mapping defined on a metric space of sets.

In [16] the problem is approached from a different angle. In the case of rather
simple set-valued mappings which are defined by pairs of nonexpansive mappings the
following iterative procedure is considered:

x0 ∈ C, xk+1 ∈ argmin{‖y − xk‖: y ∈ F(xk)}, k ∈ N.

Under the assumption that C is a bounded, closed and convex subset of a Hilbert
space, G. Pianigiani showed that, given a point x0 the set of nonexpansive mappings
for which the above sequence is uniquely defined and converges to a fixed point is the
complement of a meagre set. In [4], using different methods, these results have been
generalised to the setting of Banach spaces.

Moregenerally, in [14] compact-valuednonexpansivemappings onbounded, closed
and convex subsets of Banach spaces are considered. The main results of this article
establish that the typical compact-valuednonexpansivemappinghas a unique sequence
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of successive approximations for typical initial points in its domain. Moreover this
sequence converges to a fixed point of this mapping.

The current article is considered with the same question but for mappings whose
point-images are compact and convex. A crucial step in the proof in [14] is to perturb a
given nonexpansive mapping F by adding an additional point to F(x) for some x . This
point z is required to have positive distance to F(x) rendering F(x)∪{z} non-convex.
For this reason a different approach is needed for the case of compact and convex sets.

In order to see that this is not a particular case of the situation considered in [14]
we show in Proposition 2.1 that the set of convex compact sets is a porous and hence
small subset of the hyperspace of compact sets.

One of the main methods of the current construction is based on V. Klee’s proof
that the typical convex body is smooth and rotund, see [11]. A strengthening of this
result for convex bodies in Euclidean spaces was later obtained by T. Zamfirescu in
[22]. A survey on typical properties of convex bodies can be found in [10].

2 Preliminaries and notation

In this section we clarify most of the main notions and notation used throughout
this paper. Some definitions, essential to other sections, are introduced where they
are needed. We consider mostly Banach spaces and hyperspaces constructed of their
subsets. Given a Banach space X , we denote the open ball with centre a ∈ X and
radius r > 0 by BX (a, r), and the corresponding closed ball by BX (a, r). If there is
no confusion, we omit the subscript and write e.g. B(a, r). Given x ∈ X and A ⊂ X
we write d(x, A) = inf y∈A ‖x − y‖ and diam A = supx,y∈A ‖x − y‖ for the distance
of the point x from the set A and the diameter of the set A, respectively.

Next up we construct a suitable hyperspace for our purposes. Let C ⊂ X be a
nonempty closed and bounded set. Consider the set CK(C) of all nonempty convex
compact subsets of C . It is well-known that (CK(C), h) is a complete metric space,
where h stands for the Hausdorff distance defined in the following way:

h(A, B) := max sup
x∈A

inf
y∈B ‖x − y‖ sup

y∈B
inf
x∈A

‖x − y‖ for all A, B ∈ CK(C).

Note that there is an analogue to the triangle inequality that combines the distance to
a point and the Hausdorff distance, i.e.:

d(x, A) ≤ d(x, B) + h(B, A) for all A, B ∈ CK(C), x ∈ X .

Note that in an analogous way one can define the hyperspace K(C) of nonempty
compact subsets ofC with respect to Hausdorff metric. In this paper we are concerned
with typical properties, i.e. properties for which the set of elements enjoying it is the
complement of a small set. The size of a set can be regarded in many ways, e.g. in
the sense of Baire category, meagre sets, i.e. countable unions of nowhere dense sets,
are considered to be small. We also use the notion of porous sets that are in the same
scale even smaller. More precisely, for an arbitrary metric space M we say that a
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subset A ⊂ M is porous at point x ∈ A if there are constants α > 0 and ε0 > 0 that
satisfy the following condition: for all ε ∈ (0, ε0) there exists y ∈ B(x, ε) such that
B(y, αε)∩ A = ∅. We say the set A is porous provided it is porous at all of its points.
A is called σ -porous if it is a countable union of porous sets.

Recall that in [14] similar results to the main results of the current paper were
obtained. There the author handles the case of compact-valued nonexpansive map-
pings, whereas in this paper we regard nonexpansive mappings with values that are
compact and convex. Despite the seeming overlapping, the small size of the set of
convex compact subsets implies that the formally narrower approach is meaningful
on its own.

Proposition 2.1 Let X be a Banach space and C ⊂ X a bounded closed and convex
subset. The set of convex compact subsets of C is a porous subset of the hyperspace
K(C) of compact subsets of C.

Proof Fix an arbitrary convex and compact K ∈ K(C) . If K �= C we set

α = 1

4
and ε0 := sup{d(x, K ) : x ∈ C}.

Observe that ε0 is positive. Given ε ∈ (0, ε0) we now pick z ∈ C with d(z, K ) = 3
4ε

and set K ′ = K ∪ {z} which is a compact set with h(K , K ′) < ε. Now observe that
no compact set L with h(K ′, L) < αε can be convex. In the case of K = C , which
of course can only happen if C is compact itself, we only change the value of ε0 to
ε0 = diamC/3 . Then for ε ∈ (0, ε0) we set K ′ = (K \ B(z, ε)) ∪ {z} for some
arbitrary z ∈ C and confirm that again no compact set L with h(K ′, L) < αε can be
convex. Since K was chosen arbitrarily, the result follows. �

As mentioned, the core results of this paper are for certain set-valued nonexpansive
mappings. We call a mapping F : C → CK(C) nonexpansive if for all x, y ∈ C

h(F(x), F(y)) ≤ ‖x − y‖.

We denote the set of all such nonexpansive mappings by M. It is well-known that
when equipped with the metric of uniform convergence, i.e. for all F,G ∈ M

d∞(F,G) := sup
x∈C

h(F(x),G(x)),

(M, d∞) is a complete metric space. Similarly to the vector-valued case, we may
regard Lipschitz mappings among set-valued mappings. Note that if F ∈ M, i.e. F is
a nonexpansive mapping, then its Lipschitz constant satisfies Lip F ≤ 1, in the case
of Lip F < 1 we say that F ∈ M is a strict contraction. In Sect. 3 (see Proposition
3.8) we see that all such strict contractions form a dense subset of M.

The following fact regarding Lipschitz mappings on geodesic spaces is well known,
nonetheless we give it with proof for the convenience of the reader.
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Lemma 2.2 Let (Y , ρ) be a geodesic space and C ⊂ Y a convex subset. For a con-
tinuous function f : Y → Y to be Lipschitz it is necessary and sufficient that the
restrictions f |C and f |Y\C are both Lipschitz. Moreover, the Lipschitz constant of f
has the following bound

Lip f ≤ max{Lip( f |C ),Lip( f |Y\C )}.

Proof Necessity is obvious. To show the sufficiency and the claimed bound to the
Lipschitz constant it is enough to show the result for fixed x ∈ C and y ∈ Y\C , since
the other cases are trivial. Now, we may fix a metric segment [x, y] and due to the
fact that C is convex, there exists a unique point z in the intersection of [x, y] with the
closures of C and Y\C , therefore ρ(x, y) = ρ(x, z) + ρ(z, y) and furthermore

ρ( f (x), f (y)) ≤ ρ( f (x), f (z)) + ρ( f (z), f (y))

≤ Lip( f |C )ρ(x, z) + Lip( f |Y\C )ρ(z, y)

≤ max{Lip( f |C ), Lip( f |Y\C )}ρ(x, y),

which completes the proof. �

3 Hyperspaces of convex sets

The main aim of this section is to establish the following theorem on the hyperspace
of bounded closed and convex subset of a given closed and convex subset of a Banach
space.

Theorem 3.1 Let X be a Banach space and let D ⊂ X be a closed convex set. The
hyperspace CB(D) of bounded closed and convex subsets of D equipped with the
Hausdorff distance is a complete hyperbolic metric space.

The following immediate consequence of this theorem states the same for the hyper-
space CK(D).

Corollary 3.2 Let X be a Banach space and let D ⊂ X be a closed convex set. The
hyperspace CK(D) of convex compact subsets of D equipped with the Hausdorff
distance is a complete hyperbolic metric space.

We start by introducing a few notions regarding geodesic metric spaces. We say that
a metric space (Y , ρ) is geodesic if for every x, y ∈ Y there exists an isometric
embedding c : [0, ρ(x, y)] → Y such that c(0) = x and c(ρ(x, y)) = y. The image
of such embedding is called a metric segment in Y with endpoints x and y. Metric
segments between two points need not be unique. If there is a unique metric segment
with endpoints x and y, then we denote it by [x, y].

For example in a closed convex subset C�1 ⊂ �1 that has at least three non-colinear
points, it is easy to imagine different metric segments between a pair of points. How-
ever, thanks to the underlying vector space structure, we may select a family of metric
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segments by choosing for each pair x, y ∈ C�1 as the unique segment the metric
segment of the form

[x, y] := {λx + (1 − λ)y : λ ∈ [0, 1]}.

In the following we assume that we have a geodesic metric space together with a
family S of metric segments containing a unique one for each pair of points. Given a
unique metric segment [x, y] in (Y , ρ) and λ ∈ [0, 1] we denote by (1 − λ)x ⊕ λy
the unique point z ∈ [x, y] which satisfies both ρ(z, x) = λρ(x, y) and ρ(z, y) =
(1 − λ)ρ(x, y).

Definition 3.3 Let (Y , ρ) be a metric space and S a family of metric segments in Y .
We call the triple (Y , ρ,S) hyperbolic if the following conditions are satisfied:

(i) For each pair x, y ∈ Y , there exists a unique metric segment [x, y] ∈ S joining
x and y.

(ii) For all x, y, z, w ∈ Y and all t ∈ [0, 1],

ρ((1 − t)x ⊕ t y, (1 − t)w ⊕ t z) ≤ (1 − t)ρ(x, w) + tρ(y, z).

(iii) The collection S is closed with respect to subsegments. More precisely, for all
x, y ∈ X and u, v ∈ [x, y] we have [u, v] ⊂ [x, y].

In the literature there is a number of different definitions of hyperbolic spaces. In
this paper we use the same approach as the authors of [3] (for more information on
different notions of hyperbolicity see e.g. Remark 2.13 in [13]).

We can almost start gathering the tools to prove the main result of this section, but
firstly, we would like to point out that Example 4.7 in [20] and also in Remark 5.2 in
[3] show that in the statement of Theorem 3.1 the assumption that the sets are convex is
necessary. The first example mentioned above shows that the hyperspace of bounded
and closed subsets even in a Banach space cannot be hyperbolic. For the convenience
of the reader we repeat the second example here again.

Example 3.4 Consider the metric space D = [−1, 1]2 with ‖ · ‖ the Euclidean norm.
Set A = {(−1,−1), (−1, 1)} and B = {(1,−1), (1, 1)}. Then h(A, B) = 2 and

1

2
A + 1

2
B = {(0,−1), (0, 0), (0, 1)}.

Therefore

h

(
1

2
A + 1

2
B, A

)
= √

2 �= 1

2
h(A, B)

which shows that taking convex combinations of sets does not result in geodesics in
the hyperspace of compact subsets of D.
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We consider a Banach space X and bounded, closed and convex sets A, B ⊂ X . Note
that it is enough to consider this case since the following constructions preserve being
subset of a given closed and convex subset. Given λ ∈ [0, 1] we set

λA + (1 − λ)B := {λx + (1 − λ)y : x ∈ A, y ∈ B}

and observe that this set is obviously bounded, convex and closed. Also note that if
X is reflexive or one of the sets is compact, we do not need to take the closure in the
definition of the above set. Next we present three lemmas that basically build the proof
for Theorem 3.1, the latter proof can be found right after these lemmas. Although some
of the following lemmas are well-known we include their proofs for the convenience
of the reader.

In the proofs of the following lemmas we use that the Hausdorff distance between
two sets is the same as the Hausdorff distance between their closures.

Lemma 3.5 The set λA + (1 − λ)B satisfies

h(A, λA + (1 − λ)B) = (1 − λ)h(A, B) and h(B, λA + (1 − λ)B) = λh(A, B)

for every λ ∈ [0, 1].
Proof We prove the first equality, the second can be shown similarly. For every x ∈ A
we have

d(x, λA + (1 − λ)B) ≤ ‖x − (λx + (1 − λ)y)‖ = (1 − λ)‖x − y‖

for all y ∈ B and hence d(x, λA + (1 − λ)B) ≤ (1 − λ)d(x, A) ≤ (1 − λ)h(A, B).
On the other hand, for λx + (1 − λ)y ∈ λA + (1 − λ)B we have

d(λx + (1 − λ)y, A) ≤ λd(x, A) + (1 − λ)d(y, A) = (1 − λ)d(y, A)

≤ (1 − λ)h(A, B).

Summing up, this shows that

h(A, λA + (1 − λ)B) ≤ (1 − λ)h(A, B).

The converse inequality is obtained by triangle inequality. Indeed,

h(A, λA + (1 − λ)B) ≥ h(A, B) − h(B, λA + (1 − λ)B)) ≥ (1 − λ)h(A, B).

�
Lemma 3.6 For λ,μ ∈ [0, 1] we have

λA + (1 − λ)(μA + (1 − μ)B) = (λ + (1 − λ)μ)A + (1 − λ)(1 − μ)B
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and

h(λA + (1 − λ)B, μA + (1 − μ)B) = |λ − μ|h(A, B).

Proof First note that for x ∈ A and y ∈ B we have

(λ + (1 − λ)μ)x + (1 − λ)(1 − μ)y = λx + (1 − λ)(μx + (1 − μ)y)

∈ λA + (1 − λ)(μA + (1 − μ)B)

and hence (λ + (1 − λ)μ)A + (1 − λ)(1 − μ)B ⊂ λA + (1 − λ)(μA + (1 − μ)B).
In order to see the converse inclusion let x1, x2 ∈ A and y ∈ B. We have

λx1 + (1 − λ)(μx2 + (1 − μ)y)

= (λ + (1 − λ)μ)

(
λ

λ + (1 − λ)μ
x1 + (1 − λ)μ

λ + (1 − λ)μ
x2

)
+ (1 − λ)(1 − μ)y

∈ (λ + (1 − λ)μ)A + (1 − λ)(1 − μ)B

since A is convex.
For the proof of the second equality, we may assume without loss of generality that

λ ≥ μ and observe that

λA + (1 − λ)B = s A + (1 − s)(μA + (1 − μ)B) for s = λ − μ

1 − μ
.

and hence

h(λA + (1 − λ)B, μA + (1 − μ)B)

= h(s A + (1 − s)(μA + (1 − μ)B), μA + (1 − μ)B)

= sh(A, μA + (1 − μ)B) = λ − μ

1 − μ
(1 − μ)h(A, B)

= |λ − μ|h(A, B)

by Lemma 3.5. �
Lemma 3.7 Givenbounded, closedand convex sets A, B,C andλ ∈ [0, 1] the inequal-
ity

h(λA + (1 − λ)B, λA + (1 − λ)C) ≤ (1 − λ)h(B,C)

holds.

Proof For λx + (1 − λ)y ∈ λA + (1 − λ)B we have

d(λx + (1 − λ)y, λA + (1 − λ)C) ≤ ‖λx + (1 − λ)y − (λx + (1 − λ)z)‖
≤ (1 − λ)‖y − z‖
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for all z ∈ C . Therefore, d(λx+(1−λ)y, λA+(1−λ)C) ≤ (1−λ)d(y,C). Similarly,
we may conclude that d(λx+(1−λ)z, λA+(1−λ)B) ≤ (1−λ)d(z, B). Combining
these inequalities, we obtain

h(λA + (1 − λ)B, λA + (1 − λ)C) ≤ (1 − λ)h(B,C)

as claimed. �
Proof of Theorem 3.1 We consider the hyperspace CB(D) of bounded, closed and con-
vex subsets of D with the Hausdorff distance. We pick for each pair A, B ⊂ D the
unique metric segment of the form

[A, B] = {λA + (1 − λ)B : λ ∈ [0, 1]}

and consider S to be the collection of such metric segments. The fact that each [A, B]
is a metric segment, follows from Lemmas 3.5 and 3.6. Due to the construction, these
metric segments also contain all of their subsegments. To finish the proof, note that
the condition (i i) of Definition 3.3 follows from Lemma 3.7. �

Another useful consequence that can be derived from Lemma 3.7 is that in our
setting set-valued strict contractions are dense in the set of set-valued nonexpansive
mappings.

Proposition 3.8 The set of strict contractions of the form F : C → CK(C) is dense in
the set of all nonexpansive mappings G : C → CK(C).

Proof Fix an arbitrary nonexpansive mapping G : C → CK(C), δ > 0, and γ > 0
such that γ diam(C) < δ. Choose some bounded closed and convex A ⊂ C and define
for G a mapping F : C → CK(C) by setting F(x) := (1 − γ )G(x) + γ A for every
x ∈ C . Note that by Lemma 3.7 F is a strict contraction and by Lemma 3.5 we get
for every x ∈ C that

h(G(x), F(x)) = h(G(x), (1 − γ )G(x) + γ A) = γ h(G(x), A) ≤ γ diamC < δ,

because for any A, B ⊂ C we have h(A, B) ≤ diam(C). This concludes the result. �
We end this section with the following result that later on allows us to perturb a

set-valued mapping without losing control over its Lipschitz constant.

Proposition 3.9 Let X be a Banach space, C ⊂ X a closed convex subset, A ⊂ C a
bounded, closed and convex set and F : C → CK(C) a nonexpansive mapping. For a
Lipschitz mapping λ : C → [0, 1] the inequality

h(λ(x)A + (1 − λ(x))F(x), λ(y)A + (1 − λ(y))F(y))

≤ (Lip F + h(A, F(y))Lip λ)‖x − y‖

is satisfied.
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Proof Using the triangle inequality together with Lemmas 3.6 and 3.7 we obtain

h(λ(x)A + (1 − λ(x))F(x), λ(y)A + (1 − λ(y))F(y))

≤ h(λ(x)A + (1 − λ(x))F(x), λ(x)A + (1 − λ(x))F(y))

+ h(λ(x)A + (1 − λ(x))F(y), λ(y)A + (1 − λ(y))F(y))

≤ (1 − λ(x))h(F(x), F(y)) + |λ(x) − λ(y)|h(A, F(y))

≤ (Lip F + h(A, F(y))Lip λ)‖x − y‖

which is the required inequality. �
Remark 3.10 We have stated Propositions 3.8 and 3.9 according to the needs of this
paper. Note that the proofs of these statements actually do not use compactness, there-
fore these results also hold for the more general case of the hyperspace CB(C) instead
of CK(C).

4 Continuity properties of metric projections

We are interested in convex sets with the property that each point has a unique pro-
jection onto this set. For this reason we use the following notion of rotundity which is
a slight modification of X∗-rotundity introduced by V. Klee in [11].

Given a Banach space X , a nonzero functional x∗ ∈ X∗ , and r ∈ R we say a
hyperplane H = {x ∈ X : 〈x∗, x〉 = r} is supporting C ⊂ X at a point z ∈ C if
〈x∗, z〉 = r and either supx∈C 〈x∗, x〉 ≤ r or infx∈C 〈x∗, x〉 ≥ r . Note that in Klee’s
work, it is demanded here also that the set C is not contained in H , this is where our
concept diverges a little from that of Klee’s. Hence, our definition of rotundity is more
restrictive since in contrast to Klee we formally have more supporting hyperplanes for
any point.

Definition 4.1 Let X be a Banach space and C ⊂ X be a convex set. We call C rotund
if for every z ∈ C and every hyperplane H supportingC in z we have that H∩C = {z}.
A point z ∈ C is called a support point if there is a hyperplane supporting C in z, and
a non-support point otherwise.

The following characterisation of support points will come in handy and shows that
points that reduce the distance to a point outside a convex set in a certain geometri-
cal sense behave like the topological boundary of this set. This characterisation is a
direct consequence of the characterisation of the (set-valued) metric projection via a
variational inequality. Since the following direct proof is rather short, we include it
nevertheless for the convenience of the reader.

Proposition 4.2 Let X be a Banach space and C ⊂ X a closed convex set. A point
z ∈ C is a support point if and only if there is a point x /∈ C with ‖x − z‖ = d(x,C).

Proof Assume that there is x ∈ X \ C with ‖x − z‖ = d(x,C). Then the open ball
B(x, ‖x − z‖) and C are disjoint convex sets which by the Hahn-Banach Theorem
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On generic convergence of successive approximations of mappings... 669

can be separated by a closed hyperplane which necessarily has to contain the point z.
This hyperplane is the required supporting hyperplane.

If on the other hand there is a functional x∗ ∈ X∗ and a ∈ R with 〈x∗, z〉 = a ≥
〈x∗, y〉 for all y ∈ C , we denote by H the hyperplane defined by x∗ and a and pick x̃
with 〈x∗, x̃〉 < a and a point z̃ with ‖x̃ − z̃‖ = d(x̃, H). Setting x = x̃ + z − z̃ we
observe that

‖x − z‖ = ‖x̃ − z̃‖ = d(x̃, H) = d(x, H).

Since C and x are on different sides of H , we conclude that ‖x − z‖ = d(x,C). �
The following proposition shows that rotundity is indeed the property we need to

additionally consider in order to guarantee the uniqueness of projections, since then
for whatever point we choose in the space, there is a unique element in that rotund set
that realises its distance to the same set.

Proposition 4.3 Let X be a Banach space and C ⊂ X be a rotund weakly compact
set. For every x ∈ X there is a unique z ∈ C with ‖x − z‖ = d(x,C), i.e. a unique
point minimising the distance to C.

Proof First note that since C is weakly compact, the set of points in C minimising the
distance to x is nonempty. Assume we have z1, z2 ∈ C with

‖x − z1‖ = d(x,C) = ‖x − z2‖.

Since the norm is a convex function we may conclude that also 1
2 (z1 + z2) minimises

the distance to x .We pick a supporting hyperplane H in 1
2 (z1+z2) defined by x∗ ∈ X∗

and a ∈ R, i.e. H = {x ∈ X : 〈x∗, x〉 = a}. We observe that

a ≤ 〈x∗, z1〉 = 2

(
〈x∗, 1

2
(z1 + z2)〉 − 1

2
〈x∗, z2〉

)
≤ a

which by rotundity implies that z1 = z2. �
Definition 4.4 Let X be a Banach space, C ⊂ X a rotund weakly compact set and
x ∈ X . The unique element of C minimising the distance to X is denoted by PCx .
The mapping

X → C, x �→ PCx

is called the metric projection onto C .

The following result regarding the continuity of the metric projection is a particular
case of Theorem 3 in [21] but since the proof is rather short, we include it for the
convenience of the reader.
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Proposition 4.5 Let X be a Banach space and C ⊂ X a rotund compact set. The
metric projection

PC : X → C, x �→ PCx

is continuous.

The following proof is basically the one given for Proposition 3.6 in [1] where the
result is stated for rotund compact sets with nonempty interior.

Proof Let x ∈ X and (xk)k∈N be a sequence converging to x . We denote zk := PCxk .
Since (zk)k∈N sits in the compact set C it has a convergent subsequence (zkm )m∈N, i.e.
there is z ∈ C such that zkm → z. Observe that

‖x − z‖ = lim
m→∞ ‖xkm − zkm‖ = lim

m→∞ d(xkm ,C) = d(x,C).

Consequently, since C is rotund, z = PCx by Proposition 4.3 and PCx is the only
accumulation point of the sequence (zk)k∈N. Since it is contained in a compact set, this
means that zk → PCx as claimed (see e.g. the Corollary to Theorem 1 in [6, p. 85]).

�
In order to obtain continuity alsowith respect to compact sets, we need the following

technical lemma.

Lemma 4.6 Let (Ck)k∈N be a sequence of compact sets converging to a compact set C
in Hausdorff distance. The set

C ∪
∞⋃

k=1

Ck

is compact.

Proof We show that this set is complete and totally bounded. Given ε > 0 we choose
N ∈ N with h(Cn,C) < ε/2 for all n ≥ N . Since C is compact, we may find finitely
many points z1, . . . , zK ∈ C with C ⊂ ⋃K

k=1 B(zk, ε/2). Now, we have

D := C ∪
∞⋃

n=N

Cn ⊂
K⋃

k=1

B(zk, ε)

since for every y ∈ Cn if n ≥ N we may pick a z ∈ C with ‖y − z‖ < ε/2 and a
zk with ‖z − zk‖ < ε/2. As a finite union of compact sets

⋃N−1
n=1 Cn is compact and

hence we can add finitely many balls of radius ε to extend the above to a finite cover
of the whole set. In order to show that the set is closed, let (xk)k∈N be a sequence
in D converging to some x ∈ X . If the sequence remains in finitely many of the Cn ,
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it is clear that also x has to belong to one of these. In the other case, we may pick a
subsequence (xkm )m∈N with km > km−1 and xkm ∈ Ckm . Since

d(xkm ,C) ≤ h(Ckm ,C) → 0

we conclude that d(x,C) = 0 and hence x ∈ C ⊂ D, as required. �

Proposition 4.7 Let (Ck)k∈N be a sequence of compact rotund sets converging to a
compact rotund set C. Then,

PCk xk → PCx

for every xk → x in X. More generally, if the Ck are convex compact sets (not
necessarily rotund) and zk ∈ Ck with ‖xk − zk‖ = d(xk,Ck), we have zk → PCx.

Proof We use the notation

zk := PCk xk

and note that the sequence (zk)k∈N is contained in C ∪ ⋃∞
k=1 Ck and the latter set is

compact by Lemma 4.6. Hence, there is a convergent subsequence zkm → z. Note that
by definition zkm ∈ Ckm and therefore

d(z,C) = lim
m→∞ d(zkm ,C) ≤ lim

m→∞ h(Ckm ,C) = 0

and consequently z ∈ C . Moreover,

‖x − z‖ = lim
m→∞ ‖xkm − zkm‖ = lim

m→∞ d(xkm ,Ckm ) ≤ lim
m→∞(d(xkm ,C) + h(C,Ckm ))

= d(x,C)

where the last inequality follows from d(x,C) ≤ d(x,Ckm ) + h(Ckm ,C) and the
corresponding inequality where the roles of C and Ckm are exchanged. Since C is
rotund, we may now use Proposition 4.3 to conclude that z = PCx . We have shown
that PCx is the only accumulation point of the sequence zk and hence the sequence, as
it is contained in a compact set, converges to PCx (see e.g. the Corollary to Theorem 1
in [6, p. 85]). �

Remark 4.8 Given a sequence (Ck)k∈N of convex compact sets converging to a rotund
compact set C and sequence xk → x , using the notation

P̃Ck xk = {z ∈ Ck : ‖xk − z‖ = d(xk,Ck)},

the proof of the above proposition, shows that h(P̃Ck xk, PCx) → 0 for k → ∞.
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The rest of the section is dedicated to showing that the typical compact convex
subset of a separable C in the hyperspace CK(C) is actually rotund. In order to do so,
we follow in general the ideas of V. Klee from [11], where he showed that a similar
result holds for the case of X∗-rotundity. For clarity, we state many of the results with
proofs, modifying them according to our purposes.

Proposition 4.9 (Part of 1.5 Theorem in [11]) Let X be a separable Banach space
and C ⊂ X a bounded closed and convex set with at least one non-support point. For
every ε ∈ (0, 1) there is a bounded rotund and convex set K with (1− ε)C ⊂ K ⊂ C.

The following proof is basically a more detailed version of the one of Lemma 1.4
in [11] and (1.2) of IV in [12]. Since this part is not proved in [11] we include it for
the convenience of the reader.

Proof Without loss of generality, we assume that 0 ∈ C and that it is a non-support
point. Since X is separable, by Theorem 1.6 in [11] there is an equivalent strictly
convex norm ‖ · ‖sc on X . We set

a := ε

2(1 − ε) sup{‖z‖sc : z ∈ C}

and define the mappings

g : [0,∞) → R, t �→ 1

1 + at
and T : X → X , x �→ g(‖x‖sc)x .

Note that g(t) ≤ 1 and

g(tr + (1 − t)s) = 1

1 + a(tr + (1 − t)s)
= 1

t(1 + ar) + (1 − t)(1 + as)

= g(r)g(s)

tg(s) + (1 − t)g(r)

for r , s ≥ 0 and t ∈ [0, 1]. We set K := T (C) and observe that T (C) ⊂ C since
T z is a convex combination of 0 and z. Note that for u ∈ C and λ ∈ [0, 1] we have
T (λu) = λg(λ‖u‖sc)u and hence [0, Tu] ⊂ K . Given u, v ∈ C we setα := g(‖u‖sc),
β := g(‖v‖sc) and let z ∈ [Tu, T v] = [αu, βv], in other words, there is s ∈ [0, 1]
with

z = sαu + (1 − s)βv.

We pick a t ∈ [0, 1], set

y = tu + (1 − t)v, γ = αβ

tβ + (1 − t)α
and note that z = γ y.
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Since

g(‖y‖sc) = g(‖tu + (1 − t)v‖sc) > g(t‖u‖sc + (1 − t)‖v‖sc)
= g(‖u‖sc)g(‖v‖sc)

tg(‖v‖sc) + (1 − t)g(‖u‖sc) = αβ

tβ + (1 − t)α
= γ

we have z = γ y ∈ [0, T y) ⊂ K . In particular K is a convex set. Note that 0 is
a non-support point of C and hence for every hyperplane H containing 0 there are
y1, y2 ∈ C which are on different sides of H . By construction, K contains a positive
multiple of both of these points and hence 0 is a non-support point of K . Since a point
which is strictly between two points in K can only be a support point if the endpoints
of this segment are support points and 0 is a non-support point, we conclude that z is
a non-support point.

In other words, we have shown that no non-trivial convex combination of points in
K can be a support point. Since for every supporting hyperplane H the set H ∩ K is
a convex set of support points of K it has to be a singleton, i.e. K is rotund.

Since for w ∈ C we have

g(‖w‖sc) = 1

1 + a‖w‖sc ≥ 1

1 + ε
2(1−ε)

= 1 − ε

1 − ε
2

we obtain

(1 − ε)w = 1 − ε

1 − ε
2

(
1 − ε

2

)
w ∈

[
0, T

((
1 − ε

2

)
w

)]
⊂ K

and hence (1 − ε)C ⊂ K ⊂ C as claimed. �
Proposition 4.10 Let X be a separable Banach space and C ⊂ X a bounded closed
and convex set. For every ε ∈ (0, 1) there is a rotund set K with h(K ,C) < ε. If C is
compact, so is K .

The following proof is based on a modification of an argument by V. Klee used in
the proof of Theorem 1.5 in [11, p. 56].

Proof We pick a dense sequence (wk)k∈N in the unit sphere of X and consider the
linear mapping

T : �2 → X , (ak)k∈N �→
∞∑

k=1

2−kakwk

whose restriction to the closed unit ball B�2 is weak-to-norm continuous. Hence, the
set ε

2T (B�2) is a compact subset of X . We set K̃ := C + ε
2T (B�2) and observe that as

the sum of two closed convex sets, one of them compact, it is a closed convex set and
since 0 ∈ T (B�2), it contains C . Note that if C is compact, so is K̃ . By construction
we also have h(K̃ ,C) < ε

2 . Since 0 is a non-support point of T (B�2), every point of
C is a non-support point of K̃ . Now the claim follows from Proposition 4.9. �
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Corollary 4.11 Let X be a separable Banach space and C ⊂ X a closed and convex
subset. The set of rotund compact sets is a dense subset of the hyperspace of compact
convex sets.

Remark 4.12 In [11], V. Klee shows that the set of convex compact sets which are
X∗-rotund and X∗-smooth is the complement of a meagre set. Let us mention a few
differences between these results.

1. Note that our result slightly differs from Klee’s result, since our definition of
rotundity is more restrictive than Klee’s since we do require the intersection of
every supporting hyperplane with the convex set to be a singleton and do not allow
the case where this intersection is the whole set. In the latter case uniqueness of
the metric projection is no longer guaranteed.

2. The difference between our definition of rotund sets and V. Klee’s definition of
X∗-rotund sets also explains why we need X to be separable and Klee does not:

a) Every compact set is separable and so is its closed linear span. For this reason if
X is non-separable, every compact setC is contained in a hyperplane and hence
also in one of its supporting hyperplanes. This implies that the only rotund
compact subsets of a non-separable Banach space are the singletons. For this
reason Corollary 4.11 fails in the non-separable space. Since, in the language
of this paper, X∗-rotund sets may be subsets of supporting hyperplanes, the
corresponding result by V. Klee also holds in this case.

b) Every non-separable Banach space X which is not rotund, contains a compact
subset K which is rotund in an infinite-dimensional subspace in which it is
contained but fails to have uniquemetric projections: Since X is not rotund, we
may pick x, y ∈ SX with [x, y] ⊂ SX . Using the Hahn-Banach Theorem we
obtain a functional x∗ ∈ BX∗ with 〈x∗, 1

2 (x + y)〉 = 1. A direct computation
shows that this functional satisfies 〈x∗, x〉 = 〈x∗, y〉 = 1. We now choose
a separable infinite dimensional subspace Y of ker x∗ which contains y − x .
Using the construction in the proof of Proposition 4.10, we obtain an infinite
dimensional compact convex set K̃ ⊂ Y containing [0, y−x]which, as a subset
of Y , is rotund. We finally set K := x + K̃ , H := {z ∈ X∗ : 〈x∗, z〉 = 1}
and observe that K ⊂ H . Since ‖z‖ ≥ 〈x∗, z〉 = 1 for all z ∈ H and hence in
particular for all z ∈ K ,weobserve that both x and y are points in K minimising
the distance to the origin. Hence, K fails to have unique projections.

Another direct consequence of Proposition 4.10 is the following useful variant
where we require a fixed element of C to be contained in the rotund set nearby.

Corollary 4.13 Let C be a convex compact set, ε > 0 and z ∈ C. There is a rotund
compact set K with z ∈ K and h(C, K ) < ε.

Lemma 4.14 Let X be a separable Banach space and C ⊂ X a closed and convex
set. For each n ∈ N the set Ln of compact convex subsets K ⊂ C with the property,
that there are points xn, yn ∈ K with ‖xn − yn‖ ≥ 1/n and a norm one functional
attaining its maximum both in xn and yn, is closed and nowhere dense.

Proof This can be shown by repeating the proof of Theorem 2.2 in [11]. �
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Remark 4.15 Note that given K /∈ Ln and x ∈ X the diameter of the set

{z ∈ K : ‖x − z‖ = d(x, K )}

is at most 1/n since otherwise we may pick y, z ∈ K with d(x, K ) = ‖x − y‖ =
‖x − z‖ and ‖y − z‖ > 1/n. By Proposition 4.2 there is a functional x∗ ∈ BX∗ with

〈x∗, 1
2
(y + z)〉 ≥ 〈x∗, w〉

for all w ∈ C . A direct computation shows that 〈x∗, y〉 = 〈x∗, z〉 = 〈x∗, (y + z)/2〉
which contradicts K /∈ Ln .

As a conclusion, combining Proposition 4.10 and Lemma 4.14, we have proved
the following theorem, which plays a key role in the proof of the main result as it
allows in our setting to always pass on to a rotund set which consequently ensures the
projections to be unique.

Theorem 4.16 Let X be a separable Banach space andC ⊂ X a closed and convex set.
The set of rotund compact subsets of C is a residual subset of the hyperspace CK(C). In
particular, the set of convex compact sets having a continuous (single-valued) metric
projection is a residual subset of the hyperspace CK(C).

In addition, we obtain as a direct consequence of Lemma 4.14 and Proposition 4.7
the following corollary that we frequently use in the last section.

Corollary 4.17 Let C ⊂ X be a rotund compact set and x ∈ X. For every ε > 0 and
every n ∈ N there is δ > 0 such that for every compact convex set K with h(K ,C) < δ

and every y ∈ X with ‖x − y‖ < δ we have

h({z ∈ K : ‖y − z‖ = d(y, K )}, {PCx}) < ε

and the diameter of the set {z ∈ K : ‖y − z‖ = d(y, K )} is at most 1/n.

5 Perturbation of compact-convex-valuedmappings

The aim of this section is to show that we are able to change the value of a set-valued
mapping at a given point to a set nearby without increasing the Lipschitz constant
too much. For this aim we need the following lemma from [9, Lemma 3.1] or [5,
Lemma 5.3], cf. also Lemma 4.2 in [14].

Lemma 5.1 Let X be a Banach space, C ⊂ X a convex set containing the origin and
0 < r < R. There is a mapping � : C → C such that

1. �(x) = 0 for all x ∈ C ∩ B(0, r).
2. �(x) = x for all x ∈ C \ B(0, R).
3. Lip� ≤ 1 + r

R−r .
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4. ‖�(x) − x‖ ≤ r for all x ∈ C.

Together with Proposition 3.9 this lemma allows us to replace the value of a set-
valued mapping at some point to compact and convex set close to the original value
while having enough control over the Lipschitz constant of the resulting map.

Lemma 5.2 Let F ∈ M, C ⊂ X a closed convex set with ξ ∈ C, 0 < ρ < r < R and
K a compact convex set satisfying h(K , F(ξ)) < ρ. There is a mapping G : C → C
with the following properties:

1. G(ξ) = K.
2. G(x) = F(x) for x ∈ C \ B(ξ, R).
3. LipG ≤ max{ R

R−r Lip F,Lip F + ρ
r }.

4. h(F(x),G(x)) ≤ 2r for all x ∈ C.

Proof We start by defining a Lipschitz mapping

λ : C → [0, 1], x �→ max

{
1 − ‖x − ξ‖

r
, 0

}

and choosing the mapping � from Lemma 5.1 corresponding to r and R. Using these
two mappings we define G : C → C by

G(x) := λ(x)K + (1 − λ(x))F(ξ + �(x − ξ)).

In the rest of the proof we show that G satisfies the conditions 1.-4. Obviously 1.
holds. Furthermore, observe that G(x) = F(x) for x ∈ C \ B(ξ, R) since in this case
we have λ(x) = 0 and ξ + �(x − ξ) = x , hence 2. holds.

For x, y ∈ B(ξ, r) we conclude from Proposition 3.9 that

h(G(x),G(y)) ≤ (Lip F + h(K , F(ξ))Lip λ)‖x − y‖ ≤ (Lip F + ρ/r)‖x − y‖.

For x, y ∈ C \ B(ξ, r) we have

h(G(x),G(y)) = h(F(ξ + �(x − ξ)), F(ξ + �(y − ξ))) ≤ Lip F Lip�‖x − y‖
≤ R

R − r
Lip F‖x − y‖

by Lemma 5.1. Bearing in mind Lemma 2.2 we see that taking the maximum of these
bounds implies the claimed bound on the Lipschitz constant of G, i.e. we have shown
3.

As a last step we prove 4. By Lemma 3.5 we obtain

h(F(x),G(x)) ≤ h(F(x), F(ξ)) + h(F(ξ), λ(x)K + (1 − λ(x))F(ξ)) ≤ r + ρ ≤ 2r

for all x ∈ C ∩ B(ξ, r). For x ∈ C \ B(ξ, r) Lemma 5.1 implies that

h(F(x),G(x)) = h(F(x), F(ξ + �(x − ξ))) ≤ r Lip F < 2r
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which finishes the proof. �

6 Successive approximations for compact convex valuedmappings

The goal of the last section is to prove the main result of this paper, more precisely,
to show that for the typical nonexpansive mapping with convex and compact point
images and typical points of its domain the sequence of successive approximations is
unique and converges to a fixed point of the mapping.

Let us first fix a few necessary notions. For a compact set M we denote by

P̃M x := {z ∈ M : ‖x − z‖ = d(x, M)}

the set-valued metric projection onto M .

Definition 6.1 Let X be a Banach space, C ⊂ X a closed and bounded subset,
F : C → K(C) and N ∈ N. A trajectory with respect to F or a sequence of successive
approximations with respect to F is a sequence (xi )Ni=1 in C with

xn+1 ∈ P̃F(xn)xn, n = 1, . . . , N − 1.

Definition 6.2 An infinite sequence of successive approximations or trajectory (xn)∞n=0
is called regular, if PF(xn)xn is a singleton for all n.

Theorem 6.3 Let X be a separable Banach space, C ⊂ X a bounded closed and
convex set, and let x0 ∈ C. There is a set A(x0) ⊂ M with meagre complement with
the property that for every F ∈ A(x0) the sequence xn+1 := PF(xn)xn is well defined,
i.e. unique, and converges to a fixed point of F.

We start with preliminary work, and combine the preliminary steps into the proof of
the theorem later. Let C be a bounded closed and convex subset of a separable Banach
space X and x0 ∈ C . (We fix X , C and x0 for the whole section.) Define

An(x0) :=
{
F ∈ M : ∃r > 0 s.t. diam P̃F(vk )vk ≤ 1

n
for all v0, . . . , vn with

v0 ∈ B(x0, r), vk+1 ∈ P̃F(vk)vk

}
.

Our initial aim is to show that each M \ An(x0) is a nowhere dense set. In order to
do so, we follow the upcoming scheme:

I First induction (moving forward) to obtain the sequence (yn) ⊂ C .
II Second induction (moving backwards) to obtain sequences (zn) ⊂ C and (Gn) ⊂

M.

III Proof that M \ An(x0) is nowhere dense.
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I Induction: moving forward

I Induction base

Let F : C → CK(C) be a nonexpansive mapping and ε > 0. Since by Proposition 3.8
the set of strict contractions is a dense subset of M, we may assume without loss of
generality that Lip F < 1. More precisely, we may choose a strict contraction whose
distance to F is smaller than ε/2 and then proceed with ε/2 instead of ε.

We now define a mapping F̃ which is close to F and a sequence (yn)n∈N in C with
yn+1 ∈ P̃F̃(yn)

yn . We start by setting y0 := x0 and need to do an additional step. The
importance of this step will become clear at the end of the construction and serves the
purpose of anchoring the sequence of (zk)nk=1 which will be constructed later. If F(x0)
is rotund, we set F̃ = F . Otherwise, we deduce from Theorem 4.16 that there is a
compact rotund set K0 with h(F(x0), K0) < ρ0 where ρ0 ∈ (0, ε

4 (1−Lip F)). If x0 ∈
F(x0), by Corollary 4.13 we may assume that x0 ∈ K0. These considerations allow
us to choose a large enough R0 > 0 to apply Lemma 5.2 and obtain a nonexpansive
mapping F̃ with F̃(x0) = K0, Lip F̃ < 1 and d∞(F, F̃) < ε

2 . We set y1 := PF̃(y0)
y0

and proceed inductively.

I Induction step

Assume that all elements up to yn have been defined already. If yn ∈ F̃(yn), we set
yn+1 = yn . Otherwise we observe that again by Theorem 4.16 there is a sequence
of compact rotund sets (Kn

k )k∈N with Kn
k → F̃(yn) for k → ∞ with respect to the

Hausdorff distance. Since the sequence PKn
k
yn is contained in a compact set we may,

by passing to subsequences if necessary, assume without loss of generality, that the
limit

yn+1 := lim
k→∞ PKn

k
yn

exists.

II Induction: moving backwards

II Induction base

Using this sequence, for fixed n ∈ N we construct a mapping G ∈ An(x0) with
distance to F̃ at most ε. Observe that since

‖yk+1 − yk‖ = d(yk, F̃(yk)) ≤ h(F̃(yk−1), F̃(yk)) ≤ Lip F̃‖yk − yk−1‖

and Lip F̃ < 1, all yk are different as long as none of them is a fixed point, see also
Lemma 4.1 in [14]. If we hit a fixed point, the sequence remains constant after that.
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Hence

c := min{‖yi − y j‖: 0 ≤ i, j ≤ k, k = max{m : ym �= yn}} > 0.

We pick 0 < ρn < rn < Rn < c
2 with

rn <
ε

8n
, Lip F̃

Rn

Rn − rn
< 1 and Lip F̃ + ρn

rn
< 1. (1)

We choose k large enough so that h(Kn
k , F̃(yn)) < ρn and denote by Gn the mapping

we obtain from Lemma 5.2 using the above parameters. Note that the above assump-
tions imply that Gn is a strict contraction and Gn(yn) is rotund. Moreover, we did
not change the values on previous points of the sequence, i.e. Gn(yk) = F̃(yk) for all
0 ≤ k < n.

Now Corollary 4.17 allows us to choose δn > 0 such that diam P̃K x ≤ 1
n for every

convex compact set K with h(K ,Gn(yn)) < δn and every x ∈ C ∩ B(yn, δn).
We set zn := yn , pick an arbitrary zn+1 ∈ Gn(zn) and set δn+1 := 1

n . The only role
of the parameters zn+1 and δn+1 is to facilitate the phrasing of Lemma 6.4 and they
do not have a meaning beyond that. Now we are able to proceed inductively.

II Induction step

Lemma 6.4 Let 1 < k ≤ n, zk, . . . , zn ∈ C, Gk ∈ M and δn > . . . > δk > 0 with
the following properties be given.

(i) LipGk < 1.
(ii) d∞(F̃,Gk) <

ε(n+1−k)
4n .

(iii) ‖yk − zk‖ < δk/4.
(iv) For k ≤ m ≤ n and for every compact convex set K with h(K ,Gk(zm)) < δm and

every x ∈ C∩B(zm, δm), we have diam P̃K x ≤ 1
n and P̃K x ⊂ C∩B(zm+1,

δm+1
2 ).

(v) Gk(x) = F̃(x) for all x ∈ C \ ⋃n
m=k B(ym, c/2).

Then there is a mapping Gk−1, a point zk−1 and δk−1 > 0 such that

(1) LipGk−1 < 1.
(2) d∞(F̃,Gk−1) <

ε(n+1−(k−1))
4n .

(3) ‖yk−1 − zk−1‖ < δk−1/4.
(4) For k − 1 ≤ m ≤ n every compact convex set K with h(K ,Gk−1(zm)) < δm and

every x ∈ C ∩ B(zm, δm) satisfy diam P̃K x ≤ 1
n and P̃K x ⊂ B(zm+1,

δm+1
2 ).

(5) Gk−1(x) = F̃(x) for all x ∈ C \ ⋃n
m=k−1 B(ym, c/2).

Proof Let 1 < k ≤ n, zk, . . . , zn ∈ C , Gk ∈ M and δn > . . . > δk > 0 satisfy the
conditions (i)-(v). We show that (1)-(5) hold. For that aim pick

0 < ρk−1 < rk−1 < Rk−1 <
c

2
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with

rk−1 <
ε

8n
, LipGk

Rk−1

Rk−1 − rk−1
< 1 and LipGk + ρk−1

rk−1
< 1.

By definition of the sequence (ym)m∈N there is a j ∈ N with

‖yk − PKk−1
j

yk−1‖ <
δk

8
and h

(
F̃(yk−1), K

k−1
j

)
<

ρk−1

2

By Corollary 4.17 there is s ∈ (0,min{ρk−1, δk}) such that

diam P̃K y ≤ 1

n
and h(P̃K y, {PKk−1

j
yk−1}) < δk/8 (a)

for all y ∈ B(yk−1, s) and all compact convex sets K with h(K , Kk−1
j ) < s. We pick

a point zk−1 ∈ B(yk−1, s/8), set δk−1 := s/2 and note that ‖yk−1 − zk−1‖ < δk−1/4
which means that (3) is satisfied and in particular implies

‖ym − zk−1‖ ≥ ‖ym − yk−1‖ − ‖yk−1 − zk−1‖ ≥ c − ρk−1

2
≥ c

2

for m ≥ k and hence Gk(zk−1) = F̃(zk−1). Moreover, we have

h(F̃(zk−1), K
k−1
j ) ≤ h(F̃(zk−1), F̃(yk−1)) + h(F̃(yk−1), K

k−1
j ) (b)

<
s

8
+ ρk−1

2
< ρk−1

and

h(P̃K y, {zk}) ≤ h(P̃K y, {PKk−1
j

yk−1}) + ‖PKk−1
j

yk−1 − yk‖ + ‖yk − zk‖ (c)

<
δk

8
+ δk

8
+ δk

4
= δk

2
.

Due to our choice of the parameters ρk−1, rk−1, Rk−1, zk−1, and Kk−1
j and inequal-

ity (b), we obtain a strict contraction Gk−1 from Lemma 5.2 which satisfies
Gk−1(zk−1) = Kk−1

j , Gk−1(x) = Gk(x) for all x ∈ C \ B(zk−1, Rk−1), LipGk−1 <

1, and

d∞(Gk−1, F̃) ≤ d∞(Gk−1,Gk) + d∞(Gk, F̃)

≤ ε

4n
+ ε(n + 1 − k)

4n
= ε(n + 1 − (k − 1))

4n
.

Note that conditions (1) and (2) are now also satisfied. To see (5), note that since
Gk(x) = F̃(x) for an even larger set by (v), we also have this identity for all
x ∈ C \ ⋃n

m=k−1 B(ym, c/2).
To end the proof, we confirm (4). Given a compact convex set K with

h(K ,Gk−1(zk−1)) < δk−1 and a point x ∈ C ∩ B(zk−1, δk−1) we have ‖x − yk−1‖ <
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‖x − zk−1‖ + δk−1
4 ≤ 2δk−1 = s and hence, as Gk−1(zk−1) = Kk−1

j the choice
of s above ensures (a) and (c), therefore (4) is satisfied for m = k − 1. Since
Gk−1(zm) = Gk(zm), (4) is also satisfied for m ≥ k since in that range (iv) holds.
This completes the proof. �

IIIM \An(x0) is nowhere dense

Relying on the previous construction established in I and II, we now show the follow-
ing.

Proposition 6.5 Given F ∈ M, x0 ∈ C, and ε > 0 there is a strict contraction
G ∈ M, r > 0 and δ > 0 with the following properties.

1. d∞(F,G) < ε

2. diam P̃H(vk )vk ≤ 1
n for all v0, . . . , vn with v0 ∈ B(x0, r), vk+1 ∈ P̃H(vk )vk and

every H ∈ M with h(H ,G) < δ.

In particular, BM(G, δ) ⊂ An(x0) ∩ BM(F, ε), i.e. M \ An(x0) is nowhere dense.

Proof Using the construction established with I and II, we obtain a mapping G1 with

d∞(F,G1) ≤ d∞(F, F̃) + d∞(F̃,G1) <
ε

2
+ ε

4
= 3ε

4
< ε,

numbers 0 < δ1 < . . . < δn and a sequence of points z1, . . . , zn with ‖yk − zk‖ <
δk
4

and for every 1 ≤ m ≤ n and every compact convex set K with h(K ,G1(zm)) < δm
and every x ∈ C ∩ B(zm, δm) we have diam P̃K x ≤ 1

n and P̃K x ⊂ B(zm+1, δm+1/2).
We set z0 := x0 and G := G1. Note that G satisfies condition 1. The rest of the proof
is dedicated to showing that 2. holds.

By Corollary 4.17 there is a δ0 ∈ (0, δ1/2) such that P̃K x ⊂ C ∩ B(z1, δ1/2) for
every x ∈ B(z0, δ0) and every compact convex set K with h(K ,G(z1)) < δ0. We set
r := δ0/2 and δ := min{r , ε

4 }.
Let H ∈ BM(G, δ) and v0 ∈ B(z0, r). Since H is nonexpansive, we have

h(H(v0),G(z0)) ≤ h(H(z0),G(z0)) + ‖v0 − z0‖ < δ0

which by the choice of these constants implies that P̃H(v0)v0 ⊂ C ∩ B(z1, δ1/2) and
diam P̃H(v0)v0 ≤ 1/n. We continue by induction and use the properties established in
Lemma 6.4. Assume we have

vk ∈ P̃H(vk−1)vk−1 ⊂ C ∩ B(zk, δk/2)

then we get

h(H(vk),G(zk)) ≤ h(H(zk),G(zk)) + ‖vk − zk‖ ≤ δk

and hence diam P̃H(vk )vk ≤ 1/n and P̃H(vk+1)vk+1 ⊂ C ∩ B(zk+1, δk+1/2). As long
as k + 1 ≤ n. Even though, in the last step, we only obtain that diam P̃H(vn)vn ≤ 1/n
but no additional information on the location of this set, it is enough to show that
BM(G, δ) ⊂ An(x0) ∩ BM(F, ε) and hence that M \ An(x0) is nowhere dense. �
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We have now completed the preliminary work, and can move on to proving the main
theorem.

Proof of Theorem 6.3 We set

A(x0) =
∞⋂

n=1

An(x0)

and observe that it is the complement of a meagre set. Moreover for F ∈ A(x0)
and a sequence (xk)k∈N starting with x0 and satisfying xk+1 ∈ P̃F(xk)xk we have
diam P̃F(xk )xk ≤ 1/n for every n ∈ N with n ≥ k and hence P̃F(xk )xk is a singleton.
Convergence to a fixed point follows from Theorems 4.2, 4.3 and 4.4 in [19]. �

Lastly, we formalise the following consequence of the main theorem and its proof.

Corollary 6.6 Let X be a separable Banach space. Then there is a residual setF ⊂ M
such that for every F ∈ F there is a residual subset U ⊂ C with the property that for
every x0 ∈ U the mapping F admits a regular trajectory starting at x0.

Proof Let D be a countable and dense subset of C . For every n ∈ N define the sets

An :=
⋂

y∈D
An(y) and F :=

∞⋂

n=0

An .

Observe that since D is countable the set An is residual and hence also the set F is
residual in M. For F ∈ F and n ∈ N we have in particular F ∈ An(y) for every
y ∈ D. Hence there is an rn,y > 0 such that diam P̃F(vk )vk ≤ 1

n for all v0, . . . , vn

with v0 ∈ B(y, rn,y) and vk+1 ∈ P̃F(vk )vk . Then for every n ∈ N the sets

Un := {
x ∈ C : ‖x − y‖ < rn,y for all y ∈ D

}

are dense in C , since D itself is dense in C . Hence

U :=
∞⋂

n=1

Un

is residual in C and every x0 ∈ U has a regular trajectory with respect to F . �
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