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Abstract
In this paper, we relate Viterbo’s conjecture from symplectic geometry to Minkowski
versions of worm problems which are inspired by the well-known Moser worm prob-
lem from geometry. For the special case of Lagrangian products this relation provides
a connection to systolic Minkowski billiard inequalities and Mahler’s conjecture from
convex geometry. Moreover, we use the above relation in order to transfer Viterbo’s
conjecture to a conjecture for the longstanding open Wetzel problem which also can
be expressed as a systolic Euclidean billiard inequality and for which we discuss
an algorithmic approach in order to find a new lower bound. Finally, we point out
that the above mentioned relation between Viterbo’s conjecture and Minkowski worm
problems has a structural similarity to the known relationship between Bellmann’s
lost-in-a-forest problem and the original Moser worm problem.

Keywords Viterbo’s conjecture · EHZ-capacity · Shortest periodic orbit · Minkowski
billiards · Worm problems

Mathematics Subject Classification 37C83

1 Introduction andmain results

Worm problems have a long history. The earliest known problem of this type was
posed by Moser in [44] (see also [45]) more than 50 years ago:
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Moser’s worm problem: Find a/the (convex) set of least area that contains a
congruent copy of each arc in the plane of lenth one.

Here, the unit arcs are sometimes called worms, while the problem has been phrased
in many different ways in the literature: the architect’s version (find the smallest
comfortable living quarters for a unit worm), the humanitarian version (find the shape
of the most efficient worm blanket), the sadistic version (find the shape of the best
mallet head), and so on (see [53]). So far, despite a lot of research, only partial results
are known, including the existence of such a minimum cover in the convex case
(probably the first time proven in [39]), but its shape and area remain unknown. The
best bounds presently known for its area μ are:1

0.23224 � μ � 0.27091

(see [34] for the lower and [50] for the upper bound).
Worm problems can be formulated in considerable generality (see [53]):

Given a collection F of n-dimensional figures F and a transitive group M of
motions m on R

n , find minimal convex target sets K ⊂ R
n–minimal in the sense

of having least volume, surface volume, or whatever–so that for each F ∈ F
there is a motion m ∈ M with

m(F) ⊆ K .

The existence of solutions to this problem can be guaranteed under certain natural
hypotheses by fundamental compactness results like the Blaschke selection theorem
(see [10, Sect. 18] for Blaschke’s selection theorem and [33, 39] for its application;
see also Theorem 3.8 and its application in Propositions 3.9, 3.13, 3.19, and 3.20).

When the problem does not permit an arc to be replaced by its mirror image, then
it is appropriate to consider the subgroup of orientation preserving motions. For other
problems, e.g., Moser’s original worm problem, orientation reversing motions are
permitted. Many problems whose motion group is the group of translations have been
studied in the literature (see [8, 13, 52]).

In order to formulate the specific worm problem which is of main interest for
our study, we introduce the following definition: Let T ⊂ R

n be a convex body,
i.e., a compact convex set in R

n with nonempty interior, and T ◦ its polar. Using the
Minkowski functional

μT ◦(x) = min{t � 0 : x ∈ tT ◦}
with respect to T ’s polar T ◦, we define the �T -length of a closed H1([0, ˜T ], R

n)-
curve2 q̇ (from now on, for the sake of simplicity, every closed curve is assumed to
fulfill this Sobolev property), ˜T � 0, by

�T (q) :=
∫

˜T

0
μT ◦(q̇(t)) dt .

1 We round all decimal numbers up to the fifth decimal place.
2 This implies that q is differentiable almost everywhere with q̇ ∈ L2([0, ˜T ], R

n).
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Viterbo’s conjecture as a worm problem 219

The worm problem which is of main interest for our study we call the Minkowski
worm problem. Referring to the above general worm problem formulation, for this
for convex body T ⊂ R

n , we consider F = F(T , α) as the set of closed curves of
�T -length α > 0,M as the group of translations and the minimization in the sense of
having minimal volume:

Minkowski worm problem: Let T ⊂ R
n be a convex body. Find the volume-

minimizing convex bodies K ⊂ R
n that contain a translate of every closed

curve of �T -length α.

So, in contrast to Moser’s worm problem, we consider general dimension (instead of
just dimension two), length-measuring with Minkowski functionals with respect to
arbitrary convex bodies (instead of with respect to the Euclidean unit ball), closed
curves (instead of not necessarily closed arcs), and translations (instead of congru-
ence transformations). In other words and introducing a notation which will be useful
throughout this paper: Let cc(Rn) be the set of closed curves in R

n . Find the minimiz-
ers3 of

min
K∈A(T ,α)

vol(K ),

where for convex body T ⊂ R
n and α > 0, we define

A(T , α) := {

K ⊂ R
n convex body : LT (α) ⊆ C(K )

}

with
LT (α) := {

q ∈ cc(Rn) : �T (q) = α
}

and
C(K ) := {

q ∈ cc(Rn) : ∃k ∈ R
n s.t. q ⊆ k + K

}

,

where, for the sake of simplicity, we, in general, identify q with its image.
The only Minkowski worm problem that has been investigated so far is the case

when the dimension is 2, T is the Euclidean unit ball in R
2, and, without loss of

generality, α = 1 (one could say: the two-dimensional Euclidean worm problem). It
is known as:

Wetzel’s problem: Find the area-minimizing convex bodies K ⊂ R
2 that contain

a translate of every closed curve of Euclidean length 1.

So far, the minimal area for this problem is not known, but the best bounds presently
known for the minimum are 0.15544 as lower (see [52], where an argument from
[47] is used) and 0.16526 as upper bound (see [8]; note that in [52] it was claimed
incorrectly an upper bound of 0.159). In comparison to that: The areas of the obvious
covers of constant width, the ball of radius 1/4 and the Reuleaux triangle of width 1/2,
are 0.19635 and 0.17619, respectively. Since, by the Blaschke-Lebesgue theorem, the
Reuleaux triangle is the area-minimizing set of constant width (see [9, 40]; see [27]
for a direct proof by analyzing the underlying variational problem), we can conclude
that a minimizer for Wetzel’s problem is not of constant width. We refer to Fig. 1 for

3 In Proposition 3.9, we will prove that in fact there exists at least one minimizer.
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Fig. 1 On the left side is the Reuleaux triangle with width 1
2 and area 0.17619, in the middle is a convex

body with area 0.17141 which was found by Wetzel in [52], and on the right is a convex body, looking a bit
like a church window, with base length and height equal to 1

2 and area 1
6 ≈ 0.16667 (for both the middle

and right convex body we refer to [8]). Some worms are drawn in in each case

three examples whose areas are approaching (not achieving) the minimum (clearly,
the middle and right convex bodies are not of constant width).

Although we derive some results, the primary goal of our study will not be to solve
these Minkowski worm problems, rather to relate them to Viterbo’s conjecture from
symplectic geometry (see [49]) which for convex bodies C ⊂ R

2n reads

vol(C) � cE H Z (C)n

n! .

For that, we recall that the EHZ-capacity of a convex body C ⊂ R
2n can be defined4

by
cE H Z (C) = min{A(x) : x closed characteristic on ∂C},

where a closed characteristic on ∂C is an absolutely continuous loop in R
2n satisfying

{

ẋ(t) ∈ J∂ HC (x(t)) a.e.

HC (x(t)) = 1
2 ∀t ∈ T

where

HC (x) = 1

2
μC (x)2, J =

(

0 1
−1 0

)

, T = R/˜T Z, ˜T > 0.

˜T is the period of the loop and by A we denote its action defined by

A(x) = −1

2

∫
˜T

0
〈J ẋ(t), x(t)〉 dt .

4 This definition is in fact the outcome of a historically grown study of symplectic capacities. Traced back–
recalling that cE H Z in its present form is the generalization of a symplectic capacity by Künzle in [38] after
applying the dual action functional introduced by Clarke in [12], the EHZ-capacity denotes the coincidence
of the Ekeland-Hofer- and Hofer-Zehnder-capacities, originally constructed in [15] and [28], respectively.
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Viterbo’s conjecture as a worm problem 221

The first main result of this paper addresses the special case of Lagrangian products

C = K × T ⊂ R
n
q × R

n
p

∼= R
2n,

where K and T are convex bodies in R
n .5 We denote by C(Rn) the set of convex

bodies in R
n .

Theorem 1.1 Viterbo’s conjecture for convex Lagrangian products K ×T ⊂ R
n ×R

n

vol(K × T ) � cE H Z (K × T )n

n! , K , T ∈ C(Rn),

is equivalent to the Minkowski worm problem

min
K∈A(T ,1)

vol(K ) � 1

n! vol(T )
, K , T ∈ C(Rn). (1)

Additionally, equality cases K ∗ × T ∗ of Viterbo’s conjecture satisfying

vol(K ∗) = vol(T ∗) = 1

are composed of equality cases (K ∗, T ∗) of (1). Conversely, equality cases (K ∗, T ∗)
of (1) form equality cases K ∗ × T ∗ of Viterbo’s conjecture.

This yields the following corollary, which seems to be more suitable in order to
approach Viterbo’s conjecture as an optimization problem (see Sect. 9).

Corollary 1.2 Viterbo’s conjecture for convex Lagrangian products K ×T ⊂ R
n ×R

n

vol(K × T ) � cE H Z (K × T )n

n! , K , T ∈ C(Rn),

is equivalent to6

min
aq∈Rn

vol

(

conv

{

⋃

q∈LT (1)

(q + aq)

})

� 1

n! vol(T )
, T ∈ C(Rn), (2)

where the minimization runs for every q ∈ LT (1) over all possible translations in R
n.

Additionally, equality cases K ∗ × T ∗ of Viterbo’s conjecture satisfying

vol(K ∗) = vol(T ∗) = 1

5 In this paper, whenever we write products of the form K × T for two convex bodies K , T ⊂ R
n , we

presume the natural symplectic structure of R
2n = R

n
q × R

n
p . So, every such product is a Lagrangian

product.
6 Here, we note that K has been dissolved by replacing it by an expression that extremizes over all possible
K s. The extremizing K is of the form (3).

123
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are composed of equality cases T ∗ of (2) with

K ∗ = conv

{

⋃

q∈LT ∗ (1)

(q + a∗
q )

}

, (3)

where a∗
q are the minimizers in (2). Conversely, equality cases T ∗ of (2) with K ∗ as

in (3) form equality cases K ∗ × T ∗ of Viterbo’s conjecture.

In analogy to Theorem 1.1, also Mahler’s conjecture from convex geometry (see
[43]), i.e.,

vol(T ) vol(T ◦) � 4n

n! , T ∈ Ccs(Rn), (4)

where by Ccs(Rn) we denote the set of all centrally symmetric convex bodies in R
n ,

can be expressed as a worm problem. As shown in [3], this is due to the fact that
Mahler’s conjecture is a special case of Viterbo’s conjecture.

Theorem 1.3 Mahler’s conjecture for centrally symmetric convex bodies

vol(T ) vol(T ◦) � 4n

n! , T ∈ Ccs(Rn), (5)

is equivalent to the Minkowski worm problem

min
T ∈A(T ◦,1)

vol(T ) � 1

n! vol(T ◦)
, T ∈ Ccs(Rn). (6)

Additionally, equality cases T ∗ of Mahler’s conjecture (5) satisfying

vol(T ∗) = 1

are equality cases of (6). And conversely, equality cases T ∗ of (6) are equality cases
of Mahler’s conjecture (5).

Furthermore, also systolic Minkowski billiard inequalitieswithin the field of billiard
dynamics can be related to worm problems.

In order to state this, let us recall some relevant notions from the theory of
Minkowski billiards (see [36]): For convex bodies K , T ⊂ R

n , we say that a closed
polygonal curve7 with vertices q1, ..., qm , m � 2, on the boundary of K is a closed
weak (K , T )-Minkowski billiard trajectory if for every j ∈ {1, ..., m}, there is a
K -supporting hyperplane Hj through q j such that q j minimizes

μT ◦(q j − q j−1) + μT ◦(q j+1 − q j )

7 For the sake of simplicity, whenever we talk of the vertices q1, ..., qm of a closed polygonal curve, we
assume that they satisfy q j �= q j+1 and q j is not contained in the line segment connecting q j−1 and
q j+1 for all j ∈ {1, ..., m}. Furthermore, whenever we settle indices 1, ..., m, then the indices in Z will be
considered as indices modulo m.
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Viterbo’s conjecture as a worm problem 223

over all q j ∈ Hj . We encode this closed (K , T )-Minkowski billiard trajectory
by (q1, ..., qm). Furthermore, we say that a closed polygonal curve with vertices
q1, ..., qm , m � 2, on the boundary of K is a closed (strong) (K , T )-Minkowski
billiard trajectory if there are points p1, ..., pm on ∂T such that

{

q j+1 − q j ∈ NT (p j ),

p j+1 − p j = −NK (q j+1)

is fulfilled for all j ∈ {1, ..., m}. We denote by Mn+1(K , T ) the set of closed (K , T )-
Minkowski billiard trajectories with at most n + 1 bouncing points.

Then, for convex body K ⊂ R
n , introducing Fcp(K ) as the set of all closed

polygonal curves in R
n that cannot be translated into K ’s interior K̊ , we have the

following relations:

Theorem 1.4 Let T ⊂ R
n be a convex body and α, c > 0. Then, the following state-

ments are equivalent:

(1)

max
vol(K )=c

min
q∈Fcp(K )

�T (q) � α, K ∈ C(Rn),

(2)

max
vol(K )=c

cE H Z (K × T ) � α, K ∈ C(Rn),

(3)

max
vol(K )=c

min
q∈Mn+1(K ,T )

�T (q) � α, K ∈ C(Rn),

(4)

min
K∈A(T ,α)

vol(K ) � c, K ∈ C(Rn),

(5)

min
aq∈Rn

vol

(

conv

{

⋃

q∈LT (1)

(q + aq)

})

� c, K ∈ C(Rn).

If T is additionally assumed to be strictly convex, then the following systolic weak
Minkowski billiard inequality can be added to the above list of equivalent expressions:

(6)
max

vol(K )=c
min

q cl. weak (K ,T )-Mink. bill. traj.
�T (q) � α, K ∈ C(Rn).
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Moreover, every equality case (K ∗, T ∗) of any of the above inequalities is also an
equality case of all the others.

Now, we turn our attention to the general Viterbo conjecture for convex bodies in
R
2n . For that, we first introduce the following definitions: We denote by C p

(

R
2n

)

the
set of convex polytopes in R

2n . For P ∈ C p
(

R
2n

)

, we denote by

Fcp∗ (P) ⊂ Fcp(P)

the set of all closed polygonal curves q = (q1, ..., qm) in Fcp(P) for which q j and
q j+1 are on neighbouring facets Fj and Fj+1 of P such that there are λ j , μ j+1 � 0
with

q j+1 = q j + λ j J∇HP (x j ) + μ j+1 J∇HP (x j+1),

where x j and x j+1 are arbitrarily chosen interior points of Fj and Fj+1, respectively.
Later, we will see that the existence of such closed polygonal curves is guaranteed.

Theorem 1.5 Viterbo’s conjecture for convex polytopes in R
2n

vol(P) � cE H Z (P)n

n! , P ∈ C p
(

R
2n

)

, (7)

is equivalent to the Minkowski worm problem

min
P∈A(J P,1)

vol(P) � (RP )n

2nn! , P ∈ C p
(

R
2n

)

, (8)

where we define

RP :=
minq∈Fcp∗ (P) � J P

2
(q)

minq∈Fcp(P) � J P
2

(q)
� 1.

Additionally, P∗ is an equality case of Viterbo’s conjecture for convex polytopes (7)
satisfying

vol(P∗) = 1

if and only if P∗ is an equality case of (8).

When we look at the operator norm of the complex structure/symplectic matrix J
with respect to a convex body C ⊂ R

2n as map from

(

R
2n, || · ||C◦

)

to
(

R
2n, || · ||C

)

as it has been done in [2] and [23], i.e.,

||J ||C◦→C = sup
||v||C◦�1

||Jv||C ,

then we derive the following theorem:

123



Viterbo’s conjecture as a worm problem 225

Theorem 1.6 Viterbo’s conjecture for convex bodies in R
2n

vol(C) � cE H Z (C)n

n! , C ∈ C
(

R
2n

)

, (9)

is equivalent to

min
C∈A(C◦,1)

vol(C) � (˜RC )n

n! , C ∈ C
(

R
2n

)

, (10)

where8

˜RC := cE H Z (C)

cE H Z (C × C◦)
� 1

2||J ||C◦→C
.

Additionally, C∗ is an equality case of Viterbo’s conjecture for convex bodies in R
2n

(9) satisfying
vol(C∗) = 1

if and only if C∗ is an equality case of (10).

Finally, we turn to Wetzel’s problem. For that, we keep the current state of things
in mind:

Theorem 1.7 (Wetzel in [52], ’73; Bezdek and Connelly in [8], ’89) In dimension
n = 2, we have

min
K∈A

(

B2
1 ,1

)

vol(K ) ∈ (0.15544, 0.16526), K ∈ C(R2),

where we denote by B2
1 the Euclidean unit ball in R

2.

Then, as application of Theorem 1.1, we transfer Viterbo’s conjecture ontoWetzel’s
problem. This results in the following conjecture:

Conjecture 1.8 We have

min
K∈A

(

B2
1 ,1

)

vol(K ) � 1

2π
≈ 0.15915, K ∈ C(R2).

Applying [36, Theorem 3.12] and Theorem 1.4, we note that this conjecture can be
equivalently expressed as systolic Euclidean billiard inequality:

Conjecture 1.9 We have

min
q cl. (K ,B2

1 )-Mink. bill. traj.
�2

B2
1
(q) � 2π vol(K )

for K ∈ C(R2).

8 Here, byC×C◦ we denote the Lagrangian product ofC andC◦, wherewe presume the natural symplectic
structure on R

2(2n) ∼= R
2n
q ′ × R

2n
p′ with R

2n
q ′ = R

n
q × R

n
p and denote by q ′ and p′ the local and momentum

coordinates on R
2n ⊃ C , respectively.
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226 D. Rudolf

We remark that, for the configuration (K , B2
1 ), due to the strict convexity of B2

1 ,
the notions of weak and strong (K , B2

1 )-Minkowski billiards coincide and are equal
to the one of billiards in the Euclidean sense.

Although much work has been done around Wetzel’s problem and the systolic
Euclidean billiard inequality, this shows that Viterbo’s conjecture is even unsolved for
the “trivial” configuration

K × B2
1 ⊂ R

2 × R
2.

On the other hand, looking at these two problems from the symplectic point of view,
can help us to conceptualize them from a very different point of view.

The Minkowski worm problems in Theorems 1.3, 1.5 and 1.6 seem to be very hard
to solve (as it is expected from the perspective of Mahler’s/Viterbo’s conjecture). On
the one hand, this is a consequence of the inner dependencies within

T ∈ A
(

T ◦, 1
)

, P ∈ A (J P, 1) , and C ∈ A
(

C◦, 1
)

,

on the other hand, the right hand sides in (6), (8), and (10)

1

n! vol(T ◦)
,

(RP )n

2nn! , and
(˜RC )n

n!

also contain dependencies and, beyond specific configurations, do not seem to be
so accessible. Nevertheless, perhaps it turns out to be fruitful to investigate worm
problems of the following structure a little bit more in detail: Find

min
C∈A(C◦,1)

vol(C) and min
C∈A(JC,1)

vol(C).

Interestingly enough, from this perspective, Viterbo’s andMahler’s conjecture are very
similar in structure.

Motivated by a relationship between Moser’s worm problem and a version of
Bellman’s lost-in-a-forest problem shown by Finch and Wetzel in [17], we further
investigate whether it is possible also to relate Minkowski worm problems to versions
of Bellman’s lost-in-a-forest problem. And indeed, it will turn out that the relationship
established in [17] is somewhat similar to the relationship between Minkowski worm
problems and Viterbo’s conjecture for convex Lagrangian products. However, before
wewill elaborate on this, wewill give a short introduction to Bellman’s lost-in-a-forest
problem and general escape problems of this type.

In 1955, Bellman stated in [5] the following research problem (see also [6] and
[7]):

We are given a region R and a random point P within the region. Determine
the paths which (a) minimize the expected time to reach the boundary, or (b)
minimize the maximum time required to reach the boundary.

This problem can be phrased as:
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Viterbo’s conjecture as a worm problem 227

A hiker is lost in a forest whose shape and dimensions are precisely known to
him. What is the best path for him to follow to escape from the forest?

In other words: To solve the lost-in-a-forest problem one has to find the best escape
path–the best in terms ofminimizing themaximumor expected time required to escape
the forest. A third interpretation of best has been given in [13]: Find the best escape
path in terms of maximizing the probability of escape within a specified time period.

Bellman asked about two configurations in particular: on the one hand, the con-
figuration in which the region is the infinite strip between two parallel lines a known
distance apart, on the other hand, the configuration in which the region is a half-plane
and the hiker’s distance from the boundary is known. For the case when best is under-
stood in terms of the maximum time to escape, both of these two configurations have
been studied: for the first configuration, the best path was found in [55] (’61), for the
second, in [31] (’57) (where a complete and detailed proof was not published until
it was done in [32] (’80); see [18] for an english translation). In each of these two
cases, the shortest escape path is unique up to congruence. Apart from that, not much
is known for other interpretations of best. We refer to [51] for a detailed survey on the
different types, results, and some related material.

Finch and Wetzel studied in [17] the case in which the best escape path is the
shortest. As already mentioned above, in this case, they could show a fundamental
relation to Moser’s worm problem.

Before we further elaborate on this, it is worth mentioning to note that Williams in
[54] has included lost-in-a-forest problems in his recent list “Million Buck Problems”
of unsolved problems of high potential impact on mathematics. He justified the selec-
tion of these problems by mentioning that the techniques involved in their resolution
will be worth at least one million dollars to mathematics.

Now, let’s consider the case studied by Finch and Wetzel and take it a little more
rigorously. For that, let γ be a path in R

2, i.e., a continuous and rectifiable mapping
of [0, 1] into R

2. Let �B2
1
(γ ) be its Euclidean length and {γ } its trace γ ([0, 1]). We

call a forest a closed, convex region in the plane with nonempty interior. A path γ

is an escape path for a forest K if a congruent copy of it meets the boundary ∂K
no matter how it is placed with its initial point in K , i.e., for each point P ∈ K and
each Euclidean motion (translation, rotation, reflection and combinations of them) μ

for which P = μ(γ (0)) the intersection μ ({γ }) ∩ ∂K is nonempty. Then, among all
the escape paths for a forest K , there is at least one whose length is the shortest. The
escape length α of a forest K is the length of one of these shortest escape paths for
K . Based on these notions, Finch and Wetzel proved the following:

Theorem 1.10 (Theorem 3 in [17]) Let K ⊂ R
2 be a convex body. The escape length

α∗ of K is the largest α for which for every path γ with length � α, there is a Euclidean
motion μ such that K covers μ ({γ }).

For Finch and Wetzel, this theorem established the connection to Moser’s worm
problem. For that, we recall that in Moser’s worm problem one tries to find a/the
convex set of least area that contains a congruent copy of each arc in the plane of a
certain length. Clearly, the condition of having a certain length can be replaced by the
condition of having a length which is bounded from above by that certain length.
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228 D. Rudolf

Fig. 2 Visualization of theMinkowski escape problem for the special case of two dimensionswith Euclidean
measurement. This presents two possible Minkowski escape paths which, however, are not the length-
minimizing one. For this K , the shortest Minkowski escape path is most likely a closed polygonal cruve
with two vertices

Now, translated into our setting, we can derive a similar result. For that, we first
have to define a version of a lost-in-a-forest problem which is compatible with the
Minkowski worm problems discussed in the previous sections.

In order to indicate the connection to Minkowski worm problems in our setting,
we will call the problem the Minkowski escape problem. We start by generalizing
the problem to any dimension. So, we are considering higher dimensional “forests”
which one aims to escape. We let K ⊂ R

n be a convex body, measure lengths by
�T , where T ⊂ R

n is a convex body, and we call γ a closed Minkowski escape path
for K if γ is a closed curve and for each point P ∈ K and each translation μ for
which P = μ(γ (0)) the intersection μ ({γ }) ∩ ∂K is nonempty. So, in contrast to
considering not necessarily closed paths, allowing themotions to beEuclideanmotions
and measuring the lengths in the standard Euclidean sense in the escape problem of
Finch andWetzel, we only consider closed paths, translations and measure the lengths
by the metric induced by the Minkowski functional with respect to the polar of T .
Translating this problem into “our (mesocosmic) reality”—therefore, requiring n = 2
and Euclidean measurements, we get a slightly different problem (of course there are
no limits to creativity) (see Fig. 2):

Two hikers walk in a forest. One of them gets injured and is in need of medical
attention. The unharmed hiker would like to make the emergency call. Although
he has his cell phone with him, there is only reception outside the forest. He has
a map of the forest, i.e., the shape of the forest and its dimensions are known to
him, and a compass to orient himself in terms of direction. Furthermore, he is
able to measure the distance he has walked. However, he does not know exactly
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where in the forest he is. What’s the best way to get out of the forest, put off the
emergency call, and then get back to the injured hiker?

The fact that in our story the unharmed hiker knows the shape of the forest and has a
compass to orient himself in terms of direction is due to the fact that in our Minkowski
escape problem, translations are the only allowed motions. The condition of coming
back to the injured hiker is a consequence of our demand to consider only closed
curves.

We can prove the analogue to Theorem 1.10:

Theorem 1.11 Let K , T ⊂ R
n be convex bodies. Then, an/the �T -minimizing closed

Minkowski escape path for K has �T -length α∗ if and only if α∗ is the largest α for
which

K ∈ A(T , α),

i.e., for which for every closed path γ of �T -length � α, there is a translation μ such
that K covers μ ({γ }).

Having in mind that Minkowski escape paths for a convex body K ⊂ R
n can be

understood as closed curves which cannot be translated into the interior of K , we can
use the Minkowski billiard characterization of shortest closed polygonal curves that
cannot be translated into the interior of K , in order to directly conclude the following
corollary. Note for this line of argumentation that shortest closed curves that cannot
be translated into the interior of K are in fact closed polygonal curves.

Corollary 1.12 Let K , T ⊂ R
n be convex bodies, where T is additionally assumed to

be strictly convex. An/The �T -minimizing closed (K , T )-Minkowski billiard trajectory
has �T -length α∗ if and only if α∗ is the largest α for which

K ∈ A(T , α).

So, the unharmed hiker in our story can conceptualize his problem by searching for
length-minimizing closed Euclidean billiard trajectories.

In general, the problemofminimizing overMinkowski escape problems in the sense
of varying the forest while maintaining their volume in order to find the forest with
minimal escape length becomes the problem of solving systolic Minkowski billiard
inequalities, or equivalently, the problem of proving/investigating Viterbo’s conjecture
for Lagrangian products in R

n × R
n .

This means: If the hikers want to play it safe from the outset by choosing, among
forests of equal area, the one where the time needed to help an injured hiker is min-
imized, then it is useful for them to be familiar with symplectic geometry or billiard
dynamics. Of course, they could have paid attention from the beginning to where they
entered the forest from and how they designed their path. Then they do not have to
solve too difficult problems.

This paper is organized as follows: In Sect. 2, we start with some relevant prelimi-
naries before, in Sect. 3, we derive properties of Minkowski worm problems and the
fundamental results in order to prove Theorems 1.1, 1.3, 1.4, 1.5, and 1.6 and Corol-
lary 1.2 in Sects. 4, 5, and 6. In Sect. 7, we prove that it is justified to transfer a special
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case of Viterbo’s conjecture into one for Wetzel’s problem which becomes Conjec-
ture 1.8. In Sect. 8, we prove Theorem 1.10 as analogue to the relationship between
Moser’s worm problem and Bellman’s lost-in-a-forest problem. Finally, in Sect. 9, we
discuss a computational approach for improving lower bounds in Minkowski worm
problems, especially lower bounds for Wetzel’s problem.

2 Preliminaries

We begin by collecting some results concerning the Fenchel–Legendre transform of a
convex and continuous function H : R

n → R, which for x∗ ∈ R
n is defined by

H∗(x∗) = sup
x∈Rn

(〈x, x∗〉 − H(x)).

Proposition 2.1 (Proposition II.1.8 in [14]) If H∗ is the Fenchel–Legendre transform
of a convex and continuous function H : R

n → R, then for x ∈ R
n we have

H(x) = sup
x∗∈Rn

(〈x∗, x〉 − H∗(x∗)).

The subdifferential of H in x ∈ R
n is given by

∂ H(x) = {x∗ ∈ R
n|H∗(x∗) = 〈x∗, x〉 − H(x)}

Then, we get the Legendre recipocity formula:

Proposition 2.2 (Proposition II.1.15 in [14]) For a convex and continuous function
H : R

n → R the Legendre reciprocity formula is given by

x∗ ∈ ∂ H(x) ⇔ H∗(x∗) + H(x) = 〈x∗, x〉 ⇔ x ∈ ∂ H∗(x∗),

where x, x∗ ∈ R
n.

We state the generalized Euler identity:

Proposition 2.3 Let H : R
n → R be a p-positively homogeneous, convex and con-

tinuous function of R
n. Then, for each x ∈ R

n the following identity holds:

〈x∗, x〉 = pH(x) ∀x∗ ∈ ∂ H(x).

Proof For each x ∈ R
n , since H is convex and continuous, we have

∂ H(x) �= ∅.

For each
x∗ ∈ ∂ H(x)
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Proposition 2.2 provides
H∗(x∗) + H(x) = 〈x∗, x〉 (11)

and from Proposition 2.1, i.e.,

H(x) = sup
x∗∈Rn

(〈x∗, x〉 − H∗(x∗)),

we get
H(y) � 〈x∗, y〉 − H∗(x∗) ∀y ∈ R

n . (12)

Combining (11) and (12) we get

H(y) � 〈x∗, y − x〉 + H(x) ∀y ∈ R
n . (13)

Now, we set
y = λx (λ > 0)

and recognize to have equality in (13) for λ → 1. Furthermore, we obtain by the
p-homogeneity of H for λ → 1:

lim
λ→1

g(λ) − g(1)

λ − 1
H(x) = 〈x∗, x〉,

where we introduced the function

g(x) := x p.

Because of
g′(1) = p

we get
pH(x) = 〈x∗, x〉.

��
Noting that for convex body C ⊂ R

n

HC = 1

2
μ2

C

is a 2-positively homogeneous, convex and continuous function, we derive the follow-
ing properties:

Proposition 2.4 For convex body C ⊂ R
n we have

H∗
C = HC◦ .
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Proof For ξ ∈ R
n we have

μC◦(ξ) = min{t � 0 : ξ ∈ tC◦}
= min

{

t � 0 : ξ ∈ t{̂ξ ∈ R
n : 〈̂ξ, x〉 � 1∀x ∈ C}}

= min
{

t � 0 : ξ ∈ {̂ξ ∈ R
n : 〈̂ξ, x〉 � t ∀x ∈ C}}

= min{t � 0 : 〈ξ, x〉 � t ∀x ∈ C}
= max

x∈C
〈ξ, x〉

= max
μC (x)=1

〈ξ, x〉,

and therefore

H∗
C (ξ) = sup

x∈Rn
(〈ξ, x〉 − HC (x))

= sup
r�0

sup
μC (x)=1

(

〈ξ, r x〉 − 1

2
μC (r x)2

)

= sup
r�0

(

r

(

sup
μC (x)=1

〈ξ, x〉
)

− r2

2

)

= max
r�0

(

r

(

max
μC (x)=1

〈ξ, x〉
)

− r2

2

)

= max
r�0

(

rμC◦(ξ) − r2

2

)

= μC◦(ξ)2

2
= HC◦(ξ).

��
Proposition 2.5 Let C ⊂ R

n be a convex body. If x∗ ∈ ∂ HC (x) for x ∈ R
n, then

HC◦(x∗) = HC (x).

Proof With Proposition 2.3 and the 2-homogeneity of HC◦ we can write

2HC◦(x∗) = 〈x ′, x∗〉,

where
x ′ ∈ ∂ HC◦(x∗),

which together with Propositions 2.2 and 2.4 and

(C◦)◦ = C
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is equivalent to
x∗ ∈ ∂ H∗

C◦(x ′) = ∂ HC (x ′).

Therefore, again using Proposition 2.3, we can conclude

2HC◦(x∗) = 〈x ′, x∗〉 = 2HC (x ′).

In the following we show that

HC (x ′) = HC (x).

This would prove the claim.
Again, using Propositions 2.2 and 2.4, the fact

x∗ ∈ ∂ HC (x)

is equivalent to
x ∈ ∂ H∗

C (x∗) = ∂ HC◦(x∗).

All previous informations now can be summarized by the following two equations:

HC (x) + HC◦(x∗) = 〈x, x∗〉, HC◦(x∗) + HC (x ′) = 〈x ′, x∗〉.

The difference yields
HC (x) − HC (x ′) = 〈x − x ′, x∗〉,

which implies

HC (x ′) = HC (x) − 〈x − x ′, x∗〉 = HC (x) − 〈x, x∗〉 + 〈x ′, x∗〉.

The conditions
x ∈ ∂ HC◦(x∗) and x ′ ∈ ∂ HC◦(x∗)

imply, applying Proposition 2.3,

−〈x, x∗〉 + 〈x ′, x∗〉 = −2HC◦(x∗) + 2HC◦(x∗) = 0,

therefore
HC (x ′) = HC (x).

��
The followingproposition is the generalization of [36, Proposition 3.11] fromclosed

polygonal curves to closed curves:

Proposition 2.6 Let T ⊂ R
n be a convex body, q ∈ cc(Rn) and λ > 0. Then, we have

�T (λq) = �λT (q) = λ�T (q).
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Proof From
μT ◦(λx) = μ(λT )◦(x) = λμT ◦(x), x ∈ R

n,

(see [36, Proposition 2.3(iii)]) we conclude

�T (λq) =
∫

˜T

0
μ(T )◦((λ̇q)(t)) dt =

∫
˜T

0
μ(λT )◦(q̇(t)) dt = �λT (q)

and

�T (λq) =
∫

˜T

0
μ(T )◦((λ̇q)(t)) dt = λ

∫
˜T

0
μ(T )◦((q̇)(t)) dt = λ�T (q).

��
We continue by recalling [48, Theorem 1.1] which will be useful throughout this

paper:

Theorem 2.7 Let K , T ⊂ R
n be convex bodies. Then, we have

cE H Z (K × T ) = min
q∈Fcp(K )

�T (q) = min
p∈Fcp(T )

�K (p) = min
q∈Mn+1(K ,T )

�T (q).

We note that in [48, Theorem 1.1] actually appear Fcp
n+1(K ) and Fcp

n+1(T ) instead
of Fcp(K ) and Fcp(T ), respectively. However, for the purposes within this paper,
we only need this more general formulation which is valid since there are no �T /�K -
minimizing closed polygonal curves in Fcp(K )/Fcp(T )with more than n +1 vertices
and shorter �T /�K -length than the �T /�K -minimizing closed polygonal curves in
Fcp

n+1(K )/Fcp
n+1(T ) (see the proof of point (1) in the proof of [48, Theorem 2.2]).

We collect some invariance properties ofViterbo’s aswell as ofMahler’s conjecture:

Proposition 2.8 Viterbo’s conjecture is invariant under translations.

Proof Translations
ta : R

n → R
n, ξ �→ ξ + a, a ∈ R

n,

are symplectomorphism because of

dta(ξ) = 1

and therefore
dta(ξ)T Jdta(ξ) = J .

Finally, we recall that Viterbo’s conjecture is invariant under symplectomorphisms,
since symplectomorphisms in the above convex setting preserve the volume as well
as the action and therefore the EHZ-capacity. ��
Proposition 2.9 Let C ⊂ R

2n and K , T ⊂ R
n be convex bodies. Then

vol(C) � cE H Z (C)n

n! ⇔ vol(λC) � cE H Z (λC)n

n!
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for λ > 0, and

vol(K × T ) � cE H Z (K × T )n

n! ⇔ vol(λK × μT ) � cE H Z (λK × μT )n

n!
for λ,μ > 0. If

	 : R
n → R

n

is an invertible linear transformation, then

vol(K × T ) � cE H Z (K × T )n

n!

⇔ vol

(

	(K ) ×
(

	T
)−1

(T )

)

�
cE H Z

(

	(K ) × (

	T
)−1

(T )
)n

n! .

Proof We have
vol(λC) = λ2n vol(C)

and
cE H Z (λC) = λ2cE H Z (C)

due to the 2-homogeneity of the action. Further,

vol(λK × μT ) = vol(λK ) vol(μK ) = λnμn vol(K ) vol(T ) = λnμn vol(K × T )

and
cE H Z (λK × μT ) = min

q∈Fcp(λK )
�μT (q) = λμ min

q∈Fcp(K )
�T (q)

due to Theorem 2.7 and [36, Proposition 3.11(ii) and (iv)] (see also Lemma 3.12).
Furthermore,

	 ×
(

	T
)−1

is a symplectomorphism, i.e.,

(

	 ×
(

	T
)−1

)T

J

(

	 ×
(

	T
)−1

)

= J .

Indeed, for a, b ∈ R
n , we calculate

(

	 ×
(

	T
)−1

)T

J

(

	 ×
(

	T
)−1

)

(a, b) =
(

	 ×
(

	T
)−1

)T

J

(

	(a),
(

	T
)−1

(b)

)

=
(

	 ×
(

	T
)−1

)T (

(

	T
)−1

(b),−	(a)

)

=
(

	T × 	−1
)

(

(

	T
)−1

(b),−	(a)

)

=
(

	T
(

(

	T
)−1

(b)

)

,	−1(−	(a))

)
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=(b,−a)

=J (a, b),

where we used the facts

(

	T
)T = 	 and

(

	T
)−1 =

(

	−1
)T

.

Finally, we recall that, in the above convex setting, every symplectomorphism pre-
serves the volume as well as the action and therefore the EHZ-capacity.

��
Proposition 2.10 If T ⊂ R

n is a centrally symmetric convex body and

	 : R
n → R

n

an invertible linear transformation, then

vol(T ) vol(T ◦) � 4n

n! ⇔ vol(	(T )) vol(	(T )◦) � 4n

n! .

Proof Because of

	(T )◦ =
(

	T
)−1 (

T ◦)

and the volume preservation of

	 ×
(

	T
)−1

,

we have

vol (	(T )) vol
(

(	(T ))◦
) = vol

(

	(T ) × 	(T )◦
)

= vol

(

	(T ) ×
(

	T
)−1

(T ◦)
)

= vol

((

	 ×
(

	T
)−1

)

(T × T ◦)
)

= vol(T × T ◦)
= vol(T ) vol(T ◦).

��

3 Properties of Minkowski worm problems

We begin by concluding some basic properties of the set

A(T , α), T ∈ C(Rn), α > 0.
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We note that all of the following properties can be easily extended to the case α � 0.
Nevertheless, for the sake of simplicity and in order to avoid trivial case distinctions
when it is not possible to divide by α, for the following we just treat the case α > 0.

Proposition 3.1 Let T ⊂ R
n be a convex body and α, λ, μ > 0. Then we have

A(λT , μα) = μ

λ
A(T , α).

Proof We have

A(λT , μα) = {K ∈ C(Rn) : LλT (μα) ⊆ C(K )}.

Because of
�λT (q) = �T (λq)

(see Proposition 2.6) we conclude

q ∈ LλT (μα) ⇔ λq ∈ LT (μα)

which together with
q ∈ C(K ) ⇔ λq ∈ C(λK )

implies

A(λT , μα) ={K ∈ C(Rn) : q ∈ LλT (μα) ⇒ q ∈ C(K )}
={K ∈ C(Rn) : λq ∈ LT (μα) ⇒ λq ∈ C(λK )}

(K ∗=λK )=
(q∗=λq)

{

1

λ
K ∗ ∈ C(Rn) : q∗ ∈ LT (μα) ⇒ q∗ ∈ C(K ∗)

}

=1

λ
A(T , μα).

Again referring to Proposition 2.6 we conclude

�T (q) = μα ⇔ �T

(

q

μ

)

= α,

and therefore
q ∈ LT (μα) ⇔ q

μ
∈ LT (α).

This implies

A(T , μα) ={K ∈ C(Rn) : q ∈ LT (μα) ⇒ q ∈ C(K )}
=

{

K ∈ C(Rn) : q

μ
∈ LT (α) ⇒ q

μ
∈ C

(

K

μ

)}

(K ∗= K
μ

)=
(q∗= q

μ
)
{μK ∗ ∈ C(Rn) : q∗ ∈ LT (α) ⇒ q∗ ∈ C(K ∗)}
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=μA(T , α).

��
Proposition 3.2 Let T ⊂ R

n be a convex body and α1, α2 > 0. Then, we have

α1

⎧

⎨

⎩

�
<

=

⎫

⎬

⎭

α2 ⇒ A(T , α1)

⎧

⎨

⎩

⊇
�

=

⎫

⎬

⎭

A(T , α2).

Proof We find μ > 0 such that
μα1 = α2.

Then, using Proposition 3.1 we have

A(T , α2) = A(T , μα1) = μA(T , α1). (14)

This implies

α1

{

�
<

}

α2 ⇔ μ

{

�
>

}

1 ⇔ A(T , α1)

⎧

⎨

⎩

⊇
�

=

⎫

⎬

⎭

A(T , α2),

where the last equivalence follows from the following considerations: If we have (14)
with μ � 1, then

K ∈ A(T , α2) = μA(T , α1)

means that
1

μ
K ∈ A(T , α1),

i.e.,

LT (α1) ⊆ C

(

1

μ
K

)

⊆ C(K ).

This implies
K ∈ A(T , α1)

and therefore
A(T , α2) ⊆ A(T , α1).

The case μ > 1 follows by considering that in this case there can be find a convex
body K ∗ with

K ∗ ∈ A(T , α1) \ A(T , α2).

Indeed, for
K ∈ A(T , α2)

we define
̂K :=̂λK , ̂λ := min{0 < λ � 1 : λK ∈ A(T , α2)}.
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Then, one has
̂K ∈ A(T , α2)

and with (14)
1

μ
̂K ∈ A(T , α1).

with

K ∗ := 1

μ
̂K

it follows
K ∗ ∈ A(T , α1) \ A(T , α2)

by the definition of ̂K . ��
For convex body T ⊂ R

n and α > 0 we define the set

A�(T , α) =
{

K ∈ C(Rn) : L�
T (α) ⊆ C(K )

}

,

where
L�

T (α) = {

q ∈ cc(Rn) : 0 < �T (q) � α
} =

⋃

0<α̃�α

LT (̃α) .

Then, we have the following identity:

Proposition 3.3 Let T ⊂ R
n be a convex body and α > 0. Then, we have

A(T , α) = A�(T , α).

Proof By definition it is clear that

A�(T , α) ⊆ A(T , α).

Indeed, if
K ∈ A�(T , α),

then this means
LT (̃α) ⊆ C(K ), for all 0 < α̃ � α.

For α̃ = α it follows
LT (α) ⊆ C(K )

and therefore
K ∈ A(T , α).

Let 0 < α̃ � α. Then, it follows from Proposition 3.2 that

A(T , α) ⊆ A (T , α̃) , for all 0 < α̃ � α.
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This implies
A(T , α) ⊆

⋂

0<α̃�α

A (T , α̃) = A�(T , α).

��
Proposition 3.4 Let α > 0 and T1, T2 ⊂ R

n be two convex bodies. Then, we have

T1 ⊆ T2 ⇒ A(T1, α) ⊆ A(T2, α).

Proof Let
T1 ⊆ T2.

If
K ∈ A(T1, α),

then it follows from Proposition 3.3 that

L�
T1

(α) ⊆ C(K ).

Because of
�T1(q) � �T2(q) for all q ∈ cc(Rn),

as consequence of
μT ◦

1
(x) � μT ◦

2
(x) ∀x ∈ R

n,

it follows that
L�

T2
(α) ⊆ L�

T1
(α)

and therefore
L�

T2
(α) ⊆ C(K ).

With Proposition 3.3 this implies

K ∈ A (T2, α) .

Consequently, it follows
A(T1, α) ⊆ A(T2, α).

��
Lemma 3.5 Let T ⊂ R

n be a convex body and α > 0. Further, let K1, K2 ⊂ R
n be

two convex bodies with
K1 ⊆ K2.

Then it holds:
K1 ∈ A(T , α) ⇒ K2 ∈ A(T , α).

Proof Let
K1 ∈ A(T , α),

123



Viterbo’s conjecture as a worm problem 241

i.e.,
LT (α) ⊆ C(K1).

It obviously holds
K1 ⊆ K2 ⇒ C(K1) ⊆ C(K2).

Therefore
LT (α) ⊆ C(K2),

i.e.,
K2 ∈ A(T , α).

��
For the next lemma we recall the following: If (M, d) is a metric space and P(M)

the set of all nonempty compact subsets of M , then (P(M), dH ) is a metric space,
where by dH we denote theHausdorff metric dH which for nonempty compact subsets
X , Y of (M, d) is defined by

dH (X , Y ) = max

{

sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)

}

.

Then, (cc(Rn), dH ) is a metric subspace of the complete metric space (P(Rn), dH )

which is induced by the Euclidean space (Rn, | · |). For convex body K ⊂ R
n we

consider
(Fcc(K ), dH ) and (C(K ), dH )

as metric subspaces of (cc(Rn), dH ). We have that

Fcc(K ) \ C(K ) and C(K )

are complements of each other in cc(Rn).

Lemma 3.6 Let K ⊂ R
n be a convex body. Then, (C(K ), dH ) is a closed metric

subspace of (cc(Rn), dH ).

Proof SinceC(K ) is a subset of cc(Rn), (C(K ), dH ) is ametric subspace of themetric
space (cc(Rn), dH ). It remains to show that C(K ) is a closed subset of cc(Rn). For
that let (q j ) j∈N be a sequence of closed curves in C(K ) dH -converging to the closed
curve q∗. If

q∗ /∈ C(K ),

then q∗ cannot be translated into K . Using the closedness of K in R
n this means

min
k∈Rn

dH
(

∂conv{K + k, q∗}, ∂(K + k)
) =: m > 0.

Then, we can find a j0 ∈ N such that

dH (p j , q∗) < m
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for all j � j0. But this implies

min
k∈Rn

dH
(

∂conv{K + k, q j }, ∂(K + k)
)

> 0

for all j � j0, i.e., p j cannot be translated into K for all j � j0, a contradiction to

q j ∈ C(K ) ∀ j ∈ N.

Therefore, it follows
q∗ ∈ C(K ),

and consequently, (C(K ), dH ) is a closed metric subspace of (cc(Rn), dH ). ��
Lemma 3.7 Let T ⊂ R

n be a convex body and (αk)k∈N an increasing sequence of
positive real numbers converging to α > 0 for k → ∞. If

K ∈ A(T , αk) ∀k ∈ N,

then also
K ∈ A(T , α).

Proof Let
K ∈ A(T , αk) ∀k ∈ N,

i.e.,
LT (αk) ⊆ C(K ) ∀k ∈ N. (15)

This means for all k ∈ N that for all

q ∈ cc(Rn) with �T (q) = αk

holds
q ∈ C(K ).

Let us assume that
K /∈ A(T , α),

i.e.,
LT (α) � C(K ).

This means that there is a q∗ ∈ cc(Rn) with

�T (q∗) = α and q∗ ∈ Fcc(K ) \ C(K ).

Due to Lemma 3.6 (C(K ), dH ) is a closed metric subspace of (cc(Rn), dH ). Since
Fcc(K ) \ C(K ) is the complement of C(K ) in cc(Rn) it follows that Fcc(K ) \ C(K )

is an open subset of the metric space (cc(Rn), dH ). Consequently there is a k0 ∈ N

sufficiently big such that

q∗ αk

α
∈ Fcc(K ) \ C(K ) ∀k � k0. (16)
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But with [36, Proposition 3.11(iv)] it is

�T

(

q∗ αk

α

)

= �T
(

q∗) αk

α
= αk ∀k ∈ N,

i.e.,
q∗ αk

α
∈ LT (αk) ∀k ∈ N,

which produces a contradiction between (15) and (16).
Therefore it follows

K ∈ A(T , α).

��
The next proposition justifies to write “min” instead of “inf” within the Minkowski

worm problem. The main ingredient of its proof will be Blaschke’s selection theorem
(see [10, Sect. 18]).

Theorem 3.8 (Blaschke selection theorem) Let (Ck)k∈N be a sequence of convex
bodies in R

n satisfying
Ck ⊂ Bn

R, R > 0,

for all k ∈ N. Then there is a subsequence (Ckl )l∈N and a convex body C in R
n such

that Ckl dH -converges to C for l → ∞.

Proposition 3.9 Let T be a convex body and α > 0. Then we have

inf
K∈A(T ,α)

vol(K ) = min
K∈A(T ,α)

vol(K ).

Proof Let (Kk)k∈N be a minimizing sequence of

inf
K∈A(T ,α)

vol(K ). (17)

Then, there is a k0 ∈ N and a sufficiently big R > 0 such that

Kk ⊂ Bn
R ∀k � k0.

Indeed, if this is not the case, then there is a subsequence
(

Kk j

)

j∈N such that

R j := max{R > 0 : Kk j ∈ F(Bn
R)} → ∞ ( j → ∞). (18)

Guaranteeing

Kk j ∈ A(T , α) = {K ∈ C(Rn) : LT (α) ⊆ C(K )} ∀ j ∈ N

means that
Vj := vol

(

Kk j

) → ∞ ( j → ∞). (19)
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The latter follows together with (18) and the convexity of Kk j for all j ∈ N from the
fact that due to

LT (α) ⊆ C
(

Kk j

) ∀ j ∈ N

there is nodirection inwhich Kk j canbe shrunk.But (19) is not possible since
(

Kk j

)

j∈N
is a minimizing sequence of (17).

Applying Theorem 3.8, there is a subsequence (Kkl )l∈N and a convex body K ⊂ R
n

such that Kkl dH -converges to K for l → ∞. It remains to show that

K ∈ A(T , α).

The fact that Kkl dH -converges to K for l → ∞ implies that for every ε > 0 there
is an l0 ∈ N such that

(1 − ε)K ⊆ Kkl ⊆ (1 + ε)K ∀l � l0. (20)

Then, with
Kkl ∈ A(T , α) ∀l ∈ N

it follows from the second inclusion in (20) together with Lemma 3.5 that

(1 + ε)K ∈ A(T , α).

Applying Proposition 3.1 this means

K ∈ A

(

T ,
α

1 + ε

)

.

We define the sequence

αk := α

1 + 1
k

∀k ∈ N.

Then, (αk)k∈N is an increasing sequence of positive numbers converging to α for
k → ∞ and together with the aboved mentioned (ε > 0 can be chosen arbitrarily) we
have

K ∈ A (T , αk) ∀k ∈ N.

Applying Lemma 3.7 it follows

K ∈ A(T , α).

��
Proposition 3.10 Let T ⊂ R

n be a convex body and α, λ, μ > 0. Then we have

min
K∈A(λT ,μα)

vol(K ) = μn

λn
min

K∈A(T ,α)
vol(K ).
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Proof From

A(λT , μα) = 1

λ
A(T , μα)

(see Proposition 3.1) it follows

K ∈ A(λT , μα) ⇔ λK ∈ A(T , μα)

and therefore

min
K∈A(λT ,μα)

vol(K )
(K ∗=λK )= min

K ∗∈A(T ,μα)
vol

(

K ∗

λ

)

= 1

λn
min

K ∗∈A(T ,μα)
vol(K ∗).

From
A(T , μα) = μA(T , α)

(see Proposition 3.1) it follows

K ∈ A(T , μα) ⇔ K

μ
∈ A(T , α)

and therefore

min
K∈A(T ,μα)

vol(K )
(K ∗= K

μ
)= min

K ∗∈A(T ,α)
vol(μK ∗) = μn min

K ∗∈A(T ,α)
vol(K ∗).

��
Proposition 3.11 Let T ⊂ R

n be a convex body and α1, α2 > 0. Then, we have

α1

⎧

⎨

⎩

�
<

=

⎫

⎬

⎭

α2 ⇔ min
K∈A(T ,α1)

vol(K )

⎧

⎨

⎩

�
<

=

⎫

⎬

⎭

min
K∈A(T ,α2)

vol(K )

Proof We find μ > 0 such that
μα1 = α2.

Then, we apply Proposition 3.10. ��
Now, for convex bodies K , T ⊂ R

n we will turn our attention to the minimization
problem

min
q∈Fcp(K )

�T (q).

The existence of the minimum is guaranteed by Theorem 2.7.

Lemma 3.12 Let K , T ⊂ R
n be convex bodies and λ > 0. Then

min
q∈Fcp(λK )

�T (q) = min
q∈Fcp(K )

�T (λq) = λ min
q∈Fcp(K )

�T (q).
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Proof Similar to [36, Proposition 3.11(ii)] we have

q ∈ Fcp(λK ) ⇔ q

λ
∈ Fcp(K )

and using [36, Proposition 3.11(iv)] therefore

min
q∈Fcp(λK )

�T (q) = min
q
λ
∈Fcp(K )

�T (q)
(q∗= q

λ
)= min

q∗∈Fcp(K )
�T (λq∗) = λ min

q∗∈Fcp(K )
�T (q∗).

��
In the following for convex body T ⊂ R

n and c > 0 we consider the minimax
problem9

max
vol(K )=c

min
q∈Fcp(K )

�T (q).

The following proposition guarantees the existence of its maximum:

Proposition 3.13 Let T ⊂ R
n be a convex body and c > 0. Then, we have

sup
vol(K )=c

min
q∈Fcp(K )

�T (q) = max
vol(K )=c

min
q∈Fcp(K )

�T (q).

Proof Let (Kk)k∈N be a maximizing sequence of

sup
vol(K )=c

min
q∈Fcp(K )

�T (q). (21)

Then, there is a k0 ∈ N and an R > 0 such that

Kk ⊂ Bn
R ∀k � k0. (22)

Indeed, if this is not the case, then there is a subsequence
(

Kk j

)

j∈N such that

R j := max{R > 0 : Kk j ∈ F(Bn
R)} → ∞ ( j → ∞). (23)

But this implies

L j := min
{

�T (q) : q ∈ Fcp(Kk j )
} → 0 ( j → ∞). (24)

This follows from the fact that for every j ∈ N we can find a

q j ∈ Fcp(Kk j )

9 Whenever we write
max

vol(K )=c
min

q∈Fcp(K )
�T (q)

the maximum is understood to consider only convex bodies K ⊂ R
n . This is implicitly indicated by the

fact that we defined Fcp(K ) only for convex bodies K ⊂ R
n .
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with
�T (q j ) → 0 ( j → ∞).

The latter is a consequence of (23) and the constraint

vol
(

Kk j

) = c ∀ j ∈ N, (25)

i.e., due to the convexity of Kk j for all j ∈ N guaranteeing (25) there are directions
from the origin in which Kk j has to shrink for j → ∞ and which are suitable in order
to construct convenient q j . But (24) is not possible since

(

Kk j

)

j∈N is a maximizing
sequence of (21).

Then, we apply Theorem 3.8 and find a subsequence (Kkl )l∈N and a convex body
K ⊂ R

n such that Kkl dH -converges to K for l → ∞. It remains to prove that

vol(K ) = c,

but this is an immediate consequence of the dH -continuity of the volume function. ��
Proposition 3.14 Let T ⊂ R

n be a convex body. Then,

max
vol(K )=c

min
q∈Fcp(K )

�T (q)

increases/decreases strictly if and only if this is the case for c > 0.

Proof We make use of the implication

max
vol(K )=c1

min
q∈Fcp(K )

�T (q) = max
vol(K )=c2

min
q∈Fcp(K )

�T (q) ⇒ c1 = c2 (26)

for all c1, c2 > 0.
Let us verify (26): We assume

max
vol(K )=c1

min
q∈Fcp(K )

�T (q) = max
vol(K )=c2

min
q∈Fcp(K )

�T (q) (27)

and without loss of generality c1 < c2. Let the pair

(K ∗
1 , q∗

1 ) with vol(K ∗
1 ) = c1 and q∗

1 ∈ Fcp(K ∗
1 )

be a maximizer of the left side in (27), i.e.,

max
vol(K )=c1

min
q∈Fcp(K )

�T (q) = min
q∈Fcp(K ∗

1 )
�T (q) = �T (q∗

1 ).

With
q∗
1 ∈ Fcp(K ∗

1 )
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similar to [36, Proposition 3.11(ii)] we have

n

√

c2
c1

q∗
1 ∈ Fcp (

˜K
)

for
˜K := n

√

c2
c1

K ∗
1 .

From
min

q∈Fcp(K ∗
1 )

�T (q) = �T (q∗
1 )

it follows together with Lemma 3.12 that

min
q∈Fcp(˜K)

�T (q) = min
q∈Fcp

(

n
√

c2
c1

K ∗
1

)

�T (q) = n

√

c2
c1

min
q∈Fcp(K ∗

1 )
�T (q) = n

√

c2
c1

�T (q∗
1 ).

Since

vol
(

˜K
) = vol

(

n

√

c2
c1

K ∗
1

)

= c2
c1

vol(K ∗
1 ) = c2,

we conclude

max
vol(K )=c1

min
q∈Fcp(K )

�T (q) = min
q∈Fcp(K ∗

1 )
�T (q) = �T (q∗

1 )

< n

√

c2
c1

�T (q∗
1 )

= min
q∈Fcp(˜K)

�T (q)

� max
vol(K )=c2

min
q∈Fcp(K )

�T (q),

which is a contradiction to (27). Therefore, noting that the assumption c1 > c2 would
have led analogously to the same contradiction, it follows

c1 = c2.

We now prove the equivalence

max
vol(K )=c1

min
q∈Fcp(K )

�T (q) < max
vol(K )=c2

min
q∈Fcp(K )

�T (q) ⇔ c1 < c2 (28)

for c1, c2 > 0.
If

max
vol(K )=c1

min
q∈Fcp(K )

�T (q) < max
vol(K )=c2

min
q∈Fcp(K )

�T (q), (29)
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then from the first part of the proof it necessarily follows c1 �= c2. Let us assume
c1 > c2. We further assume that the pair

(K ∗
2 , q∗

2 ) with vol(K ∗
2 ) = c2 and q∗

2 ∈ Fcp(K ∗
2 )

is a maximizer of the right side in (29), i.e.,

max
vol(K )=c2

min
q∈Fcp(K )

�T (q) = min
q∈K ∗

2

�T (q) = �T (q∗
2 ).

We define
̂K := n

√

c1
c2

K ∗
2 .

From
min
q∈K ∗

2

�T (q) = �T (q∗
2 )

it follows together with Lemma 3.12 that

min
q∈Fcp(̂K)

�T (q) = min
q∈Fcp

(

n
√

c1
c2

K ∗
2

)

�T (q) = n

√

c1
c2

min
q∈Fcp(K ∗

2 )
�T (q) = n

√

c1
c2

�T (q∗
2 ).

Since

vol
(

̂K
) = vol

(

n

√

c1
c2

K ∗
2

)

= c1
c2

vol(K ∗
2 ) = c1,

we conclude

max
vol(K )=c2

min
q∈Fcp(K )

�T (q) = min
q∈Fcp(K ∗

2 )
�T (q) = �T (q∗

2 )

< n

√

c1
c2

�T (q∗
2 )

= min
q∈Fcp(̂K)

�T (q)

� max
vol(K )=c1

min
q∈Fcp(K )

�T (q),

which is a contradiction to (29). Therefore, we conclude c1 < c2.
Conversely, let c1 < c2. From (26) we conclude

max
vol(K )=c1

min
q∈Fcp(K )

�T (q) �= max
vol(K )=c2

min
q∈Fcp(K )

�T (q). (30)

If the strict inequality “>” holds in (30), then we conclude from the above proven
implication “⇒” in (28) that c1 > c2, a contradiction. Therefore, it follows

max
vol(K )=c1

min
q∈Fcp(K )

�T (q) < max
vol(K )=c2

min
q∈Fcp(K )

�T (q).

��
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Proposition 3.15 Let K , T ⊂ R
n be convex bodies with q∗ as minimizer of

min
q∈Fcp(K )

�T (q).

Then, it follows

K ∈ A(T , �T (q∗)) = A

(

T , min
q∈Fcp(K )

�T (q)

)

.

Proof Let q∗ be a minimizer of

min
q∈Fcp(K )

�T (q).

Then, it follows
LT (�T (q∗)) ⊆ C(K ).

Indeed, otherwise, if there is

q̃ ∈ LT (�T (q∗)) \ C(K ),

i.e.,
�T (q̃) = �T (q∗) and q̃ ∈ Fcc(K ) \ C(K ),

then, due to the openess of

Fcc(K ) \ C(K ) in cc(Rn)

with respect to dH (see Lemma 3.6), there is a λ < 1 such that

λq̃ ∈ Fcc(K ) \ C(K ).

Then, using [36, Proposition 3.11(iv)], we conclude

�T (λq̃) = λ�T (q̃) < �T (q̃) = �T (q∗) = min
q∈Fcp(K )

�T (q).

Because of the dH -density of Fcp(K ) in Fcc(K ) and the dH -continuity of �T on
Fcc(K ) (see [36, Proposition 3.11(v)]–which is also valid for closed curves) then we
can find a

q̂ ∈ Fcp(K )

with
�T (q̂) < min

q∈Fcp(K )
�T (q),

a contradiction.
Finally, from

LT (�T (q∗)) ⊆ C(K )
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it follows

K ∈ A(T , �T (q∗)) = A

(

T , min
q∈Fcp(K )

�T (q)

)

.

��
Lemma 3.16 Let K ⊂ R

n be a convex body and λ > 1. If

q ∈ Fcc(K ) ∩ C(K ), (31)

then it follows that
λq ∈ Fcc(K ) \ C(K ). (32)

Proof If we assume (31) but (32) does not hold. Then it follows

q, λq ∈ C(K )

and due to λ > 1 therefore
q ∈ C

(

K̊
)

.

But this is a contradiction to
q ∈ Fcc(K ).

Therefore, it follows (32). ��
Proposition 3.17 Let T ⊂ R

n be a convex body and α > 0. If K ∗ is a minimizer of

min
K∈A(T ,α)

vol(K ), (33)

then
min

q∈Fcp(K ∗)
�T (q) = α.

Proof If q∗ is a minimizer of
min

q∈Fcp(K ∗)
�T (q),

then it follows from Proposition 3.15 that

K ∗ ∈ A(T , �T (q∗)).

This means
min

K∈A(T ,�T (q∗))
vol(K ) � vol(K ∗) = min

K∈A(T ,α)
vol(K ).

Proposition 3.11 implies
�T (q∗) � α.

If
�T (q∗) < α,
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then with Proposition [36, Proposition 3.11(iv)] there is λ > 1 such that

�T (λq∗) = α.

Together with
Fcp(K ∗) ⊆ Fcc(K ∗)

and Lemma 3.16 the fact
q∗ ∈ Fcp(K ∗)

implies
λq∗ ∈ Fcc(K ∗) \ C(K ∗),

therefore, there is no translate of K ∗ that covers λq∗. Consequently,

K ∗ /∈ A(T , �T (λq∗)) = A(T , α),

a contradiction to the fact that K ∗ is a minimizer of (33). Therefore, it follows that

min
q∈Fcp(K ∗)

�T (q) = �T (q∗) = α.

��
The idea which underlies the following theorem leads to the heart of this paper.

Theorem 3.18 Let T ⊂ R
n be a convex body. If K ∗ is a minimizer of

min
K∈A(T ,α)

vol(K ) (34)

for α > 0, then K ∗ is a maximizer of

max
vol(K )=c

min
q∈Fcp(K )

�T (q) (35)

for
c := vol(K ∗)

with
min

q∈Fcp(K ∗)
�T (q) = α.

Conversely, if K ∗ is a maximizer of (35) for c > 0, then K ∗ is a minimizer of (34)
for

α := min
q∈Fcp(K ∗)

�T (q)

and with
vol(K ∗) = c.
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Consequently, for α, c > 0 we have the equivalence

min
K∈A(T ,α)

vol(K ) = c ⇔ max
vol(K )=c

min
q∈Fcp(K )

�T (q) = α

and moreover

min
K∈A(T ,α)

vol(K ) � c ⇔ max
vol(K )=c

min
q∈Fcp(K )

�T (q) � α. (36)

Proof Let K ∗ be a minimizer of (34) for α > 0. If K ∗ is not a maximizer of (35) for

c = vol(K ∗),

then there is a convex body

K ∗∗ ⊂ R
n with vol(K ∗∗) = c

and a
q∗∗ ∈ Fcp(K ∗∗)

such that
�T (q∗∗) = min

q∈Fcp(K ∗∗)
�T (q) > min

q∈Fcp(K ∗)
�T (q) = �T (q∗), (37)

where by q∗ we denote a minimizer of

min
q∈Fcp(K ∗)

�T (q).

From Proposition 3.15 it follows

K ∗∗ ∈ A(T , �T (q∗∗)), (38)

and further from Proposotion 3.17 that

min
q∈Fcp(K ∗)

�T (q) = �T (q∗) = α. (39)

From (37), (38) and (39) together with Proposition 3.11 we conclude

c = vol(K ∗∗)
(38)

� min
K∈A(T ,�T (q∗∗))

vol(K )
(37)
> min

K∈A(T ,�T (q∗))
vol(K )

(39)= min
K∈A(T ,α)

vol(K )

= vol(K ∗)
= c,
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a contradiction. Therefore, K ∗ is a maximizer of (35) for

c = vol(K ∗).

Conversely, let K ∗ be a maximizer of (35) for c > 0 with

q∗ ∈ Fcp(K ∗)

such that

max
vol(K )=c

min
q∈Fcp(K )

�T (q) = min
q∈Fcp(K ∗)

�T (q) = �T (q∗) =: α.

Then, from Proposition 3.15 it follows that

K ∗ ∈ A(T , α),

and consequently
c = vol(K ∗) � min

K∈A(T ,α)
vol(K ).

If K ∗ is not a minimizer of (34) for

α = �T (q∗),

then there is a
K ∗∗ ∈ A(T , α)

with
c = vol(K ∗) > min

K∈A(T ,α)
vol(K ) = vol(K ∗∗). (40)

Then, from Proposition 3.17 it follows that

min
q∈Fcp(K ∗∗)

�T (q) = α.

This implies

max
vol(K )=c

min
q∈Fcp(K )

�T (q) = min
q∈Fcp(K ∗)

�T (q) = �T (q∗)

= α

= min
q∈Fcp(K ∗∗)

�T (q)

� max
vol(K )=vol(K ∗∗)

min
q∈Fcp(K )

�T (q),

which because of (40) is a contradiction to Proposition 3.14. We conclude that K ∗ is
a minimizer of (34) for

α = �T (q∗).
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From the before proven it clearly follows the equivalence

min
K∈A(T ,α)

vol(K ) = c ⇔ max
vol(K )=c

min
q∈Fcp(K )

�T (q) = α

for α, c > 0. In order to prove (36) it remains to show

min
K∈A(T ,α)

vol(K ) > c ⇔ max
vol(K )=c

min
q∈Fcp(K )

�T (q) < α.

Let K ∗ be a minimizer of
min

K∈A(T ,α)
vol(K ),

where c > 0 is chosen such that

vol(K ∗) > c. (41)

Then we know from the above reasoning that K ∗ is a maximizer of

max
vol(K )=vol(K ∗)

min
q∈Fcp(K )

�T (q)

with
min

q∈Fcp(K ∗)
�T (q) = α.

From (41) and Proposition 3.14 it follows

max
vol(K )=c

min
q∈Fcp(K )

�T (q) < max
vol(K )=vol(K ∗)

min
q∈Fcp(K )

�T (q) = α.

Conversely, let K ∗ be a maximizer of

max
vol(K )=c

min
q∈Fcp(K )

�T (q),

where α > 0 is chosen such that

min
q∈Fcp(K ∗)

�T (q) =: α̃ < α.

Then we know from the above reasoning that K ∗ is a minimizer of

min
T ∈A(T ,̃α)

vol(K ),

and from Proposition 3.11 it follows

min
K∈A(T ,α)

vol(K ) > min
K∈A(T ,̃α)

vol(K ) = vol(K ∗) = c.

��
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Hereinafter we will deal with the following two minimax problems10: For α, d > 0
we will consider

min
vol(T )=d

min
K∈A(T ,α)

vol(K ),

and for c, d > 0 we will consider

max
vol(T )=d

max
vol(K )=c

min
q∈Fcp(K )

�T (q).

It is indeed justified to write “min” and “max” respectively:

Proposition 3.19 Let α, d > 0. Then we have

inf
vol(T )=d

min
K∈A(T ,α)

vol(K ) = min
vol(T )=d

min
K∈A(T ,α)

vol(K ).

Proof Let (Tk)k∈N be a minimizing sequence of

inf
vol(T )=d

min
K∈A(T ,α)

vol(K ). (42)

Then there is an R > 0 and a k0 ∈ N such that

Tk ⊂ Bn
R ∀k � k0.

Indeed, if this is not the case, then there is a subsequence
(

Tk j

)

j∈N such that

R j := max
{

R > 0 : Tk j ∈ F
(

Bn
R

)} → ∞ ( j → ∞). (43)

This implies

Vj : = min
{

vol(K ) : K ∈ A
(

Tk j , α
)}

= min
{

vol(K ) : K ∈ C(Rn), LTk j
(α) ⊆ C(K )

}

→ ∞ ( j → ∞).

The latter follows from the fact that—(43) together with the convexity of Tk j for all
j ∈ N and the constraint

vol
(

Tk j

) = d ∀ j ∈ N

10 Whenever we write
min

vol(T )=d
min

K∈A(T ,α)
vol(K )

or
max

vol(T )=d
max

vol(K )=c
min

q∈Fcp(K )
�T (q)

the minimum/maximum is understood to consider only convex bodies T ⊂ R
n . This is implicitly indicated

by the fact that we defined A(·, α) and �·(q) only for convex bodies T ⊂ R
n .
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means that there are directions from the origin in which Tk j has to shrink for j → ∞–
for every j ∈ N we can find

q j ∈ LTk j
(α)

(q j can be constructed by using the aforementioned directions) for which

�Tk j
(q j ) = α

means
max

t∈[0,˜Tj ]
|q j (t)| → ∞ ( j → ∞),

where by ˜Tj we denote the period of the closed curve q j , and for every convex body
K j ⊂ R

n minimizing

min
{

vol(K ) : K ∈ C(Rn), LTk j
(α) ⊆ C(K )

}

means
Vj = vol(K j ) → ∞ ( j → ∞).

But this is not possible since (Tk)k∈N is a minimizing sequence of (42).
Then, we can apply Theorem 3.8: There is a subsequence

(

Tkl

)

l∈N and a convex
body T ⊂ R

n such that Tkl dH -converges to T for l → ∞. We clearly have

vol(T ) = vol

(

lim
l→∞ Tkl

)

= lim
l→∞ vol

(

Tkl

) = d.

Therefore, T is a minimizer of (42). ��
Proposition 3.20 Let c, d > 0. Then we have

sup
vol(T )=d

max
vol(K )=c

min
q∈Fcp(K )

�T (q) = max
vol(T )=d

max
vol(K )=c

min
q∈Fcp(K )

�T (q). (44)

Proof Let α > 0 and let us consider the minimax problem

min
vol(T )=d

min
K∈A(T ,α)

vol(K ). (45)

Let the pair
(K ∗, T ∗) with vol(T ∗) = d and K ∗ ∈ A(T ∗, α)

be a minimizer of (45), i.e., it is

min
vol(T )=d

min
K∈A(T ,α)

vol(K ) = min
K∈A(T ∗,α)

vol(K ) = vol(K ∗) =: c̃.

By Theorem 3.18 K ∗ is a maximizer of

max
vol(K )=c̃

min
q∈Fcp(K )

�T ∗(q)
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with
min

q∈Fcp(K ∗)
�T ∗(q) = α.

Then, due to
vol(T ∗) = d

we clearly have

α = max
vol(K )=c̃

min
q∈Fcp(K )

�T ∗(q) � sup
vol(T )=d

max
vol(K )=c̃

min
q∈Fcp(K )

�T (q). (46)

If this is a strict inequality, then there is a pair of convex bodies

(K ∗∗, T ∗∗) with vol(T ∗∗) = d and vol(K ∗∗) = c̃

such that
α < max

vol(K )=c̃
min

q∈Fcp(K )
�T ∗∗(q) = min

q∈Fcp(K ∗∗)
�T ∗∗(q) =: α̃.

Then, by Theorem 3.18 K ∗∗ is a minimizer of

min
K∈A(T ∗∗ ,̃α)

vol(K )

with
min

K∈A(T ∗∗ ,̃α)
vol(K ) = vol(K ∗∗) = c̃.

Now, α̃ > α together with Proposition 3.11 implies

c̃ = vol(K ∗∗) = min
K∈A(T ∗∗ ,̃α)

vol(K ) � min
vol(T )=d

min
K∈A(T ,̃α)

vol(K )

> min
vol(T )=d

min
K∈A(T ,α)

vol(K )

= min
K∈A(T ∗,α)

vol(K )

= vol(K ∗)
= c̃,

a contradiction. Therefore, it follows that the inequality in (46) is in fact an equality,
i.e.,

sup
vol(T )=d

max
vol(K )=c̃

min
q∈Fcp(K )

�T (q) = α = min
q∈Fcp(K ∗)

�T ∗(q).

This means that the pair (K ∗, T ∗) is a maximizer of

sup
vol(T )=d

max
vol(K )=c̃

min
q∈Fcp(K )

�T (q).

Since it is sufficient to prove the claim (44) for one c > 0, we are done. ��
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Theorem 3.21 If the pair (K ∗, T ∗) is a minimizer of

min
vol(T )=d

min
K∈A(T ,α)

vol(K ) (47)

for α, d > 0, then (K ∗, T ∗) is a maximizer of

max
vol(T )=d

max
vol(K )=c

min
q∈Fcp(K )

�T (q) (48)

for
c := vol(K ∗)

with
min

q∈Fcp(K ∗)
�T ∗(q) = α.

Conversely, if the pair (K ∗, T ∗) is a maximizer of (48) for c, d > 0, then (K ∗, T ∗)
is a minimizer of (47) for

α := min
q∈Fcp(K ∗)

�T ∗(q)

with
vol(K ∗) = c.

Consequently, for α, c, d > 0 we have the equivalence

min
vol(T )=d

min
K∈A(T ,α)

vol(K ) = c ⇔ max
vol(T )=d

max
vol(K )=c

min
q∈Fcp(K )

�T (q) = α

and moreover

min
vol(T )=d

min
K∈A(T ,α)

vol(K ) � c ⇔ max
vol(T )=d

max
vol(K )=c

min
q∈Fcp(K )

�T (q) � α. (49)

Proof Let the pair (K ∗, T ∗) be a minimizer of (47) for α, d > 0, i.e., it is

vol(T ∗) = d and K ∗ ∈ A(T ∗, α)

such that
min

vol(T )=d
min

K∈A(T ,α)
vol(K ) = min

K∈A(T ∗,α)
vol(K ) = vol(K ∗).

Then, in the proof of Proposition 3.20 we have seen that (K ∗, T ∗) is a maximizer of
(48) for

c := vol(K ∗) with min
q∈Fcp(K ∗)

�T ∗(q) = α.

Conversely, let the pair (K ∗, T ∗) be amaximizer of (48) for c, d > 0, i.e., K ∗, T ∗ ⊂
R

n are convex bodies of volume c and d, respectively, such that

max
vol(T )=d

max
vol(K )=c

min
q∈Fcp(K )

�T (q) = max
vol(K )=c

min
q∈Fcp(K )

�T ∗(q)
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= min
q∈Fcp(K ∗)

�T ∗(q)

=: α.

By Theorem 3.18 K ∗ minimizes

min
K∈A(T ∗,α)

vol(K )

with
vol(K ∗) = c.

Then, we clearly have

c = vol(K ∗) = min
K∈A(T ∗,α)

vol(K ) � min
vol(T )=d

min
K∈A(T ,α)

vol(K ).

If this is a strict inequality, then there is a pair (K ∗∗, T ∗∗) with

c > min
vol(T )=d

min
K∈A(T ,α)

vol(K ) = min
K∈A(T ∗∗,α)

vol(K ) = vol(K ∗∗) =: c̃,

where
K ∗∗ ∈ A(T , α)

and T ∗∗ ⊂ R
n is a convex body of volume d. Then, by Theorem 3.18 K ∗∗ is a

maximizer of
max

vol(K )=c̃
min

q∈Fcp(K )
�T ∗∗(q)

with
max

vol(K )=c̃
min

q∈Fcp(K )
�T ∗∗(q) = min

q∈Fcp(K ∗∗)
�T ∗∗(q) = α.

Now, c̃ < c together with Proposition 3.14 implies

α = min
q∈Fcp(K ∗∗)

�T ∗∗(q) = max
vol(K )=c̃

min
q∈Fcp(K )

�T ∗∗(q)

� max
vol(T )=d

max
vol(K )=c̃

min
q∈Fcp(K )

�T (q)

< max
vol(T )=d

max
vol(K )=c

min
q∈Fcp(K )

�T (q)

= max
vol(K )=c

min
q∈Fcp(K )

�T ∗(q)

= min
q∈Fcp(K ∗)

�T ∗(q)

= α,

a contradiction. Therefore,

min
vol(T )=d

min
K∈A(T ,α)

vol(K ) = c = vol(K ∗) = min
K∈A(T ∗,α)

vol(K ),
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i.e., the pair (K ∗, T ∗) is a minimizer of (47).
From the before proven it clearly follows the equivalence

min
vol(T )=d

min
K∈A(T ,α)

vol(K ) = c ⇔ max
vol(T )=d

max
vol(K )=c

min
q∈Fcp(K )

�T (q) = α.

for α, c, d > 0.
In order to prove (49) it is sufficient to show

min
vol(T )=d

min
K∈A(T ,α)

vol(K ) > c ⇔ max
vol(T )=d

max
vol(K )=c

min
q∈Fcp(K )

�T (q) < α.

Let the pair (K ∗, T ∗) be a minimizer of

min
vol(T )=d

min
K∈A(T ,α)

vol(K ),

where c > 0 is chosen such that

c < min
vol(T )=d

min
K∈A(T ,α)

vol(K ) = min
K∈A(T ∗,α)

vol(K ) = vol(K ∗) =: c̃.

From above reasoning we know that (K ∗, T ∗) maximizes (48) (for c replaced by c̃),
i.e., K ∗, T ∗ ⊂ R

n are convex bodies of volume c̃ and d, respectively, such that

max
vol(T )=d

max
vol(K )=c̃

min
q∈Fcp(K )

�T (q) = max
vol(K )=c̃

min
q∈Fcp(K )

�T ∗(q)

= min
q∈Fcp(K ∗)

�T ∗(q)

= α.

Now, c < c̃ together with Proposition 3.14 implies

max
vol(T )=d

max
vol(K )=c

min
q∈Fcp(K )

�T (q) < max
vol(T )=d

max
vol(K )=c̃

min
q∈Fcp(K )

�T (q) = α.

Conversely, let (K ∗, T ∗) be a maximizer of

max
vol(T )=d

max
vol(K )=c

min
q∈Fcp(K )

�T (q),

i.e., K ∗, T ∗ ⊂ R
n are convex bodies of volume c and d, respectively, where α > 0 is

chosen such that

α > max
vol(T )=d

max
vol(K )=c

min
q∈Fcp(K )

�T (q) = max
vol(K )=c

min
q∈Fcp(K )

�T ∗(q)

= min
q∈Fcp(K ∗)

�T ∗(q)

=: α̃.

123



262 D. Rudolf

Then we know from above reasoning that (K ∗, T ∗) minimizes (47) (for α replaced
by α̃), i.e.,

min
vol(T )=d

min
K∈A(T ,̃α)

vol(K ) = min
K∈A(T ∗ ,̃α)

vol(K ) = vol(K ∗) = c.

Now, α > α̃ together with Proposition 3.11 implies

min
vol(T )=d

min
K∈A(T ,α)

vol(K ) > min
vol(T )=d

min
K∈A(T ,̃α)

vol(T ) = c.

��

4 Proofs of Theorems 1.1, 1.3, 1.4 and Corollary 1.2

In the following, we mainly make use of Theorems 3.18 and 3.21. However, we begin
by rewriting Viterbo’s conjecture for convex Lagrangian products:

Proposition 4.1 Viterbo’s conjecture for convex Lagrangian products K × T ⊂ R
n ×

R
n

vol(K × T ) � cE H Z (K × T )n

n! , K , T ∈ C(Rn),

is equivalent to

max
vol(K )=1

max
vol(T )=1

min
q∈Fcp(K )

�T (q) � n
√

n!, K , T ∈ C(Rn).

Proof Using Proposition 2.9, Viterbo’s conjecture for convex Lagrangian products is
equivalent to

max
vol(K )=1

max
vol(T )=1

cE H Z (K × T ) � n
√

n!, K , T ∈ C(Rn).

By Theorem 2.7, this is equivalent to

max
vol(K )=1

max
vol(T )=1

min
q∈Fcp(K )

�T (q) � n
√

n!, K , T ∈ C(Rn).

��
Now, we can prove Theorems 1.1, 1.3, 1.4 and Corollary 1.2 which we will recall

for the sake of overview, respectively.

Theorem (Theorem 1.1) Viterbo’s conjecture for convex Lagrangian products K ×
T ⊂ R

n × R
n

vol(K × T ) � cE H Z (K × T )n

n! , K , T ∈ C(Rn),
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is equivalent to the Minkowski worm problem

min
K∈A(T ,1)

vol(K ) � 1

n! vol(T )
, K , T ∈ C(Rn). (50)

Additionally, equality cases K ∗ × T ∗ of Viterbo’s conjecture satisfying

vol(K ∗) = vol(T ∗) = 1

are composed of equality cases (K ∗, T ∗) of (50). Conversely, equality cases (K ∗, T ∗)
of (50) form equality cases K ∗ × T ∗ of Viterbo’s conjecture.

Proof Using Proposition 4.1, Viterbo’s conjecture for convex Lagrangian products is
equivalent to

max
vol(K )=1

max
vol(T )=1

min
q∈Fcp(K )

�T (q) � n
√

n!, K , T ∈ C(Rn).

After applying Theorem 3.21, it is further equivalent to

min
vol(T )=1

min
K∈A

(

T ,
n√n!

)

vol(K ) � 1, K , T ∈ C(Rn).

Using Proposition 3.10, this can be written as

min
K∈A(T ,1)

vol(K ) � 1

n! vol(T )
, K , T ∈ C(Rn).

By similar reasoning, Theorem 3.21 also guarantees the equivalence of the equality
case of Viterbo’s conjecture for convex Lagrangian products K × T ⊂ R

n × R
n

vol(K × T ) = cE H Z (K × T )n

n! , K , T ∈ C(Rn), (51)

i.e.,
max

vol(K )=1
max

vol(T )=1
min

q∈Fcp(K )
�T (q) = n

√
n!, K , T ∈ C(Rn),

and

min
K∈A(T ,1)

vol(K ) = 1

n! vol(T )
, K , T ∈ C(Rn). (52)

Moreover, Theorem 3.21 guarantees the following: If K ∗ × T ∗ is a solution of (51)
satisfying

vol(K ∗) = vol(T ∗) = 1 (53)

(note that, applying Proposition 2.9, the property of being a solution of (51) is invariant
under scaling), then the pair (K ∗, T ∗) is a solution of (52). And conversely, if the pair
(K ∗, T ∗) is a solution of (52), then K ∗ × T ∗ is a solution of (51). ��
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Corollary (Corollary 1.2) Viterbo’s conjecture for convex Lagrangian products K ×
T ⊂ R

n × R
n

vol(K × T ) � cE H Z (K × T )n

n! , K , T ∈ C(Rn),

is equivalent to11

min
aq∈Rn

vol

(

conv

{

⋃

q∈LT (1)

(q + aq)

})

� 1

n! vol(T )
, T ∈ C(Rn), (54)

where the minimization runs for every q ∈ LT (1) over all possible translations in R
n.

Additionally, equality cases K ∗ × T ∗ of Viterbo’s conjecture satisfying

vol(K ∗) = vol(T ∗) = 1

are composed of equality cases T ∗ of (54) with

K ∗ = conv

{

⋃

q∈LT ∗ (1)

(q + a∗
q )

}

, (55)

where a∗
q are the minimizers in (54). Conversely, equality cases T ∗ of (54) with K ∗ as

in (55) form equality cases K ∗ × T ∗ of Viterbo’s conjecture.

Proof In view of the proof of Theorem 1.1, for convex bodies K , T ⊂ R
n , it is

sufficient to prove the following equality:

min
vol(T )=1

min
K∈A(T ,1)

vol(K ) = min
vol(T )=1

min
aq∈Rn

vol

(

conv

{

⋃

q∈LT (1)

(q + aq)

})

. (56)

But this follows from the following gradually observation: First, we notice that the
volume-minimizing convex cover for a set of closed curves is, equivalently, the volume-
minimizing convex hull of these closed curves. So, if we ask for lower bounds of

min
K∈A(T ,1)

vol(K ),

we note that for q1, ..., qk ∈ LT (1), we have

min
(a1,...,ak )∈(Rn)k

vol (conv{q1 + a1, ..., qk + ak}) � min
K∈A(T ,1)

vol(K ).

This estimate can be further improved by

max
q1,...,qk∈LT (1)

min
(a1,...,ak )∈(Rn)k

vol(conv{q1 + a1, ..., qk + ak}) � min
K∈A(T ,1)

vol(K ),

11 Here, we note that K has been dissolved by replacing it by an expression that extremizes over all possible
K s. The extremizing K is of the form (3).
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so that eventually we get

min
aq∈Rn

vol

(

conv

{

⋃

q∈LT (1)

(q + aq)

})

= min
K∈A(T ,1)

vol(K ),

where the minimum on the left runs for every q ∈ LT (1) over all possible translations
in R

n . Minimizing this equation over all convex bodies T ⊂ R
n of volume 1, we get

(56). ��
Theorem (Theorem 1.3) Mahler’s conjecture for centrally symmetric convex bodies

vol(T ) vol(T ◦) � 4n

n! , T ∈ Ccs(Rn), (57)

is equivalent to the Minkowski worm problem

min
T ∈A(T ◦,1)

vol(T ) � 1

n! vol(T ◦)
, T ∈ Ccs(Rn). (58)

Additionally, equality cases T ∗ of Mahler’s conjecture (57) satisfying

vol(T ∗) = 1

are equality cases of (58). And conversely, equality cases T ∗ in (58) are equality cases
of Mahler’s conjecture (57).

Proof Because of
cE H Z (T × T ◦) = 4

for all centrally symmetric convex bodies T ⊂ R
n (see [3]), Mahler’s conjecture for

centrally symmetric convex bodies is equivalent to

vol(T × T ◦) � cE H Z (T × T ◦)n

n! , T ∈ Ccs(Rn). (59)

Fixing
vol(T ) = 1,

which is without loss of generality due to Proposition 2.10, and using Theorem 2.7,
(59) is equivalent to

n
√

n! vol(T ◦) � cE H Z (T × T ◦) = min
q∈Fcp(T )

�T ◦(q), T ∈ Ccs(Rn).

This can be written as

max
vol(T )=1

min
q∈Fcp(T )

�T ◦(q) � n
√

n! vol(T ◦), T ∈ Ccs(Rn),
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which, by Theorem 3.18, is equivalent to

min
T ∈A(T ◦, n√n! vol(T ◦))

vol(T ) � 1, T ∈ Ccs(Rn).

Applying Proposition 3.10, we finally conclude that Mahler’s conjecture for centrally
symmetric convex bodies is equivalent to

min
T ∈A(T ◦,1)

vol(T ) � 1

n! vol(T ◦)
, T ∈ Ccs(Rn).

By similar reasoning, Theorem 3.18 also guarantees the equivalence of the equality
case of Mahler’s conjecture for centrally symmetric convex bodies T ⊂ R

n

vol(T ) vol(T ◦) = 4n

n! , (60)

i.e.,
max

vol(T )=1
min

q∈Fcp(T )
�T ◦(q) = n

√

n! vol(T ◦), T ∈ Ccs(Rn),

and

min
T ∈A(T ◦,1)

vol(T ) = 1

n! vol(T ◦)
, T ∈ Ccs(Rn). (61)

Moreover, Theorem 3.18 guarantees the following: If T ∗ is a solution of (60)
satisfying

vol(T ∗) = 1

(note that, applying Proposition 2.10, the property of being a solution of (60) is invari-
ant under scaling), then it is a solution of (61). And conversely, if T ∗ is a solution of
(61), then it is also a solution of (60). ��
Theorem (Theorem 1.4) Let T ⊂ R

n be a convex body and α, c > 0. Then, the
following statements are equivalent:

(1)
max

vol(K )=c
min

q∈Fcp(K )
�T (q) � α, K ∈ C(Rn),

(2)
max

vol(K )=c
cE H Z (K × T ) � α, K ∈ C(Rn),

(3)
max

vol(K )=c
min

q∈Mn+1(K ,T )
�T (q) � α, K ∈ C(Rn),

(4)
min

K∈A(T ,α)
vol(K ) � c, K ∈ C(Rn),
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(5)

min
aq∈Rn

vol

(

conv

{

⋃

q∈LT (1)

(q + aq)

})

� c, K ∈ C(Rn).

If T is additionally assumed to be strictly convex, then the following systolic weak
Minkowski billiard inequality can be added to the above list of equivalent expressions:

(6)
max

vol(K )=c
min

q cl. weak (K ,T )-Mink. bill. traj.
�T (q) � α, K ∈ C(Rn).

Moreover, every equality case (K ∗, T ∗) of any of the above inequalities is also an
equality case of all the others.

Proof The equivalence of (1), (2), and (3) follows from Theorem 2.7. The equivalence
of (1) and (4) follows from Theorem 3.18. The equivalence of (4) and (5) can be
concluded as within the proof of Corollary 1.2. For the case of strictly convex T ⊂ R

n ,
the equivalence of (1) and (6) follows from [36, Theorem 1.3].

The addition that every equality case (K ∗, T ∗) of any of the inequalities is also an
equality case of all the others is guaranteed by Theorem 3.18. ��

5 Proof of Theorem 1.5

We start by recalling Theorem 1.5:

Theorem (Theorem 1.5) Viterbo’s conjecture for convex polytopes in R
2n

vol(P) � cE H Z (P)n

n! , P ∈ C p
(

R
2n

)

, (62)

is equivalent to the Minkowski worm problem

min
P∈A(J P,1)

vol(P) � (RP )n

2nn! , P ∈ C p
(

R
2n

)

, (63)

where we define

RP :=
minq∈Fcp∗ (P) � J P

2
(q)

minq∈Fcp(P) � J P
2

(q)
� 1.

Additionally, P∗ is an equality case of Viterbo’s conjecture for convex polytopes (62)
satisfying

vol(P∗) = 1

if and only if P∗ is an equality case of (63).

Now, we recall a sligthly rephrased version of the main result of Haim-Kislev in
[26]:
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Theorem 5.1 Let P ⊂ R
2n be a convex polytope. Then, there is an action-minimizing

closed characteristic x on ∂ P which is a closed polygonal curve consisting of finitely
many segments

[x(t j ), x(t j+1)]
given by

x(t j+1) = x(t j ) + λ j J∇HP (x j ), λ j > 0,

while x j ∈ F̊j , Fj is a facet of P and x visits every facet Fj at most once.

For the proof of Theorem 1.5, we need the following theorem:

Theorem 5.2 If P ⊂ R
2n is a convex polytope, then we have

cE H Z (P) = min
q∈Fcp∗ (P)

� J P
2

(q) = RP min
q∈Fcp(P)

� J P
2

(q)

with

RP =
minq∈Fcp∗ (P) � J P

2
(q)

minq∈Fcp(P) � J P
2

(q)
� 1.

If we consider P × 1
2 J P as a Lagrangian product (in the light of Footnote 8 within

Theorem 1.6), then the combination of Theorem 2.7 and Theorem 5.2 implies the
following relationship between the EHZ-capacity of P and the EHZ-capacity of the
Lagrangian product P × 1

2 J P:

cE H Z (P) = RP cE H Z

(

P × 1

2
J P

)

.

For the proof of Theorem 5.2, we need the following proposition. We remark that
in the proof of Theorem 5.2, we need it only in the case of action-minimizing closed
characteristics on the boundary of a polytope.However,wewill state it in full generality
which has relevance beyond its use in the proof of Theorem 5.2 (which we will briefly
address below).

Proposition 5.3 Let C ⊂ R
2n be a convex body. Let x be any closed characteristic on

∂C. Then, the action of x equals its � JC
2

-length:

A(x) = � JC
2

(x).

Proposition 5.3 implies a noteworthy connection between closed characteristics
and closed Finsler geodesics: Every closed characteristic on ∂C can be interpreted as
a closed Finsler geodesic with respect to the Finsler metric determined by μ2JC◦ and
which is parametrized by arc length. This raises a number of questions; for example,
which closed Finsler geodesics are closed characteristics (we note that there are more
closed geodesics than those which, by the least action principle and Proposition 5.3,
can be associated to closed characteristics) and the length-minimizing closed Finsler
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geodesics of which class are of this kind. Following this line of thought, would lead
to the question whether it is possible to deduce Viterbo’s conjecture from systolic
inequalities for certain closed Finsler geodesics. However, we leave these questions
for further research.

Proof of Proposition 5.3 By

ẋ(t) ∈ J∂ HC (x(t)) a.e.,

we conclude

1

2
(μ2JC◦(ẋ(t)))2 = H2JC◦(ẋ(t)) ∈ H2JC◦(J∂ HC (x(t)))

= 1

4
HC◦(∂ HC (x(t))) a.e.,

where we used the facts

J−1 = −J , HC (J x) = HJ−1C (x)

and

HλC (x) = HC

(

1

λ
x

)

= 1

λ2
HC (x), λ �= 0,

(see [36, Proposition 2.3(iii)]). From Proposition 2.5, we therefore conclude
1

2
(μ2JC◦(ẋ(t)))2 = 1

4
HC (x(t)) = 1

8
a.e.

and consequently

μ2JC◦(ẋ(t)) = 1

2
a.e.

Considering

(2JC◦)◦ = 1

2
JC

(see [36, Proposition 2.1]), we obtain

� JC
2

(x) =
∫ T

0
μ(

JC
2

)◦(ẋ(t)) dt =
∫ T

0
μ2JC◦(ẋ(t)) dt =

∫ T

0

1

2
dt = T

2
= A(x),

where the last equality follows from

A(x) = −1

2

∫ T

0
〈J ẋ(t), x(t)〉 dt ∈ 1

2

∫ T

0
〈∂ HC (x(t)), x(t)〉 dt

which by Proposition 2.3 and the 2-homogeneity of HC implies

A(x) =
∫ T

0
HC (x(t)) dt = T

2
.

��
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Then, we come to the proof of Theorem 5.2:

Proof of Theorem 5.2 The idea behind the proof is to associate action-minimizing
closed characteristics on ∂ P in the sense of Theorem5.1with � 1

2 J P -minimizing closed

(P, J P
2 )-Minkowski billiard trajectories.

Let x be an action-minimizing closed characteristic on ∂ P in the sense of Theo-
rem 5.1. Let us assume x is moving on the facets of P according to the order

F1 → F2 → · · · → Fm → F1,

while the linear flow on every facet is given by the J -rotated normal vector at the
interior of this facet. Out of every trajectory segment

orb(x) ∩ F̊j ,

we choose one point q j arbitrarily (on the whole requiring qi �= q j for i �= j) and
connect these points by straight lines (by maintaining the order of the corresponding
facets) constructing a closed polygonal curve

q := (q1, ..., qm)

within P which has its vertices on ∂ P . From Lemma 5.4 (which we provide subse-
quently), we derive

� J P
2

(q) = � J P
2

(x)

since the trajectory segment of x between the two consecutive points q j and q j+1–let
us call it orb(x)q j →q j+1–together with the line from q j to q j+1 (as trajectory segment
of q)–let us call it [q j , q j+1]–builds a triangle with the property that

μ2J P◦
(

orb(x)q j →q j+1

) = μ2J P◦([q j , q j+1]).

We therefore conclude from Proposition 5.3 that

� J P
2

(q) = A(x).

Because of the arbitrariness of the choice of q j within orb(x) ∩ F̊j , we can assign
infinitely many different closed polygonal curves of the above kind to one action-
minimizing closed characteristic fulfilling the demanded conditions.

Each of these closed polygonal curves q is a closed (P × 1
2 J P)-Minkowski billiard

trajectory: This follows from the fact that q fulfills

{

q j+1 − q j ∈ N 1
2 J P (p j ),

p j+1 − p j ∈ −NP (q j+1),
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Fig. 3 q = (q1, ..., qm ) is a closed (P, 1
2 J P)-Minkowski billiard trajectory with p = (p1, ..., pm ) as its

dual billiard trajectory in 1
2 J P

for the closed polygonal curve p = (p1, ..., pm) in 1
2 J P with

p j−1 ∈ ∂

(

1

2
J P

)

given as the intersection point

1

2
J
({q j−1 + t J∇ HP (q j−1) : t ∈ R} ∩ {q j + t J∇ HP (q j ) : t ∈ R}) ⊂ J Fj−1

2
∩ J Fj

2

for all j ∈ {2, ..., m + 1}.
Indeed, from the definition of p, it follows

p j+1 − p j ∈ −NP (q j+1) ∀ j ∈ {1, ..., m} (64)

since by construction, p j+1 − p j is a multiple of the outer normal vector at P in q j

rotated by twofold multiplication with J (J 2 = −1 produces the minus sign in (64)).
Since, by construction,

J−1(q j − q j−1)

is in the normal cone at P in the intersection point

{q j−1 + t J∇HP (q j−1) : t ∈ R} ∩ {q j + t J∇HP (q j ) : t ∈ R} ⊂ Fj−1 ∩ Fj ,

roation by 1
2 J then implies that q j − q j−1 is in the normal cone at 1

2 J P in p j−1. This
implies

q j − q j−1 ∈ NP (p j−1) ∀ j ∈ {1, ..., m}.
From [36, Proposition 3.9], it follows that q cannot be translated into P̊ , i.e.,

q ∈ Fcp(P).
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From the construction of q, we moreover know

q ∈ Fcp∗ (P), (65)

where we recall that Fcp∗ (P) as subset of Fcp(P) was defined as the set of all closed
polygonal curves q = (q1, ..., qm) in Fcp(P) for which q j and q j+1 are on neigh-
bouring facets Fj and Fj+1 of P such that there are λ j , μ j+1 � 0 with

q j+1 = q j + λ j J∇HP (x j ) + μ j+1 J∇HP (x j+1),

where x j and x j+1 are arbitrarily chosen interior points of Fj and Fj+1, respectively.
Because of (65), we have

� J P
2

(q) � min
q̃∈Fcp∗ (P)

� J P
2

(q̃).

Since, by definition and the above considerations, every closed polygonal curve in
Fcp∗ (P) is associated with a closed characteristic on ∂ P , where the � J P

2
-length of the

former coincides with the action of the latter, and x (to which q is associated) was
chosen to be action-minimizing, we actually have

� J P
2

(q) = min
q̃∈Fcp∗ (P)

� J P
2

(q̃).

Altogether, this implies

cE H Z (P) = A(x) = � J P
2

(x) = � J P
2

(q) = min
q̃∈Fcp∗ (P)

� J P
2

(q̃) = RP min
q̃∈Fcp(P)

� J P
2

(q̃)

for

RP =
minq∈Fcp∗ (P) � J P

2
(q)

minq∈Fcp(P) � J P
2

(q)
� 1.

��
Lemma 5.4 Let P ⊂ R

2n be a convex polytope. If

y = λi J∇HP (xi ) + λ j J∇HP (x j ), λi , λ j � 0,

where Fi and Fj are neighbouring facets of P with xi ∈ F̊i and x j ∈ F̊j , then

μ2J P◦(y) = λiμ2J P◦(J∇HP (xi )) + λ jμ2J P◦(J∇HP (x j )) = 1

2
(λi + λ j ).

Proof We first notice that
∇HP (xi ) and ∇HP (x j )
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are neighbouring vertices of P◦, i.e.,

t∇HP (xi ) + (1 − t)∇HP (x j ) ∈ ∂ P◦ ∀t ∈ [0, 1].

Indeed, from the fact that ∇HP (xi ) and ∇HP (x j ) are elements of the one dimen-
sional normal cone at F̊i and F̊j , we conclude by the properties of the polar of convex
polytopes (see [21, Chapter 3.3]) that they point into the direction of two neigbouring
vertices of P◦. Using Proposition 2.5, we calculate

HP◦(∇HP (xi )) = HP (xi ) = 1

2

and

HP◦(∇HP (x j )) = HP (x j ) = 1

2
and conclude that∇HP (xi ) and∇HP (x j ) actually are these two neighbouring vertices
of P◦.

Using for convex body C ⊂ R
2n and λ > 0 the properties

μλC (x) = 1

λ
μC (x) and μJC (J x) = μC (x), x ∈ R

2n,

(see [36, Proposition 2.3(iii)]), we derive

μ2J P◦(y) = μ2J P◦(λi J∇HP (xi ) + λ j J∇HP (x j ))

= μ2P◦(λi∇HP (xi ) + λ j∇HP (x j ))

= 1

2

(

μP◦(λi∇HP (xi ) + λ j∇HP (x j ))
)

(�)= 1

2

(

μP◦(λi∇HP (xi )) + μP◦(λ j∇HP (x j ))
)

= 1

2

(

λiμP◦(∇HP (xi )) + λ jμP◦(∇HP (x j ))
)

= 1

2
(λi + λ j ),

where in (�) we used that, by the choice of xi and x j and the properties of polar
bodies,∇HP (xi ) and∇HP (x j ) are neighbouring vertices of P◦ and, therefore, in (�),
the initial term can be splitted linearly. ��
Proof of Theorem 1.5 Viterbo’s conjecture for convex polytopes in R

2n can be written
as

vol(P) � cE H Z (P)n

n! , P ∈ C p
(

R
2n

)

,

which by Theorem 5.2, is equivalent to

vol(P) �
Rn

P

2nn!cE H Z (P × J P)n, P ∈ C p
(

R
2n

)

.
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By referring to Proposition 2.9, we can assume

vol(P) = 1

without loss of generality and get

cE H Z (P × J P) � 2 n
√

n!
RP

, P ∈ C p
(

R
2n

)

,

which by Theorem 2.7, is equivalent to

max
vol(P)=1

min
q∈Fcp(P)

�J P (q) � 2 n
√

n!
RP

, P ∈ C p
(

R
2n

)

.

By Theorem 3.18, this is equivalent to

min
P∈A

(

J P, 2
n√n!

RP

)

vol(P) � 1, P ∈ C p
(

R
2n

)

,

and after applying Proposition 3.10, to

min
P∈A(J P,1)

vol(P) � (RP )n

2nn! , P ∈ C p
(

R
2n

)

.

By similar reasoning, Theorem 3.18 also guarantees the equivalence of

max
vol(P)=1

min
q∈Fcp(P)

�J P (q) = 2 n
√

n!
RP

, P ∈ C p
(

R
2n

)

, (66)

and

min
P∈A(J P,1)

vol(P) = (RP )n

2nn! , P ∈ C p
(

R
2n

)

. (67)

Moreover, Theorem 3.18 guarantees the following: P∗ is a solution of (66) if and
only if P∗ is a solution of (67). ��

6 Proof of Theorem 1.6

We start by recalling Theorem 1.6:

Theorem (Theorem 1.6) Viterbo’s conjecture for convex bodies in R
2n

vol(C) � cE H Z (C)n

n! , C ∈ C
(

R
2n

)

, (68)
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is equivalent to the Minkowski worm problem

min
C∈A(C◦,1)

vol(C) � (˜RC )n

n! , C ∈ C
(

R
2n

)

, (69)

where
˜RC := cE H Z (C)

cE H Z (C × C◦)
� 1

2||J ||C◦→C
.

Additionally, C∗ is an equality case of Viterbo’s conjecture for convex bodies in R
2n

(68) satisfying
vol(C∗) = 1

if and only if C∗ is an equality case of (69).

In order to prove Theorem 1.6, we need the following propositon:

Proposition 6.1 Let C ⊂ R
2n be a convex body and x a closed characteristic on ∂C.

Then, x cannot be translated into C̊.

Proof Let us assume that x can be translated into C̊ . Let ˜T > 0 be the period of x .
Because of

ẋ(t) ∈ J∂ HC (x(t)) a.e. on [0, ˜T ],
there is a vector-valued function nC on ∂C such that

ẋ(t) = JnC (x(t)) a.e. on [0, ˜T ]

with
nC (x(t)) ∈ ∂ HC (x(t))

for all t ∈ [0, ˜T ] for which ẋ(t) exists and

nC (x(t)) = 0

for all t ∈ [0, ˜T ] for which ẋ(t) does not exist.
Then, the convex cone U spanned by

nC (x(t)) ∈ NC (x(t)), t ∈ [

0, ˜T
]

,

has the property
∀u ∈ U \ {0} : −u /∈ U ,

since otherwise, one could find points on x and C-supporting hyperplanes through
these points with the property that the intersection of the C-containing half-spaces
bounded by these hyperplanes is nearly bounded (what would imply that x cannot be
translated into C̊). By the convexity of U , this implies that

∫
˜T

0
nC (x(t)) dt �= 0,
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and therefore
∫

˜T

0
JnC (x(t)) dt �= 0.

Since x is a closed characteristic on ∂C , x fulfills x(0) = x(˜T ). This implies

0 = x(˜T ) − x(0) =
∫

˜T

0
ẋ(t) dt =

∫
˜T

0
JnC (x(t)) dt �= 0,

a contradiction. Therefore, it follows that x cannot be translated into C̊ . ��
We now consider the operator norm of the complex structure/symplectic matrix J .

It is given by:

||J ||C◦→C = sup
||v||C◦�1

||Jv||C = sup
μC◦ (v)�1

μC (Jv).

We derive the following lemma:

Lemma 6.2 Let C ⊂ R
2n be a convex body and x a closed characteristic on ∂C which

has period ˜T > 0. Then, we have

μC (ẋ(t)) � ||J ||C◦→C a.e. on [0, ˜T ].

Proof Since x is a closed characteristic on ∂C , we have

ẋ(t) ∈ J∂ HC (x(t)) a.e. on [0, ˜T ].

This implies
HC◦(−J ẋ(t)) ∈ HC◦(∂ HC (x(t))) a.e. on [0, ˜T ].

Using Proposition 2.5, we conclude

HC◦(−J ẋ(t)) = HC (x(t)) = 1

2
a.e. on [0, ˜T ],

i.e.,
μC◦(−J ẋ(t)) = 1 a.e. on [0, ˜T ].

Therefore, for
v(t) := −J ẋ(t) a.e. on [0, ˜T ],

we have
μC◦(v(t)) = 1 and Jv(t) = ẋ(t) a.e. on [0, ˜T ]

and consequently

μC (ẋ(t)) � sup
μC◦ (v)�1

μC (Jv) = ||J ||C◦→C a.e. on [0, ˜T ].

��
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Proof of Theorem 1.6 By Theorem 2.7, we have

cE H Z (C × C◦) = min
q∈Fcp(C)

�C◦(q). (70)

Let x be an action-minimizing closed characteristic on ∂C , i.e., x fulfills

ẋ ∈ J∂ HC (x) a.e.

and minimizes the action with

A(x) = −1

2

∫
˜T

0
〈J ẋ(t), x(t)〉 dt =

∫
˜T

0
HC (x) dt = ˜T

2
, (71)

where we used Euler’s identity (see Proposition 2.3) to derive

〈y, x(t)〉 = HC (x(t)) ∀y ∈ ∂ HC (x(t)).

Then, since x is in ∂C and, by Proposition 6.1, cannot be translated into C̊ , (70)
together with

min
q∈Fcp(C)

�C◦(q) = min
q∈Fcc(C)

�C◦(q) (72)

(see Proposition 8.2) implies that

cE H Z (C × C◦) � �C◦(x) =
∫

˜T

0
μC (ẋ(t)) dt .

Using Lemma 6.2 and (71), we conclude

cE H Z (C × C◦) �
∫

˜T

0
μC (ẋ(t)) dt �

∫
˜T

0
||J ||C◦→C dt

= ˜T ||J ||C◦→C

= 2A(x)||J ||C◦→C

= 2cE H Z (C)||J ||C◦→C .

This implies

˜RC = cE H Z (C)

cE H Z (C × C◦)
� 1

2||J ||C◦→C
.

Therefore, Viterbo’s conjecture for convex bodies in R
2n is equivalent to

vol(C) � cE H Z (C)n

n! =
˜Rn

C cE H Z (C × C◦)n

n! , C ∈ C
(

R
2n

)

.

By referring to Proposition 2.9, we can assume

vol(C) = 1
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without loss of generality and get

cE H Z (C × C◦) �
n
√

n!
˜RC

, C ∈ C
(

R
2n

)

,

which, by Theorem 2.7, is equivalent to

max
vol(C)=1

min
q∈Fcp(C)

�C◦(q) �
n
√

n!
˜RC

, C ∈ C
(

R
2n

)

.

By Theorem 3.18, this is equivalent to

min
C∈A

(

C◦,
n√n!
˜RC

)

vol(T ) � 1, C ∈ C
(

R
2n

)

,

and, after applying Proposition 3.10, to

min
C∈A(C◦,1)

vol(T ) � (˜RC )n

n! , C ∈ C
(

R
2n

)

.

By similar reasoning, Theorem 3.18 also guarantees the equivalence of

max
vol(C)=1

min
q∈Fcp(C)

�C◦(q) =
n
√

n!
˜RC

, C ∈ C
(

R
2n

)

, (73)

and

min
C∈A(C◦,1)

vol(T ) = (˜RC )n

n! , C ∈ C
(

R
2n

)

. (74)

Moreover, Theorem 3.18 guarantees the following: C∗ is a solution of (73) if and
only if C∗ is a solution of (74). ��

7 Justification of Conjectures 1.8 and 1.9

We start by recalling Conjectures 1.8 and 1.9:

Conjecture (Conjecture 1.8) We have

min
K∈A

(

B2
1 ,1

)

vol(K ) � 1

2π
≈ 0.15915, K ∈ C(R2).

Conjecture (Conjecture 1.9) We have

min
q cl. (K ,B2

1 )-Mink. bill. traj.
�2

B2
1
(q) � 2π vol(K )
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for K ∈ C(R2).

We transfer Viterbo’s conjecture onto Wetzel’s problem. For that, we define

y := min
K∈A

(

B2
1 ,1

)

vol(K )

and let K ∗ ⊂ R
2 be an arbitrarily chosen convex body of volume y. Then, applying

Theorems 2.7 and 3.18, we have

cE H Z
(

K ∗ × B2
1

)2

2
� max

vol(K )=y

cE H Z
(

K × B2
1

)2

2

= max
vol(K )=y

min
q∈Fcp(K )

�B2
1
(q)2

2

= 1

2
.

Further, we have
vol

(

K ∗ × B2
1

)

= π y.

The truth of Viterbo’s conjecture requires

vol
(

K ∗ × B2
1

)

�
cE H Z

(

K ∗ × B2
1

)2

2
,

i.e., π y � 1
2 , which means

y � 1

2π
≈ 0.15915.

Theorem 3.18 also guarantees the sharpness of this estimate.
Together with Theorem 2.7, this justifies the formulation of Conjectures 1.8 and 1.9.

8 Proofs of Theorem 1.11 and Corollary 1.12

We start by recalling Theorem 1.11 and Corollary 1.12:

Theorem (Theorem 1.11) Let K , T ⊂ R
n be convex bodies. Then, an/the �T -

minimizing closed Minkowski escape path for K has �T -length α∗ if and only if α∗ is
the largest α for which

K ∈ A(T , α),

i.e., for which for every closed path γ of �T -length � α, there is a translation μ such
that K covers μ ({γ }).
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Corollary (Corollary 1.12) Let K , T ⊂ R
n be convex bodies, where T is addition-

ally assumed to be strictly convex. An/The �T -minimizing closed (K , T )-Minkowski
billiard trajectory has �T -length α∗ if and only if α∗ is the largest α for which

K ∈ A(T , α).

In order to prove Theorem 1.11, we start with the two following obvious observa-
tions:

Proposition 8.1 Let K ⊂ R
n be a convex body. Then we have

{closed Minkowski escape paths for K } = Fcc(K ).

Proof The statement follows directly by recalling that a closedMinkowski escape path
is a closed curve whose all translates intersect ∂K and therefore, equivalently, cannot
be translated into K̊ . ��
Proposition 8.2 Let K , T ⊂ R

n be convex bodies. Then we have

min
q∈Fcc(K )

�T (q) = min
q∈Fcp(K )

�T (q).

Proof Since
Fcp(K ) ⊂ Fcc(K ),

it suffices to find for every closed curve q ∈ Fcc(K ) a closed polygonal curve q̃ ∈
Fcp(K ) with

�T (q̃) � �T (q). (75)

If q cannot be translated into K̊ , then by the remark beyond [35, Lemma 2.1], there
are n + 1 points on q that cannot be translated into K̊ . By connecting these points, we
obtain a closed polygonal curve in Fcp(K ) which we call q̃ . By the subadditivity of
the Minkowski functional, it follows (75). ��

Based on these propositions, we can prove the analogue to Theorem 1.10:

Proof of Theorem 1.11 We first use Proposition 8.1 in order to reduce the statement of
Theorem 1.11 to: An/The �T -minimizing closed curve in Fcc(K ) has �T -length α∗ if
and only if α∗ is the largest α for which

K ∈ A(T , α). (76)

First, let us asssume that α∗ is the �T -length of an/the �T -minimizing closed curve
in Fcc(K ). Then, from Proposition 8.2, we know that there is a closed polygonal curve

q∗ ∈ Fcp(K ) with �T (q∗) = α∗,

i.e., q∗ is a minimizer of
min

q∈Fcp(K )
�T (q).
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Then it follows from Proposition 3.15 that

K ∈ A(T , �T (q∗)) = A(T , α∗).

Let α > α∗. If
K ∈ A(T , α), (77)

then
LT (α) ⊆ C(K ),

i.e., every closed curve of �T -length α can be covered by a translate of K . This implies
that every closed curve of �T -length λα, λ < 1, can be covered by a translate of K̊ .
From this we conclude

q∗ /∈ Fcp(K ).

Therefore, there is no α > α∗ for which (77) is fulfilled, i.e., α∗ is the largest α for
which (76) holds.

Conversely, if α∗ is the largest α for which (76) holds. Then, there is a closed curve
q∗ with

q∗ ∈ Fcc(K ) ∩ C(K ) and �T (q∗) = α∗. (78)

Otherwise, if not, then one has

q ∈ C(K ) \ Fcc(K )

for all closed curves q of �T -length α∗. This implies

q ∈ C(K̊ )

for all closed curves q of �T -length α∗. But then there is a λ > 1 such that

λq ∈ C(K̊ )

for all closed curves of �T -length α∗. But this is a contradiction to the fact that α∗ is
the largest α for which (76) holds.

Now, if
min

q∈Fcc(K )
�T (q) =: α̃ < α∗

and q̃ is a minimizer of the left side, then it follows

q̃ ∈ C(K )

because, due to Proposition 3.2, with α̃ < α∗ one has

K ∈ A(T , α∗) ⊆ A(T , α̃).

Then, with Lemma 3.16, there is a λ > 1 such that

λq̃ ∈ Fcc(K ) \ C(K )
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with
�T (λq̃) < α∗.

But this is a contradiction to the fact that every closed curve of �T -length � α∗ can
be covered by a translate of K . Therefore, it follows

min
q∈Fcc(K )

�T (q) � α∗,

and together with (78), we conclude that

min
q∈Fcc(K )

�T (q) = α∗.

��
The proof of Corollary 1.12 follows immediately:

Proof of Corollary 1.12 The proof follows directly by combining Proposition 8.2, [36,
Theorem 3.12], and Theorem 1.11. ��

9 Computational approach for improving the lower bound in
Wetzel’s problem

In this section, we aim to present a computational approach for improving the best
lower bound in Wetzel’s problem, which, as stated in Theorem 1.7, is due to Wetzel
himself (see [52]). But not only that, our approach most likely also allows to find,
more generally, lower bounds in Minkowski worm problems. By Theorem 3.18, these
lower bounds eventually translate into upper bounds for systolic Minkowski billiard
inequalities as well as for Viterbo’s conjecture for convex Lagrangian products.

The main idea of this approach is inspired by a series of works related to the search
for area-minimizing convex hulls of closed curves in the plane which are allowed to
be translated and rotated. Since the area-minimizing convex cover for a set of closed
curves is, equivalently, the area-minimizing convex hull of these closed curves (note
that this observation has already used within the proof of Corollary 1.2), these works
treat the question of lower bounds for the following version of Moser’s worm problem
in which closed arcs are considered:

Find a/the convex set of least area that contains a congruent copy of each closed
arc in the plane of length one.

In [11] (applying results from [16]), the first lower bound for the area was found
considering the convex hull of a circle and a line segment. In [20], this lower bound
was improved by first considering a circle and a certain rectangle and later a circle
and a curvilinear rectangle. The latest improvements are due to Grechuk and Som-am
who in [24] considered the convex hull of a circle, an equilateral triangle and a certain
rectangle, and in [25] the convex hull of a circle, a certain rectangle, and a line segment.

123



Viterbo’s conjecture as a worm problem 283

However, in order to adapt these approaches to our setting, in the details, we have to
make some changes.

But let us first start with some underlying considerations (as in the proof of Corol-
lary 1.2) in the most general case: For arbitrary convex body T ⊂ R

n , we ask for
lower bounds of

min
K∈A(T ,1)

vol(K ). (79)

By referring to the above mentioned main idea, we start by noting that for

q1, ..., qk ∈ LT (1)

we have

min
(a1,...,ak )∈(Rn)k

vol (conv{q1 + a1, ..., qk + ak}) � min
K∈A(T ,1)

vol(K ). (80)

This estimate can be further improved by

max
q1,...,qk∈LT (1)

min
(a1,...,ak )∈(Rn)k

vol(conv{q1 + a1, ..., qk + ak}) � min
K∈A(T ,1)

vol(K ),

so that, eventually, we get

min
aq∈Rn

vol

(

conv

{

⋃

q∈LT (1)

(q + aq)

})

= min
K∈A(T ,1)

vol(K ),

where the minimum on the left runs for every q ∈ LT (1) over all possible translations
in R

n .
Let us now exemplary show how (80) can be used to calculate lower bounds of (79)

within the setting of Wetzel’s problem, i.e., n = 2 and T = B2
1 .

Let q1 be the boundary of B2
1
2π
,

q2 = q2(t1, t2, θ)

the boundary of an equilateral triangle Tt1,t2,
1
3 ,θ with mass point (t1, t2), side length

1
3 , and angle θ between one of the sides and the horizontal line, and let

q3 = q3 (r1, r2, q̂)

be the boundary of a rectangle Rr1,r2,1,̂q with middle point (r1, r2), perimeter 1, and
quotient of the side lengths q̂ .

Then, by definition, we have

q1, q2(t1, t2, θ), q3 (r1, r2, q̂) ∈ L B2
1
(1)

123



284 D. Rudolf

Fig. 4 Illustration of the convex hull of B2
1
2π

, Rr1,r2,1,̂q and T
t1,t2,

1
3 ,θ

for all

t1, t2 ∈ R, θ ∈
[

0,
3π

4

]

, r1, r2 � 0, q̂ > 0

and (80) (because of θ ∈ [

0, 3π
4

]

and q̂ > 0, one has k = ∞) becomes

max
θ∈[0, 3π4 ], q̂>0

min
t1,t2∈R, r1,r2�0

vol

(

conv

{

B2
1
2π

, Tt1,t2,
1
3 ,θ , Rr1,r2,1,̂q

})

� min
K∈A(B2

1 ,1)
vol(K ).

Then, one can define

f (t1, t2, r1, r2, θ, q̂) := vol

(

conv

{

B2
1
2π

, Tt1,t2,
1
3 ,θ , Rr1,r2,1,̂q

})

which is a convex function with respect to the first four coordinates (t1, t2, r1, r2) (this
can be shown similar to in [24]) and compute

max
θ∈[0, 3π4 ], q̂>0

min
t1,t2∈R, r1,r2�0

f (t1, t2, r1, r2, θ, q̂) .
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We leave it at that, starting with (80), gives us the ability to tackle many different
Minkowski worm problems–in any dimension, for many different T s and by using
diverse closed curves

q1, ..., qk ∈ LT (1).
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