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Abstract
We study the multiplicative version of the classical Furstenberg’s filtering problem,
where instead of the sum X + Y one considers the product X · Y (X and Y are
bilateral, real, finitely-valued, stationary independent processes, Y is taking values
in {0, 1}). We provide formulas for H (X · Y | Y). As a consequence, we show that
if H (X) > H (Y) = 0 and X � Y, then H (X · Y) < H (X) (and thus X cannot
be filtered out from X · Y) whenever X is not bilaterally deterministic, Y is ergodic
and Y first return to 1 can take arbitrarily long with positive probability. On the other
hand, if almost surely Y visits 1 along an infinite arithmetic progression of a fixed
difference (with possibly some more visits in between) then we can find X that is
not bilaterally deterministic and such that H (X · Y) = H (X). As a consequence,
a B-free system (Xη, S) is proximal if and only if there is always an entropy drop
h(κ ∗νη) < h(κ) for any κ corresponding to a non-bilaterally deterministic process of
positive entropy. These results partly settle some open problems on invariant measures
forB-free systems.
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1 Background andmain results

In this paper we concentrate on two seemingly unrelated areas:

(A) multiplicative version of the classical Furstenberg’s problem on defiltering a noisy
signal,

(B) open questions related to invariant measures for so-called B-free systems.

We will now give some background on both, (A) and (B). Then we will present the
main technical result and its consequences. Finally, since the paper is a mixture of
probabilistic and ergodic tools, we present in a separate section a dictionary allowing
for a simultaneous use of both. The remainder of the paper is devoted to the proofs
and examples illustrating our results. In the appendix we give some more detailed
comments on B-free systems that can be of an independent interest.

1.1 Furstenberg’s filtering problem

The classical Furstenberg’s filtering problem from the celebrated paper [17] concerns
two stationary real processes: X (the emitted signal) and Y (the noise), with X � Y,
and the following question is asked:

Question 1 ([17]) When is Xmeasurable with respect to σ -algebra generated by X+
Y? In other words, when it is possible to recover X from the received signal X + Y?

In order to address this problem, Furstenberg [17] introduced the notion of dis-
jointness of dynamical systems, which even today remains one of the central concepts
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in ergodic theory. Recall that measure-theoretic dynamical systems (X ,B, μ, T ) and
(Y , C, ν, S) are disjoint if the product measureμ⊗ν is the only (T ×S)-invariant mea-
sure, projecting as μ and ν onto the first and second coordinates, respectively.1 Recall
also that each measure-theoretic dynamical system (X ,B, μ, T ) yields a family of
bilateral, real, stationary processes in the following way: for any measurable function
f : X → R, the process X = ( f ◦ T i )i∈Z is stationary. In particular, each measurable
partition of X into finitely many pieces yields a finitely-valued stationary process. On
the other hand, each real stationary process X yields a (symbolic) measure-theoretic
dynamical system by taking the left shift S on the product spaceR

Z, with the invariant
measure given by the distribution of X (if the state space of X is smaller than R, we
can consider the left shift S on the appropriate smaller product space). A crucial basic
observation is that whenever the family of functions { f ◦ T i : i ∈ Z} generates B
then the resulting symbolic (measure-theoretic) dynamical system is isomorphic to
(X ,B, μ, T ). Last, but not least, we say that processes X and Y are absolutely inde-
pendent, whenever the resulting dynamical systems are disjoint. Furstenberg showed
that absolute independence is a sufficient condition, under which one has the positive
answer to Question 1:

Theorem 1.1 ([17]) Suppose that X and Y are integrable and that X is absolutely
independent from Y. Then X is measurable with respect to σ -algebra generated by
X + Y.

Garbit [19] showed that the integrability assumption can be dropped and the assertion
of Theorem 1.1 still holds.

We are interested in the following modification of Question 1: instead of the sum
of processes X and Y, we consider their product

M := X · Y = (Xi · Yi )i∈Z.

Notice that if X and Y take only positive values, we can define processes logX and
logY. Since logM = logX+ logY, by the result of Garbit, X can be recovered from
M whenever X and Y are disjoint. Therefore, it is natural to ask whether the same
conclusion as in Theorem 1.1 holds for processes that admit zero as a value. The
simplest instance of this is when the state space, e.g., of Y, equals {0, 1}. One can
think of M as of the original signal X, where some of the information was lost (due
to Yi = 0), instead of just being perturbed (by adding Yi to Xi ). Thus, we deal with
the following problem:

Question 2 Let X and Y be bilateral, real, finitely-valued, stationary processes, with
Yi ∈ {0, 1}. Suppose that X � Y. Is it possible to recover X and / or Y fromM?

A similar (in fact,muchmore general) problemof retrieving a lost signalwas studied

by Furstenberg, Peres and Weiss in [18]. Let X(i) =
(
X (Ui )
i

)
i∈Z

, where i ∈ N, be a

family of processes and U be an N-valued process. Suppose that all these processes

1 The ergodicity of (X ,B, μ, T ) or (Y ,C, ν, S) is a necessary condition for disjointness.
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are stationary and define

X(U) =
(
X (Ui )
i

)
i∈Z

(informally, U chooses among the family of processes).

Question 3 Is it possible to recover U from X(U)?

In order to answer this question the authors of [18] introduce the notion of double
disjointness. We say that processY is doubly disjoint fromX if every self-joining ofY
is absolutely disjoint fromX. In other words if (X′,Y′,Y′′) is a stationary process such
that X′ ∼ X and Y′,Y′′ ∼ Y then X′ � (Y′,Y′′). The most basic example of doubly
disjoint processes arises when Y is of zero entropy rate (then every self-joining of Y
has zero entropy) and X has trivial tail-σ -field (let us add that, in fact, if Y is doubly
disjoint from X then necessarily H (Y) = 0 and X is ergodic). (For the definition
of entropy rate, see (1.2) below.) Now, the main result of [18] can be summarized
(roughly) as follows. Suppose that X(i) for i ∈ N and U are jointly stationary. If U is
doubly disjoint from each X(i) for i ∈ N then one can retrieve U from X(U).

Let us explain how to fit this theorem to our setting from Question 2 (and retrieve
Y fromM). Consider two processes X(i), for i ∈ {0, 1}, where

X (i)
j = i X j (1.1)

and take U = Y. Then X(U) = X · Y and the theorem states that we can retrieve Y
from X · Y as soon as Y is doubly disjoint from X. Since the role of X and Y is here
not symmetric (and M and Y do not determine X unlike when one studies the sum
X + Y), it is interesting to ask whether one can also retrieve X. To stay compatible
with the notion of double disjointness, we will assume that H (X) > H (Y) = 0.
Then, clearly, a necessary condition for having the positive answer to Question 2 is
thatH (M) = H (X). Having this in mind, we will deal with the following three more
specific problems:

Question 4 (A) Is there a general formula for the entropy rate H(M) of M = X · Y?
(B) Do we always have H(M) > 0 whenever H(X) > 0?
(C) Can we have H(M) = H(X) with H (X) > 0?

Remark 1.2 Notice that the answers to Question 1 in [17] and to Question 3 in [18]
depend only on the properties of the underlying dynamical systems corresponding toX
andY. In this paper the situtation will be different and the ability to defilterX fromM
will highly depend on the properties of the stochastic processes under consideration,
cf. Example 2.16.

1.2 Invariant measures forB-free systems

Question 4 is a generalization of some questions asked in [28] in the context ofB-free
systems. For B ⊂ N \ {1}, consider the corresponding sets of multiples and B-free
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integers:

MB :=
⋃
b∈B

bZ and FB := Z \ MB.

Such sets were studied already in the 30’s from the number-theoretic viewpoint (see,
e.g. [2, 5, 7–9, 14]). The most prominent example of FB is the set of square-free
integers (with B being the set of squares of all primes). The dynamical approach to
B-free sets was initiated by Sarnak [35] who proposed to study the dynamical system
given by the orbit closures of the Möbius function μ and its square μ2 under the left
shift S in {−1, 0, 1}Z.2 For an arbitrary B ⊂ N \ {1}, let Xη be the orbit closure of
η = 1FB

∈ {0, 1}Z under the left shift, i.e. we deal with a subshift of ({0, 1}Z, S).3

We say that (Xη, S) is aB-free system. In the so-called Erdös case (when the elements
of B are pairwise coprime, B is infinite and

∑
b∈B 1/b < ∞), Xη is hereditary: for

y � x coordinatewise, with x ∈ Xη and y ∈ {0, 1}Z, we have y ∈ Xη. In other
words, Xη = M(Xη ×{0, 1}Z), where M stands for the coordinatewise multiplication
of sequences. For a general B ⊂ N \ {1}, Xη may no longer be hereditary and we
consider its hereditary closure X̃η := M(Xη ×{0, 1}Z) instead. Usually, one assumes
at least the primitivity of B (i.e. b |/ b′ for b �= b′ inB).

Given a topological dynamical system (X , T ), i.e. a homeomorphism T acting on a
compact metric space X , letB be the σ -algebra of Borel subsets of X . ByM(X , T )we
will denote the set of all probability Borel T -invariant measures on X andMe(X , T )

will stand for the subset of ergodic measures. Each choice of μ ∈ M(X , T ) results
in ameasure-theoretic dynamical system, i.e. a 4-tuple (X ,B, μ, T ), where (X ,B, μ)

is a standard probability Borel space, with an automorphism T . We often skip B and
write (X , μ, T ). Recall also that x ∈ X is said to be generic for μ ∈ M(X , T ),
whenever limN→∞ 1

N

∑
n�N δT nx = μ in the weak topology. If the convergence

takes place only along a subsequence (Nk)k�1 then we say that x is quasi-generic for
μ. Each measure μ resulting this way yields a measure theoretic dynamical system
(X ,B, μ, T ).

A central role in the theory of B-free systems is played by the so-called Mirsky
measure, denoted by νη. In the Erdös case, η is a generic point for νη (in general, η is
quasi-generic along some natural sequence (Nk)), see [12]. It was shown in [12, 28]
that all invariant measures for X̃η are of the following special form:

Theorem 1.3 (cf. Sect. 1) For any ν ∈ M(X̃η, S), there exists ρ ∈ M(Xη ×
{0, 1}Z, S × S) such that ρ|Xη = νη and M∗(ρ) = ν.4

2 Recall that μ(n) = (−1)k if n is a product of k distinct primes, μ(1) = 1 and μ(n) = 0 otherwise; μ2 is
the characteristic function of the set of square-free integers.
3 More generally, given a finite alphabetX , we define S to be the left shift onXZ, i.e. S((xi )i∈Z) = (yi )i∈Z,
where yi = xi+1, i ∈ Z. Each closed S-invariant subset of XZ is called a subshift.
4 By ρ|Xη , we denote the projection of ρ onto the first coordinate Xη; M∗(ρ) stands for the image of ρ

via M . We will use similar notation later on, too.
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Recall that given a measure-theoretic dynamical system (X ,B, μ, T ), any T -
invariant sub-σ -algebra A ⊂ B is called a factor of (X ,B, μ, T ).5 Notice that given
ν and ρ as in Theorem 1.3, (X̃η, ν, S) is a factor of (Xη × {0, 1}Z, ρ, S × S).

The measure-theoretic entropy of (X ,B, μ, T ) will be denoted by hμ(T ,B). If no
confusion arises, we will also write h(μ, T ) or even h(μ). If X is a finitely-valued
stationary process determining (X , μ, T ) (as described in Sect. 1.1) then H (X) =
h(μ).

The Mirsky measure νη is of zero entropy. Moreover, it was shown in [28] in the
Erdös case that (Xη, S) is intrinsically ergodic (it has exactly one measure realizing
the topological entropy). Its measure of maximal entropy equals M∗(νη ⊗ B1/2,1/2),
where B1/2,1/2 stands for the Bernoulli measure on {0, 1}Z of entropy log 2. These
results were extended in [12] to a generalB (one needs to replace Xη with X̃η). In the
Erdös case, the topological entropy of (Xη, S) is equal

∏
i�1(1−1/bi)

6 (in general, the

topological entropy of (X̃η, S) equals d(FB) [12]).7 This led to the study of product
type measures (or multiplicative convolutions):

νη ∗ κ := M∗(νη ⊗ κ).

In particular, it was proved that

0 < h(νη ∗ B1/2,1/2) < h(B1/2,1/2).

Moreover, it was shown that for each value 0 � h �
∏

i�1(1−1/bi) there is an ergodic
measure κ satisfying h(Xη, νη∗κ) = h. However, some fundamental questions related
to such measures were left open – they turn out to be a special instance of Question 4
(see Question 1 in [28]):

Question 5 (A) Is there a general formula for the entropy h(νη ∗ κ) of νη ∗ κ?
(B) Do we always have h(νη ∗ κ) > 0 whenever h(κ) > 0?
(C) Can we have h(νη ∗ κ) = h(κ) with h(κ) > 0?

1.3 Main technical result

Our main tool used to answer Questions 4 and 5 is concerned with the entropy rate
of stationary processes. Before we can formulate it, we need some definitions and
notation that will be used througout the whole paper.

All random variables and processes will be defined on a fixed probability space
(�,F , P). Sometimes, we will replace the underlying probability measure P by its
conditioned version, PA(·) = P (· ∩ A)/ P (A), where A ∈ F with P(A) > 0. In
particular,EA will stand for the expectation taken with respect to PA. For convenience
sake, we will write A, B instead of A∩ B for any A, B ∈ F : for example, EA,B stands

5 Equivalently, if π : (X ,B, μ, T ) → (Z ,D, ρ, R) intertwines the actions of T and R, then R is called a
factor of T (as A = π−1(D) ⊂ B is T -invariant).
6 In the special case of the square-free system the result was proved by Peckner [33].
7 By d we denote the upper asymptotic density.
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Entropy rate of product of independent processes 137

for EA∩B . A central role will be played by the Shannon entropy of a random variable
X , denoted by us by H (X). Although we will recall basic definitions and properties
related to H (X), some well-known facts will be taken for granted (all of them can
be found in [22]). All random processes will be bilateral and real. Usually, they will
be also finitely-valued and stationary, however sometimes we will need auxiliary
countably-valued, non-stationary processes. Recall that a process X = (Xi )i∈Z is
stationary if (Xi )i∈Z has the same distribution as (Xi+1)i∈Z and finitely-valued if, for
every i ∈ Z, Xi ∈ X , with |X | < ∞.

Let now X ,Y be random variables taking values in finite state spaces X , Y respec-
tively and fix A ∈ F with P (A) > 0. We put HA(X) = −∑

x∈X PA (X =
x)log2 PA (X = x). Moreover, HA(X | Y ) = ∑

y∈Y PA(Y = y)HY=y,A(X) will
stand for the conditional Shannon entropy of X with respect to Y . When P (A) = 1,
we will omit subscript A and write H (X) and H (X | Y ), respectively.

To shorten the notation, we will use the following convention. For a subset A =
{i1, . . . , in} ⊂ Z with i1 < i2 < · · · < in and a process X = (Xi )i∈Z, we will write

XA = (
Xi1 , Xi2 , . . . , Xin

)
.

Moreover, for any k � 
 in Z, we define integer intervals:

[k,∞):= {k, k + 1, . . .} , (−∞, 
]:= {
, 
 − 1, . . .} , [k, 
]:= {k, k + 1, . . . , 
} .

For example, X[0,n] = (X0, . . . , Xn) for n ∈ N. It is natural and convenient to interpret
[k, 
] as ∅ if 
 < k, H (X∅) = 0 and H (X | Y∅) = H (X).

Consider now two random processes X = (Xi )i∈Z and Y = (Yi )i∈Z such that
(X,Y) := ((Xi ,Yi ))i∈Z is stationary. Then

H (X) = lim
n→∞

1

n
H(X[0,n−1]), H (X |Y) = lim

n→∞
1

n
H (X[0,n−1] | Y[0,n−1]) (1.2)

will denote, respectively, the entropy rate of X and the relative entropy rate of
X = (Xi )i∈Z with respect to Y = (Yi )i∈Z. By the stationarity of X, H (X) =
limn→∞ H (X0 | X[−n,−1]). Note that both limits in (1.2) exist due to the subaddi-
tivity of appropriate sequences.

Remark 1.4 Sometimes it is convenient to extend the classical definition of the condi-
tional entropy, H (X | Y ), to H (X |G), where X is a finitely-valued random variable
and G ⊂ F is a sub-σ -algebra (see [20], Chapter 14, for a precise construction
and proofs). This extension is justified by the following facts. If G = σ(Y ) then
H (X | σ(Y )) = H (X | Y ) for any random variable Y .8 If H ⊂ G ⊂ F are sub-
σ -algebras then H (X |G) � H (X |H). Moreover, if Gn ↘ G or Gn ↗ G then
H (X |Gn) ↗ H (X |G) or H (X |Gn) ↘ H (X |G), respectively. Thus, for example,
it makes sense to write H (X) = H (X0 | X(−∞,−1]) = limn→∞ H (X0 | X(−n,−1]).
The chain rule is still valid, namely, if X and Y are finitely-valued then

8 Recall that σ(Y ) stand for the smallest σ -algebra making Y measurable.
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H (X ,Y |G) = H (X |G) + H (Y | σ(G, σ (X))). (1.3)

Furthermore, H (X |G) = 0 if and only if X is G-measurable and H (X |G) = H (X)

if and only if X is independent of G.

Remark 1.5 We will often omit some technicalities concerning events of zero proba-
bility. First, we tacitly assume that F is complete (i.e. all subevents of zero-measure
events are measurable). Secondly, when considering sub-σ -fields associated with ran-
dom processes, we think of them as of measure-σ -algebras (intuitively, we look at
them "up to events of probability zero"). Given sub-σ -fields G,H ⊂ F , sometimes
we will write

G
P⊂ H

to stress that for every G ∈ G there is H ∈ H such that P(G�H) = 0 but not

necessarily G ⊂ H (with obvious modifications for
P⊃ and

P=). However, in most
cases, we will skip such considerations, cf. the last sentence of the previous remark.

Given processes X = (Xi )i∈Z and Y = (Yi )i∈Z, we will be interested in the entropy
rateH (X ·Y) of their productX ·Y = (Xi ·Yi )i∈Z. Our standing assumptions (unless
stated otherwise) will be that:

(i) X is finitely-valued, Y is binary (Yi ∈ {0, 1} for i ∈ Z) and P(Y0 = 1) > 0,
(ii) X � Y, i.e. X and Y are independent.

Notice that by the independence of X and Y, process (X,Y) is stationary. Moreover,
X · Y is a factor of (X,Y).9 The quantity H (X · Y |Y) turns out to be easier to deal
with thanH(X ·Y). A particular emphasis will be put on the case when H (Y) = 0 in
which H (X · Y |Y) = H (X · Y)10 and H (X · Y) � H (X).11

Let R = R(Y) = (Ri )i∈Z be the return process, i.e. the process of consecutive
arrival times of Y to 1:

Ri =

⎧⎪⎨
⎪⎩

inf{ j � 0 : Y j = 1}, i = 0,

inf{ j � Ri−1 : Y j = 1}, i � 1,

sup{ j < Ri+1 : Y j = 1}, i � −1.

(1.4)

Note that, in general,R can be countably-valued. IfY is ergodic then it visits 1 infinitely
often, both in the future and in the past and, thus,R is well-defined almost everywhere.
However, we don’t need to assume the ergodicity of Y to be able to speak of R and
we will just assume that:

9 Cf. Remark 1.23.
10 To see this, it suffices to notice that given a process Z, we have 1

nH (Z[0,n] | Y[0,n]) � 1
nH (Z[0,n]) =

1
nH (Z[0,n] | Y[0,n]) + 1

nH (Y[0,n]). In particular, we can take Z = X · Y.
11 Using the fact that factors cannot increase entropy and by the subadditivity of entropy rate, we have
H (X · Y) � H ((X,Y)) � H (X) + H (Y).
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Entropy rate of product of independent processes 139

(iii) Y is such that the definition of R makes sense.

Whenever (i), (ii) and (iii) hold, we will say that the pair (X,Y) is good. IfY is binary,
with P(Y0 = 1) > 0 and such that (iii) holds, we will say that Y is good.

Remark 1.6 We will use lowercase letters to denote realizations of the corresponding
random processes (denoted by uppercase letters). Recall that x = (xi )i∈Z is a real-
ization of X = (Xi )i∈Z if there exists ω ∈ � such that xi = Xi (ω) for all i ∈ Z.
Moreover, we will tacitly assume that ω belongs to some “good” subset of� of proba-
bility 1. For example, forR, our standing assumption will be thatω realizing r belongs
to the set where Y visits 1 infinitely often in both directions. In general, if some prop-
erty of a process X has probability 1, then realization x inherits it. For example, if we
consider Y under PY0=1 then every realization y will satisfy y0 = 1.

The main technical result contains entropy formulas for good processes.

Theorem 1.7 (answer to Question 4(A)) Let X = (Xn)n∈Z, Y = (Yn)n∈Z be a pair of
mutually independent stationary processes, where X is finitely valued and Y is binary
and such that P(Y0 = 1) > 0. Assume also that Y is such that the definition of the
corresponding return process R to state 1 makes sense. Then

(A) H (X · Y |Y) = P(Y0 = 1)EY0=1H(X0|X{r−1, r−2, ...})|r−i=R−i .

If additionally Y is ergodic then

(B) H (X · Y |Y) = H(X) − P(Y0 = 1)EY0=1H(X[1,r1−1]|X(−∞,0], X{r1,r2,...})|ri=Ri .

Remark 1.8 The above expectations are to be understood in the following way:

• wecomputeH (X0 | X{r−1,r−2,··· })orH (X[1,r1−1] | X(−∞,0], X{r1,r2,...}) for all real-
izations r = (ri )i∈Z thus obtaining a function f (r) depending on r;

• we find EY0=1 f (R).

1.4 Consequences of themain technical result

Clearly, Theorem 1.7 gives an answer to Questions 4(A) and 5(A). We will say now
how it is related to Questions 4(B), 5 (B), 4(C) and 5(C). The details and longer proofs
are included in Sect. 2.3.

1.4.1 Answer to Questions 4(B) and 5(B)

Notice first that

H (X) � H (X0 | X{r−1,r−2,··· }) � H (X0)

for each choice of negative integers · · · < r−2 < r−1 < 0. Therefore, by Theo-
rem 1.7 (A), we obtain immediately the following:

Corollary 1.9 (positive answer to Question 4(B)) Suppose that (X,Y) is good, i.e.
X = (Xn)n∈Z, Y = (Yn)n∈Z is a pair of mutually independent stationary processes,
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where X is finitely valued and Y is binary, such that P(Y0 = 1) > 0 and the definition
of the corresponding return process R to state 1 makes sense. Assume additionally
that H (Y) = 0. Then

P (Y0 = 1)H (X) � H (M) � P (Y0 = 1)H (X0).

In particular,

H (M) > 0 whenever H (X) > 0. (1.5)

Remark 1.10 The lower bound in Corollary 1.9 is attained for exchangeable processes
(see Proposition 2.5), whereas the upper bound is attained for i.i.d. processes. If X is
a Markov chain (which is not i.i.d.), both inequalities are strict, see Sect. 2.1.2.

Remark 1.11 (positive answer toQuestion 5(B)) Implication (1.5)means, in particular,
that the answer to Question 5(B) is positive, whenever νη �= δ(...0,0,0...). In Sect. 1 we
present an alternative ergodic-theoretic approach to this problem. The proof presented
therein is much shorter, on the other hand it addresses directly Question 5(B), without
providing any explicit formulas.

Remark 1.12 If one drops the assumption that X�Y then the situation changes com-
pletely and one can get H (M) = 0 (with H (X) > 0 and P (Y0 = 1) > 0). To see
how far this can go, consider

X = Z · W and Y = 1 − W = (1 − Wi )i∈Z,

where

Z � W,H (W) = 0 and P(W0 = 0) · P(W0 = 1) > 0.

ThenM is a trivial zero process, in particular, we haveH (M) = 0. On the other hand,
by Corollary 1.9, H (X) = H (Z · W) > 0 = H (W) = H (Y). Cf. also Sect. 1 for
more examples of ergodic-theoretic flavour.

1.4.2 Answer to Questions 4(C) and 5(C)

Answers to Questions 4(C) and 5(C) are more complex and they are related to the
notion of a bilaterally deterministic process.

Definition 1.13 We say that a stationary process Z = (Zi )i∈Z is bilaterally determin-
istic if, for all k ∈ N,

H (Z[0,k] | Z(−∞,−1], Z[k+1,∞)) = 0.
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Remark 1.14 The notion of a bilaterally deterministic process was introduced by Orn-
stein and Weiss [32], in terms of the following (double) tail sigma-algebra:

Td :=
⋂
n�1

σ
(
Z(−∞,−n], Z[n,∞)

)
.

Notice that the following conditions are equivalent:

• Z is bilaterally deterministic,
• Z[−k,k] ∈ Td for each k � 1,
• σ(Z) = Td .

Indeed, e.g., ifZ is bilaterally deterministic thenH (Z[0,k] | Z(−∞,−
], Z[k+1+m,∞)) =
0 for any k, 
,m ∈ N and by taking 
,m → ∞, we easily obtain Z[−k,k] ∈
Td for each k � 1. Cf. also Remark 1.4. Informally, “given the far past and the distant
future, the present can be reconstructed” [32].

Remark 1.15 Given a stationary finitely-valued process Z, let

Tp :=
⋂
n�1

σ
(
Z(−∞,−n]

)
, T f :=

⋂
n�1

σ
(
Z[n,∞)

)

denote, respectively, the tail σ -algebra corresponding to the past and to the future. By

a celebrated result of Pinsker [34], Tp
P= T f

P= �, where � denotes the Pinsker σ -
algebra (i.e., the largest zero entropy sub-σ -algebra). Thus, the following conditions
are equivalent (cf. Remark 1.14):

• H (Z) = 0,
• Z[−k,k] ∈ Tp for each k � 1,
• σ(Z) = Tp.

A direct consequence of Remark 1.14 and Remark 1.15 is the following observation:

Corollary 1.16 Suppose thatH (Z) > 0. Then Z is not bilaterally deterministic when-
ever Td = Tp. In particular, this happens if Td is trivial.

Notice that from this point of view, stationary processes can be split into three
pairwise disjoint classes:

(a) of zero entropy rate (they are automatically bilaterally deterministic),
(b) of positive entropy rate that are bilaterally deterministic,
(c) of positive entropy rate but not bilaterally deterministic.

Class (c) includes the following positive entropy rate processes:

• exchangeable processes,
• Markov chains,
• weakly Bernoulli processes (here Td is trivial),
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for more details, see Sect.on 2.1. Theorem 1.7 allows us to “compare” a large subclass
of processes from class (a) with processes from class (c), see Corollaries 1.17 and 1.19
below. In particular, the zero entropy class that we have in mind contains all B-free
systems (consideredwith theMirskymeasure), cf. Proposition1.20 andCorollary 1.21.
We leave as an open problem to find answers to analogous questions on the relations
between class (a) with class (b).

Notice that

EY0=1H (X[1,r1−1] | X(−∞,0], X{r1,r2,... })|ri=Ri

� EY0=1H (X[1,r1−1] | X(−∞,0], X[r1,∞))|r1=R1

=
∑
k�1

PY0=1(R1 = k + 1)H
(
X[1,k]| X(−∞,0),X[k+1,∞)

)
.

Moreover, if X fails to be bilaterally deterministic, then, for all k sufficiently large,
we have

H (X[1,k] | X(−∞,0], X[k+1,∞)) > 0. (1.6)

Thus, using Theorem 1.7(B), we obtain immediately the following:

Corollary 1.17 (answer toQuestion 4(C)) Suppose that (X,Y) is good andY is ergodic
of zero entropy rate (i.e.XandY is a pair ofmutually independent stationary processes,
X is finitely-valued, Y is binary and ergodic, with H(Y) = 0). If additionally

P (R1 = k) > 0 for infinitely many k ∈ N (1.7)

and X is not bilaterally deterministic then H (M) < H (X).

Remark 1.18 In fact, if we know more about X than just (1.6) then the assumption
that P (R1 = k) > 0 for infinitely many k ∈ N can be relaxed and we can still have
H (M) < H (X). E.g. if X is Bernoulli then we will always have H (M) < H (X)

whenever (X,Y) is good (X,Y is a pair of mutually independent stationary processes,
X is finitely-valued,Y is binary and such that the definition of the corresponding return
process R to state 1 makes sense) and Y is of zero entropy rate.

A natural question arises what happens when (1.7) fails to hold. Suppose that our
processes are of dynamical origin and the underlying dynamical system is a transitive
symbolic dynamical system. Namely, take w ∈ {0, 1}Z such that the support of w
is unbounded both from below and from above, and suppose that w is quasi-generic
along some subsequence for an invariant zero entropy measure ν. Let Y be the orbit
closure of w under the left shift S and let Y ∼ ν be the corresponding stationary
process. Clearly,

(1.7) �⇒ the support of w does not contain a two-sided infinite arithmetic progression.

It turns out that if we assume that the support of w does contain a two-sided (infinite)
arithmetic progression then one can obtain a complementary result to Corollary 1.17:
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Corollary 1.19 Let Y be a good, ergodic process (i.e. Y is a stationary binary ergodic
process, with P(Y0 = 1) > 0) of zero entropy rate. Assume additionally that there
exists L � 1 such that for a.e. realization y, the corresponding return time sequence
r contains an arithmetic progression of difference L. Then there exists a stationary
binary process X that is not bilaterally deterministic and such that H (M) = H (X).

Let us turn now to the interpretation of Corollaries 1.17 and 1.19 from the point of
viewofB-free systems.Recall that a topological dynamical system (T , X) is said to be
proximalwhenever for any x, y ∈ X there exists nk → ∞ such that d(T nk x, T nk y) →
0. It turns out that inB-free setting we have the following dychotomy:

Proposition 1.20 Let B ⊂ N and let η be the characteristic function of the corre-
sponding B-free set. Then exactly one of the following holds:

• (Xη, S) is proximal and then for infinitely many k � 1 the block of the form
10 . . . 01 (with k zeros between the 1’s) is of positive Mirsky measure νη,

• (Xη, S) is not proximal and then η contains a two-sided infinite arithmetic pro-
gression.

As a direct consequence of Corollaries 1.17, 1.19 and Proposition 1.20, for B-free
systems we have the following result:

Corollary 1.21 Let B ⊂ N. Then (Xη, S) is proximal if and only if for any X that is
not bilaterally deterministic, such that X � Y, we have H (M) < H (X).

Finally, let us remark that X in Corollary 1.19 can be chosen to be very weakly
Bernoulli (i.e. as a dynamical system, isomorphic to aBernoulli process [31]) (compare
Example 2.16 belowandRemark1.18). That is, forY as inCorollary 1.19,we canfind a
measure-theoretic dynamical system (X ,B, μ, T )with two stochastic representations
X andX′ (both not bilaterally deterministic!) such thatH (X·Y) < H (X) = H (X′) =
H (X′ ·Y). More than that, in some casesX′ can be retrieved fromX′ ·Y. This matches
well with the fact that the notion of a bilaterally deterministic process is not stable
under taking various process representation of a given dynamical system [32]. It makes
the situation completely different from the one in [18], where the results are purely
ergodic-theoretic.

1.5 Dictionary between ergodic theory and probability theory

In our paper, both ergodic-theoretic and stochastic questions and tools are often inter-
twined. Let us now give some samples of ergodic-theory results translated into the
language of stochastic processes. Our basic object is an ergodic-theoretic dynamical
system (XZ, μ, S), where S stands, as usual, for the left shift, together with a subset
A ⊂ X satisfying μ(A) > 0. Recall that for x ∈ A, the first return time nA is defined
as nA(x) = inf {n � 1 | Snx ∈ A} and the corresponding induced transformation as
SA(x) = SnA(x)(x), with the corresponding conditional measure μA being invariant
under SA.

Fix now a stationary process X = (Xi )i∈Z on (�,F , P), with distribution μ, i.e.
X ∼ μ. This is a stochastic counterpart of (XZ, μ, S), cf. also Sect. 1.1. Left shift S
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naturally acts on processes by SX = (Xi+1)i∈Z. In particular,

S∗(μ) = μ precisely if SX ∼ X.

Similarly,μA corresponds to the distribution ofXunder PX∈A. To see how one should
interpret SA in terms of stochastic processes, let RA = inf {n � 1 | SnX ∈ A} be the
first return time, defined on X ∈ A, cf. (1.4). Now, we set SAX = (

Xi+RA

)
i∈Z

and
one can easily check that

SAμA = μA precisely if SAX ∼ X under PX∈A.

Finally, recall that h(μ) = H (X).
Let us present a summary of some classical ergodic theorems (formulated for

(XZ, μ, S)), with their counterparts for random processes.

Ergodic Probabilistic

Ergodicity of μ1 1
n

∑n−1
i=0 Si f → ∫

f dμ 1
n

∑n−1
i=0 f (SiX) → E f (X)

Poincaré Rec. μA

(
{x : Sk x ∈ A i.o.}

)
= 1 PX∈A(SkX ∈ A i.o.) = 1

Kac’s Lemma
∫
A nAdμA = 1 P(X ∈ A)EX∈ARA = 1

Invariance of μA SAμA = μA SAX ∼ X, under PX∈A

Ergodicity of μA
1
n

∑n−1
i=0 Si f → ∫

f dμA
1
n

∑n−1
i=0 f (SiAX) → EX∈A f (X)

Maker’s ET2 1
n

∑n−1
i=0 Si fn−i → ∫

f dμ 1
n

∑n−1
i=0 fn−i (S

iX) → E f (X)

1Here, in fact, we state Birkhoff ergodic theorem under the assumption that μ is ergodic
2ET stands for “ergodic theorem”

We owe the reader a word of explanation concerning the abbreviations in the table
above. The convergence of ergodic averages is always meant a.e. / a.s. with respect to
the appropriate underlying measure (μ or μA / P or PX∈A). Also, we tacitly assume
that all required assumptions are satisfied, e.g. functions appearing in ergodic averages
are integrable with respect to the underlying measure. Finally, let us give some details
concerningMaker’s ergodic theorem [29] which will play a central role in the proof of
Theorem 1.7 (A). We recall it now (in the ergodic-theoretic language, i.e. as in [25],
under the extra assumption that T is ergodic).

Theorem 1.22 (Maker’s ergodic theorem) Let (X , μ, T ) be an ergodic measure-
theoretic dynamical system. Let f ∈ L1(μ) and fn → f μ-a.e. Suppose that
supn | fn| ∈ L1(μ). Then

1

n

n−1∑
i=0

T i fn−i → Eμ f a.e.

123



Entropy rate of product of independent processes 145

Let us now return to our general setting, with standing assumptions (i) and (ii) on
X and Y. Consider the inter-arrival process T = (Ti )i∈Z, where

Ti = Ri − Ri−1 (1.8)

and the return-processR is as in (1.4). Thus, Ti tells us howmuch time elapses between
(i − 1)’th and i’th visit of Y to the state 1.

Remark 1.23 (Factor of a randomprocess)Recall thatwheneverY is ergodic, the return
processR and thus alsoT is well-defined.Moreover,T can be regarded as a factor ofY
in the ergodic-theoretic sense.More precisely, by the very definition ofT, there is a nat-
ural measurable function π : ({0, 1}Z, S[1],L(X| PY0=1)

) → (
Z

Z, S,L(T | PY0=1)
)

such that π(X) = T almost surely, whereL(· | ·) stands for the "distribution of · under
·", [1] = {y | y0 = 1} and S[1] is the corresponding induced shift operator (cf. the
beginning of this section). Clearly, π S[1] = Sπ . In particular, since Y ∼ S[1]Y and
Y is ergodic (under PY0=1), we get that T is stationary and ergodic (under PY0=1) as
well.

As a consequence of the above remark, we can apply Maker’s ergodic theorem to
T, which results in the following corollary:

Corollary 1.24 Suppose that supi∈N gi (T) ∈ L1(PY0=1) and gi
PY0=1 a.s.−−−−−−→ g. Then,

PY0=1 a.s.,

lim
n→∞

1

n

n−1∑
i=0

gn−i

(
(Ti+ j ) j∈Z

)
= EY0=1g (T) .

2 Examples, comments and proofs

2.1 Examples of non-bilaterally deterministic processes

In the subsections below we tacitly assume that (X,Y) is good, i.e. X,Y is a pair of
mutually independent stationary processes, where X is finitely-valued, Y is binary,
with P(Y0 = 1) > 0 and such that the definition of the corresponding return process
R to state 1 makes sense.

2.1.1 Exchangeable processes

Definition 2.1 We say that a process X is exchangeable if for any n ∈ N and distinct
times i1, i2, . . . , in ,

(
Xi1 , Xi2 , . . . , Xin

) ∼ (X1, X2, . . . , Xn) .

In other words, the distribution of X is invariant under finite permutations.
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Remark 2.2 LetX = (Xi )i∈Z be exchangeable. By a celebrated result of de Finetti [10]
(cf. also [24]), this is equivalent to X being a convex combination of i.i.d. processes.
Thus, there exists a random variable  such that, conditionally on , X is i.i.d. Note
that this ensures that H (X) > 0, unless Xi = fi () for some Borel functions fi .
Indeed,

H (X1, . . . , Xn) � H (X1, . . . , Xn)[] =
n∑

i=1

H (Xi | ) = nH (X1 | ),

which gives H (X) � H (X1 | ). Therefore, H (X) = 0 implies Xi = fi ().

Remark 2.3 Olshen in [30] showed that if X = (Xi )i∈Z is exchangeable then

I = E = Td = T f = Tp,

(as measure-algebras), where I, E denote the σ -algebra of shift-invariant and finite
permutation invariant sets respectively and Td , T f , Tp are double, future, past tails
respectively.

As an immediate consequence of Remark 2.3 and Corollary 1.16, we obtain the fol-
lowing:

Corollary 2.4 Suppose that X is exchangeable. Then H (X) > 0 if and only if X is not
bilaterally deterministic.

Proposition 2.5 Suppose thatX is exchangeable. ThenH (M |Y) = P (Y0 = 1)H (X).

Proof It follows from the exchangeability ofX that for any negative distinct times r−i ,
i ∈ N,

H (X0 | X{r−1,r−2,...}) = H (X0 | X{−1,−2,...}) = H (X)

It remains to use Theorem 1.7 (A). ��

2.1.2 Markov chains

Recall that a process X is a Markov chain if, for every time i ∈ Z, conditionally
on Xi , X(−∞,i−1] is independent of X[i+1,∞). Colloquially, given present, the past
and the future are independent. This immediately leads to the following corollary of
Theorem 1.7 (A):

Corollary 2.6 If X is a Markov chain (and (X,Y) is good) then

H (M) = P (Y0 = 1)
∞∑
k=1

PY0 = 1(R1 = k)H (Xk | Xo).

Remark 2.7 Corollary 2.6 easily extends to the case of k-Markov chains but for sim-
plicity sake we decided to present it for k = 1.
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Remark 2.8 Let X = (Xi )i∈N be a finitely-valued Markov chain, Xi ∈ X . It is well-
known (see [15], Chapter XV, Section 6, Theorem 3, page 392) that we can uniquely
decompose the state space X into disjoint union

X = C � D1 � D2 � · · · � Dk, (2.1)

where C is the set of transient states and Di are closed sets. If X starts in Dj (i.e.
X0 ∈ Dj ) then it remains in Dj forever. If X0 ∈ C then X stays in C for finite time
and jumps to some Dj (and never leaves Dj afterwards). Moreover (see [15], Chapter
XV, Section 7, Criterion, page 395), if π is a stationary measure then necessarily
π(C) = 0.

Now suppose that a bilateral, finitely-valued Markov chain X = (Xi )i∈Z is sta-
tionary (thus, C = ∅ in (2.1)). Fix 1 � j � k and let XDj stand for X conditioned
on X0 ∈ Dj . By the definition of Dj , process XDj is an irreducible (equivalently,
ergodic), stationary Markov chain. Now, let p j be the period of XDj . Then Dj can be
decomposed into p j disjoint sets (see [6], Chapter 1, Section 3, Theorem 4)

Dj = Dj,0 � · · · � Dj,p j−1

such that P (X1 ∈ Dj,(
+1) mod p j | X0 ∈ Dj,
) = 1. Using Corollary 2 from [3], we
get that

Td
(
XD j

)
= Tp

(
XD j

)
= T f

(
XD j

)
= σ

{{
X0 ∈ Dj ,0

}
,
{
X0 ∈ Dj,1

}
, . . . ,

{
X0 ∈ Dj,p j−1

}}
.

Note that Corollary 2 from [3] is stated only for T f but a perusal of the proofs of
Theorem 1 and Corollaries 1 and 2 therein gives the same result for Td . Thus, X,
conditionally on X0 ∈ Dj,l , has trivial tail σ -algebras. This immediately leads to

Td (X) = Tp (X) = T f (X) = σ
{{

X0 ∈ Dj,

} | 1 � j � k, 0 � 
 � p j

}
. (2.2)

Indeed, if for example A ∈ Td (X) then, for all j, 
, P (A | X0 ∈ Dj,
) ∈ {0, 1}which
yields (2.2). As a consequence of (2.2), we obtain the following:

Corollary 2.9 Suppose that X is a stationary finitely-valued Markov-chain. Then
H (X) > 0 if and only if X is not bilaterally deterministic.

Remark 2.10 Since H (X) = H (X1 | X0) = H (Xi+1 | Xi ), it follows that H (X) = 0
if and only if, for every i ∈ Z, Xi = fi (X0) for some functions fi . It is not hard to
see that if for every x ∈ X , P (X0 = x) > 0, then every fi must be a bijection on X .
Moreover, by the stationarity of X, for f1(x) = y, we get

P (X0 = x) = P (X0 = x, f1(x) = y) = P (X0 = x, f1(X0) = y)

= P ( fi (X0) = x, fi+1(X0) = y) = P (X0 = f −1
i (x))1

fi+1

(
f −1
i (x)

)
= f1(x)

.

Thus, necessarily, fi+1 (z) = f1( fi (z)). Consequently, if we set f := f1 then fi =
f ◦i . Moreover, f must be such that, for all x , P (X0 = x) = P (X0 = f (x)).
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Therefore, if X is bilateral, finitely-valued, stationary Markov chain, with P (X0 =
x) > 0 for all x ∈ X , then the following are equivalent:

• X is bilaterally deterministic;
• there exist a bijection f : X → X , such that Xi = f ◦i (X0) and for all x ∈ X ,

P (X0 = x) = P (X0 = f (x)).

2.1.3 Weakly Bernoulli processes

Weakly Bernoulli processes were introduced by Friedman and Ornstein [16] and
belong to the classics of ergodic theory. Equivalently, one speaks of finitely deter-
mined processes. Recall that any process X that is weakly Bernoulli is also very
weakly Bernoulli (i.e. as a dynamical system, it is isomorphic to a Bernoulli process
[31]). In particular,H (X) > 0. We refer the reader, e.g., to [36] for more information
on the subject.

Suppose now that X is weakly Bernoulli. Then Td is trivial (see, e.g., Proposition
5.17 in [4]). Therefore, as an immediate consequence of Corollary 1.16, we obtain the
following:

Corollary 2.11 Suppose that X is weakly Bernoulli. Then X is not bilaterally deter-
ministic.

In fact, the results in [4] are formulated in a different language. One more notion,
equivalent to the weak Bernoulli property, is absolute regularity. It first appeared in
works of Volkonskii and Rozanov [37, 38] who, in turn, attribute it to Kolmogorov.
Fix a probability space (�,F , P). Let A,B ⊂ F be sub-σ -algebras and let

β(A,B) := sup
1

2

I∑
i=1

J∑
j=1

|P(Ai ∩ Bj ) − P(Ai )P(Bj )|,

where the supremum is taken over all (finite) partitions {A1, . . . , AI }, {B1, . . . , BJ }
of �, with Ai ∈ A, Bj ∈ B for each i, j . Now, given a process X, for −∞ � J <

L � ∞, we define the σ -algebra

F L
J := σ(Xk : J � k � L).

Then, for each n � 1, we define the following β-dependence coefficients:

β(n) := sup
j∈Z

β(F j
−∞,F∞

j+n).

We say that X is absolutely regular (or β-mixing) if β(n) → 0 as n → ∞.
Berbee, in [1], studied β-dependence coefficients for stationary ergodic processes.

He showed that

lim
n→∞ β(n) = β = 1 − 1

p
for some p ∈ N ∪ {∞}.
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Moreover, he proved that if β < 1 then Td = Tp. As a consequence of his result and
of Corollary 1.16, we have:

Corollary 2.12 Suppose that X is a stationary ergodic process with β < 1. Then X is
not bilaterally deterministic.

2.2 Proof of themain technical result (Theorem 1.7)

2.2.1 Part (A)

By the chain rule (cf. (1.3)), we have

H (M[0,n] | Y[0,n]) =
n∑

k=0

H (Mk | Y[0,n], M[0,k)) =:
n∑

k=0

Hk,n . (2.3)

Fix 0 � k � n. Since Mk = Xk · Yk and X � Y, we easily get that conditionally on(
Y[0,k], M[0,k)

)
, Mk is independent of Y[k+1,n]. In other words,

Hk,n = Hk = H (Mk | Y[0,k], M[0,k)).

Now, using the definition of Shannon conditional entropy, the fact that on the event
Yk = 0, we have Mk ≡ 0, whereas on Yk = 1, we have Mk = Xk and the stationarity
of the (X,Y), we get

Hk = P (Yk = 1)HYk=1 (Xk | Y[0,k), M[0,k))
= P (Y0 = 1)HY0=1 (X0 | Y[−k,0), M[−k,0)).

Moreover, if Y = Y[−k,0), M = M[−k,0), y = y[−k,0),m = m[−k,0), s−k = ∑−1
i=−k yi ,

r−s−k < · · · < r−1 are such that yr−i = 1, then

PY0=1 (Y = y, M = m) =
{

PY0=1 (Y = y) P

(
X{r−1,...,rs−k } = m{r−1,...,rs−k }

)
, s−k > 0,

PY0=1(Y = y), s−k = 0,

whenever m � y coordinatewise (otherwise, we get zero). This implies that

Hk = P(Y0 = 1) PY0=1 (S−k = 0)H (X0)

+ P (Y0 = 1) EY0=11S−k>0H (X0 | X{r−1,...,rs−k })|r−i=R−i ,s−k=S−k
.

Since Y visits 1 a.s. infinitely many times (in the past),

PY0=1(S−k = 0) → 0 as k → ∞.

Moreover, PY0=1 a.s., we have 1S−k>0 → 1 and

H (X0 | X{r−1,...,rs−k })|r−i=R−i ,s−k=S−k
→ H (X0 | X{r−1,r−2,...,})|r−i=R−i

.
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Thus, by the bounded convergence theorem, we get that

Hk → P (Y0 = 1)EY0=1H (X0 | X{r−1,r−2,...,})|r−i=R−i
,

which, by (2.3), concludes the proof of Theorem 1.7 (A).

2.2.2 Part (B)

First, we will prove a technical lemma.

Lemma 2.13 We have

H (X · Y | Y) = lim
n→∞

1

n
E1Sn>0H (Xr0 , Xr1 , . . . , Xrsn−1)|ri=Ri ,sn=Sn

.

Proof Since for any k ∈ Z, on the event Yk = 0, we have Mk ≡ 0, it follows that

H (M[0,n] | Y[0,n]) = P (Sn > 0)
∑
y[0,n]

PSn>0(Y[0,n] = y[0,n])HY[0,n]=y[0,n] (M[0,n]).

Moreover, if sn = ∑n
i=0 yi > 0 then

PY[0,n]=y[0,n](M[0,n] = m[0,n]) = P(Xr0 = mr0 , . . . , Xrsn−1 = mrsn−1),

whenever m[0,n] � y[0,n] coordinatewise (otherwise, we get zero). Hence,

HY[0,n]=y[0,n] (M[0,n]) = H (Xr0 = mr0 , . . . , Xrsn−1 = mrsn−1),

which results in

H (M[0,n] | Y[0,n]) = P (Sn > 0) ESn>0H (Xr0 , . . . , Xrsn−1)|ri=Ri ,sn=Sn

= E1Sn>0H (Xr0 , . . . , Xrsn−1)|ri=Ri ,sn=Sn
.

This completes the proof. ��
Notice now that

1

n
H (Xr0 , . . . , Xrsn−1) = 1

n
H (X[0,n]) − 1

n
H (X[0,n]\{r0,...,rsn−1} | Xr0 , . . . , Xrsn−1),

limn→∞ 1
nH (X[0,n]) = H (X) and that (by the ergodicity of Y) we have 1Sn>0 → 1.

Thus, in order to conclude the proof it remains to find limn→∞ E1Sn>0H(n,R)where

H(n, r) := 1

n
H (X[0,n]\{r0,...,rsn−1} | Xr0 , . . . , Xrsn−1), r = (ri )i∈Z.
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More precisely, if we show that

lim
n→∞ H(n,R) = P(A0)EA0H (X[r0+1,r1−1] | X(−∞,r0], X{r1,r2,...})|ri=Ri (2.4)

holds a.e. then by the bounded convergence theorem (as H(n,R) � H (X0)) we will
have

lim
n→∞ E1Sn>0H(n,R) = P(A0)EA0H (X[r0+1,r1−1] | X(−∞,r0], X{r1,r2,...})|ri=Ri

since limn→∞ 1Sn>0 = 1 a.e. by the ergodicity of Y.
Let

Ai = [Y0 = . . . = Yi−1 = 0,Yi = 1] for i � 0

(in particular, A0 = [Y0 = 1]).
Fix y and n ∈ N. By the chain rule, we get

nH(n, r) = H (X[0,r0−1] | X{r0,...,rsn−1})︸ ︷︷ ︸
�1(n)

+H ((X[rsn−1+1,n] | Xrsn−1)︸ ︷︷ ︸
�3(n)

+
sn−2∑
i=0

H (X[ri+1,ri+1−1] | X[0,ri ], X{ri+1,...,rsn−1})

︸ ︷︷ ︸
�2(sn−1)

.

We will deal first with the summands �1(n) and �3(n). Clearly,

1

n
�1(n) � 1

n
H (X[0,r0−1]) � r0

n
H(X0) → 0 (2.5)

when n → ∞. Since sn = srsn−1 ,
sn
n → P (Y0 = 1) > 0 (by the ergodicity of Y) and

rsn−1 → ∞, it follows that

�3(n)

n
� n − rsn−1

n
H(X0) =

(
1 − rsn−1

srsn−1

· sn
n

)
H(X0) → 0. (2.6)

In order to deal with �2(sn − 1), notice that

1

n
�2(sn − 1) = sn

n

1

sn
�2(sn − 1). (2.7)

Because of sn
n → P (Y0 = 1), it suffices to show that PA0 -a.e. we have

lim
n→∞

1

n
�2(n) = EA0H (X[r0+1,r1−1] | X(−∞,r0], X{r1,r2,...}). (2.8)
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Using the stationarity of X, for ti = ri − ri−1, we obtain

�2(n) =
n−1∑
i=0

H (X[ri+1,ri+1−1] | X[0,ri ], X{ri+1,...,rn})

=
n−1∑
i=0

H (X[1,ti+1−1] | X[−ri ,0], X{ti+1,...,ti+1+···+tn}).

We would like to apply Maker’s ergodic theorem to study the above sum. However,
we cannot do it directly due to the term X[−ri ,0] appearing in the conditional entropies.
This obstacle will be overcome by estimating each summand from below and above.

Fix k ∈ N. Then for every i such that ri � k and for every j ∈ N, we have

H∞, j (ti+1, ti+2, . . .) � H (X[1,ti+1−1] | X[−ri ,0], X{ti+1,...,ti+1+···ti+ j })
� Hk, j (ti+1, ti+2, . . .) , (2.9)

where Hk, j (ti+1, ti+2, . . .) = H (X[1,ti+1−1] | X(−k,0], X{ti+1,...,ti+1+···ti+ j }) for k ∈
Z ∪ {∞}. Clearly,

Hk, j (t1, t2, . . .)
j→∞−−−→ Hk (t1, t2, . . .) := H (X[1,t1−1] | X(−k,0], X{t1,t1+t2,...})

= H (X[r0+1,r1−1] | X(−k,r0], X{r1,r2,...}).

By the entropy chain rule and Kac’s lemma,

sup
k, j∈N

Hk, j (T[1,∞)) � H (X0)T1 ∈ L1(PA0). (2.10)

Therefore, Maker’s ergodic theorem implies that, for every k ∈ N∪{∞}, PA0 a.s., we
have

lim
n→∞

1

n

n−1∑
i=0

Hk,n−i (ti+1, ti+2, . . .) → EA0Hk (T1, T2, . . .) . (2.11)

Using (2.9), it follows from the definition of �2 (and the chain rule) that

1

n

n−1∑
i=0

H∞,n−i (ti+1, ti+2, . . . ) � 1

n
�2(n)

� t1 + · · · + tk
n

H(X0) + 1

n

n−1∑
i=k

Hk,n−i (ti+1, ti+2, . . . )

� t1 + · · · + tk
n

H(X0) + 1

n

n−1∑
i=0

Hk,n−i (ti+1, ti+2, . . . ),

(2.12)
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with t1+···+tk
n H(X0)

n→∞−−−→ 0. Thus, due to (2.11),

EY0=1H∞ (T1, T2, . . .) � lim
n→∞

1

n
�2(n) � EY0=1Hk (T1, T2, . . .) .

Notice that Hk → H∞ as k → ∞. Hence, combining (2.10) and the bounded con-
vergence theorem, we obtain

lim
n→∞

1

n
�2(n) = EA0H∞ (T1, T2, . . .) (2.13)

PA0 a.s. which is exactly (2.8) under PA0 .
It remains to show (2.8) under PAi for i � 1. However, it is a direct consequence

of the above and the following lemma:

Lemma 2.14 Suppose that we have a sequence of measurable functions ( fn)n�1
depending on (Tn)n�1 and a measurable function f depending on Y such that

fn((Tn)n�1) → f (Y) (2.14)

PA0 -a.e. Then (2.14) holds also PAi -a.e. for each i � 1.

Proof For the sake of simplicity, we assume that Y is a cannonical process. Let B0 ⊂
A0 be the set where (2.14) holds. We claim that Bi := Ai ∩ S−i B0 is of full measure
PAi and (2.14) holds on Bi . Indeed, since Si Ai ⊂ A0, we have

PAi (Ai \ Bi ) = 1

P(Ai )
P(Ai \ S−i B0) = 1

P(Ai )
P(Si Ai \ B0) � 1

P(Ai )
P(A0 \ B0) = 0.

Moreover, if y ∈ Bi then Siy ∈ Si Ai ∩ B0 ⊂ A0 ∩ B0 = B0. Since y ∈ Ai , it follows
immediately that Tn(y) = Tn(Siy) for all n � 1 which completes the proof. ��

2.3 General setting: proof of Corollary 1.19 and related examples

In this section we will study a certain class of good (X,Y) with no entropy drop. We
begin by the proof of Corollary 1.19.

Proof of Corollary 1.19 Let L � 1 be such that supp y ⊃ LZ + a for some a and
for a.e. realization y of Y. Let (X ,B, μ, T ) be a measure-theoretic dynamical system
with entropy less than 1

L log 2 and take a measurable partition X = J ∪ J c that is
generating for the map T L . Let Y be the orbit closure of y in {0, 1}Z under the left
shift.

ProcessM corresponds to coding of points in (X ×Y , T × S)with respect to J ×C
(with C = [1] ⊂ Y ) and its complement. Using Theorem 1.7 (B), we obtain

H (M) = H (X) − P(A0)EA0H (X[r0+1,r1−1] | X(−∞,r0], X{r1,r2,... })|ri=Ri = H (X).
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(a.e. r contains a two-sided infinite arithmetic progression with difference L , the
partition {J , J c} is generic for T L and thus the conditional entropy in the above
formula is equal to zero). ��
It would be interesting to know if in the above example X can be recovered from M.
Let us see now that this can be the case when Y arises from the rotation on two points
{0, 1}. We will look at it both from the probabilitic and ergodic-theoretic perspective.

Example 2.15 Let (ξi )i∈Z be a sequence of i.i.d. random variables such that

P (ξ0 = 0) = P (ξ0 = 1) = 1

2
,

an arbitrary (relabelling) 1-1 function F : {0, 1}2 → {0, 1, 2, 3} and put

Xi = F(ξi , ξi+1), Y ∼ 1

2
(δa + δSa),

where a := (. . . 0, 1, 0, 1, ◦0, 1, 0, 1 . . .), S stands for the left shift and X � Y. Since
X is a Markov chain and F is 1-1, we have

H (X) = H (X1 | X0) = H (ξ1, ξ2 | ξ0, ξ1) = H (ξ2 | ξ0, ξ1) = H (ξ2) = log 2.

Moreover, PY0=1(R−1 = −2) = 1 and therefore

EY0=1H (X0 | X{r−1,r−2,··· })|ri=Ri = H (X0 | X−2) = H (X0) = 2 log 2.

Clearly, for every j ∈ Z, (Xi )i� j � (Xi )i� j+2 yielding

1

n
f (y[0,n]) = 1

n
H (Xr1 , . . . , Xrm ) = m

n
H (X0) → 1

2
H (X0).

Thus, by Theorem 1.7 (A), H (M) = 1
2H (X0) = 1

22 log 2 = log 2 = H (X). In fact,
notice that since F is 1-1, knowing all even (resp. all odd) coordinates of a realization
x of X determines its all coordinates. In other words, M contains full information
about X.

We will now see how to use ergodic-theoretic approach to modify the above idea so
that Xi ∈ {0, 1} and keep the property H (M) = H (X) and the ability to recover X
fromM.

Example 2.16 Let (X ,B, μ, T ) be an ergodic automorphism, with h(μ) ∈ (0, log 2)
and let S be the rotation on Y = {0, 1}, with the unique invariant measure denoted by
ν. Let {J , J c} be a (measurable) generating partition of X for T (the existence of such
a partition follows by Krieger’s finite generator theorem [27]) and let C := {1} ⊂ Y
We consider the following stationary process:

X = (1J ◦ T i )i∈Z and Y = (1C ◦ Si )i∈Z.
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Then M := X · Y corresponds to coding of points in the dynamical system (X ×
Y , T × S) with respect to J × C and its complement:

(x, 1) �→ (. . . , ◦1J (x), 0,1J (T
2x), 0, . . . );

(x, 0) �→ (. . . , ◦0,1J (T x), 0,1J (T
3x), . . . ).

Equivalently, M corresponds to the dynamical system that is a tower of height two
above the factor of T 2 corresponding to the partition {J , J c}.

Assumenowadditionally that h(T ) < 1
2 log 2 and the partition {J , J c} is generating

for T 2 (e.g. T can be a Bernoulli automorphism, with entropy less than 1
2 log 2). Then

M corresponds to a tower of height two above T 2, denoted by R, and given by

R(x, 0) = (x, 1), R(x, 1) = (T 2x, 0).

Notice that R is isomorphic to T × S via the map � given by

�(x, 0) = (x, 0), �(x, 1) = (T x, 1)

(we easily check that � ◦ R = (T × S) ◦ �). It follows that

H (M) = h(μ ⊗ ν) = h(μ) = H (X) > 0. (2.15)

In fact, since � is an isomorphism, one can filter out X from M.

2.4 B-free systems: proof of Proposition 1.20

Let B ⊂ N, let η = 1FB
and let (Xη, S) be the corresponding B-free system, with

the underlying Mirsky measure νη. Recall that:

h(X̃η, S) = d(FB) = νη(1),

so νη �= δ(...,0,0,0,... ) is equivalent to h(X̃η, S) > 0. Thus, νη �= δ(...,0,0,0,... ) is neces-
sary and sufficient for the existence of κ with h(νη ∗ κ) > 0.

Proof of Proposition 1.20 It was shown in Theorem 3.7 in [12] that the following are
equivalent:

• (Xη, S) is proximal,
• B contains an infinite pairwise coprime subset,
• the support of η does not contain a two-sided infinite arithmetic progression.

Thus, in order to complete the proof of Proposition 1.20, we need to show that in the
proximal case, for infinitely many k � 1 the block of the form 10 . . . 01 (with k zeros
between the 1’s) is of positive Mirsky measure νη. An important notion in the theory
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ofB-free systems is that of tautness [23], defined in terms of the logarithmic density
of sets of multiples. We say that B is taut if for any b ∈ B, we have

δ(MB) > δ(MB\{b}),

where δ(A) = limN→∞ 1
log N

∑
n�N

1
n 1A(n) for any A ⊂ Z. It was proved in [12]

(see Theorem C and Lemma 4.11 therein) that given anyB, there exists a taut setB′
such that MB′ ⊂ MB and νη′ = νη. Keller [26] proved that the Mirsky measure
of any taut set has full support. Therefore, whenver νη = νη′ �= δ(...,0,0,0,... ) then
any block of the form 10 . . . 01 appearing in η′ (and there are infinitely many such
blocks as we exclude the Dirac measure at (. . . , 0, 0, 0, . . . )!) is in fact of positive
νη-measure. ��
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A Ergodic theory viewpoint

A.1 Direct answer to Question 5(B)

Let us first recall the remaining necessary notions from ergodic theory and the-
ory of joinings (for more information, we refer the reader, e.g., to [11, 13, 20]).
Given two measure-preserving transformations (Xi ,Bi , μi , Ti ), i = 1, 2, any ρ ∈
M(X1 × X2, T1 × T2) that projects onto μ1 and μ2 onto the first and second coor-
dinate, respectively, is called a joining of T1 and T2. The set of joinings is always
non-empty (it contains the product measure). If T1 = T2, we speak of self-joinings.
The diagonal self-joining of (X ,B, μ, T ) is determined by �(A × B) = μ(A ∩ B)

for A, B ∈ B. If (Z ,D, ρ, R) is a common factor of T1 and T2, then also the set
of joinings of T1 and T2 that project onto the diagonal self-joining of the common
factor is non-empty (it contains the so-called relatively independent extension over
the common factor, see [20]).

Proposition A.1 Assume that ν, κ ∈ Me({0, 1}Z, S) satisfy h(ν) = 0 with ν �=
δ(...0,0,0...) and h(κ) > 0. Then h(ν ∗ κ) > 0.

Proof Consider ({0, 1}Z×{0, 1}Z, ν⊗κ, S×S) anddenote by�(κ) ⊂ B thePinskerσ -
algebra of κ . Recall that for (Xi , μi , Ti ), i = 1, 2, we have the corresponding relation
between the Pinsker σ -algebras: �(X1 × X2, μ1 ⊗ μ2, T1 × T2) = �(T1) ⊗ �(T2),
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see, e.g. [21]. It follows that

�(ν ⊗ κ) = B ⊗ �(κ). (A.1)

Let C := {x ∈ {0, 1}Z : x0 = 1} and suppose that h(ν ∗ κ) = 0, i.e. �(ν ∗ κ) = B.
Therefore, additionally using (A.1), we obtain

M−1(B) = M−1(�(ν ∗ κ)) ⊂ �(ν ⊗ κ) = B ⊗ �(κ)

and it follows that

C × C = M−1C ∈ B ⊗ �(κ)

(even though C ×C = M−1C is an equality between sets, we think of it up to sets of
measure zero, cf. also Remark 1.5). Hence, for C on the second coordinate in C ×C ,
we have C ∈ �(κ).12 Since {C,Cc} is a generating partition, �(κ) = B (modulo κ)
and it follows immediately that h(κ) = 0. ��

A.2 Simple proof of Theorem 1.3

We begin this section by the following simple but general observation (it overlaps with
Theorem 1.3 for uniquely ergodic B-free systems):

Proposition A.2 Suppose that (Y , S) is a uniquely ergodic subshift of {0, 1}Z. Let
Ỹ = M(Y × {0, 1}Z) be the hereditary closure of Y . Then, for any ν ∈ Me(Ỹ , S),
there exists ρ ∈ Me(Y × {0, 1}Z, S × S) such that M∗(ρ) = ν.

Proof Let z ∈ Ỹ be a generic point for ν. Then there exists y ∈ Y such that z � y.
Moreover, y is generic for the unique S-invariant measure on Y . Let x ∈ {0, 1}Z

be such that M(y, x) = z. Notice that (y, x) is quasi-generic for some measure
ρ ∈ M(Y ×{0, 1}Z, S× S). Moreover, M∗(ρ) = ν follows directly from the equality
M(y, x) = z. To complete the proof, it suffices to use the ergodic decomposition of
ρ (the image of a convex combination of measures is a convex combination of their
images, with the same coefficients). ��
Remark A.3 The original proof of Theorem 1.3 is much more involved than what
we present below. However, it includes much more information about the structure
of invariant measures for (X̃η, S). E.g. it serves as a tool to prove that (X̃η, S) is
intrinsically ergodic [12, 28]. Cf. also Remark A.7.

Let nowB = {bk : k � 1} ⊂ N\{1} and, for each K � 1, letBK := {b1, . . . , bK }.
Set η := 1FB

and ηK := 1FB K
. TheMirsky measure νηK (considered on X̃ηK ) is the

12 Let H1, H2 be Hilbert spaces and let G2 ⊂ H2 be a closed subspace. Suppose that f ⊗ g ∈ H1 ⊗
G2, with f �= 0. Let g = g0 + g′

0, with g0 ∈ G2 and g′
0 ∈ G⊥

2 . It follows that f ⊗ g′
0 ∈ H1 ⊗ G2. But,

on the other hand, we can approximate f ⊗ g′
0 by tensors of the form

∑
n αn fk ⊗ hk with hk ∈ G2 which

are all orthogonal with f ⊗ g′
0. This means that g′

0 = 0 and, thus, we have g ∈ G2.
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purely atomic measure given by the periodic point ηK . Moreover, ηK is a generic point
for νηK while η is quasi-generic for νη, see [12]. Recall also the following classical
result of Davenport and Erdös:

Theorem A.4 ([7, 8]) For any B ⊂ N \ {1},

d(MB) = lim
n→∞ d(MBK ),

(d and d denote the lower density and usual asymptotic density, respectively).13

Lemma A.5 For each B = {bk : k � 1} ⊂ N \ {1}, νηK → νη weakly, as K → ∞.

Proof It suffices to show that

∫
f dνηK →

∫
f dνη

for functions f on {0, 1}Z depending on a finite number (say, L) of coordinates. Let
(Nk)k�1 be an increasing sequence such that limk→∞ 1

Nk
|MB ∩[1, Nk]| = d(MB).

We then have

∣∣∣∣
∫

f dνηK −
∫

f dνη

∣∣∣∣ = lim
k→∞

∣∣∣∣∣∣

∫
f d

1

Nk

∑

n�Nk

δSnηK −
∫

f d
1

Nk

∑

n�Nk

δSnη

∣∣∣∣∣∣

� lim
k→∞

1

Nk

∑

n�Nk

∣∣ f (SnηK ) − f (Snη)
∣∣

� 2‖ f ‖ · (2L − 1) · lim
k→∞

1

Nk

∑

n�Nk

|{1 � n � Nk : ηK (n) �= η(n)}|

= 2‖ f ‖ · (2L − 1) ·
∣∣∣d(MB ) − d

(
MB K

)∣∣∣ → 0 as K → ∞,

where the convergence follows from Theorem A.4. ��
Proof of Theorem 1.3 Take ν ∈ Me(X̃η, S). Since for K � 1, we have η � ηK

(coordinatewise), it follows that X̃ηK ⊃ X̃η, whence ν ∈ Me(X̃ηK , S). Let uK ∈ X̃ηK

be a generic point for ν. Since uK ∈ X̃ηK , uK � SiηK for some i (becausewe consider
the hereditary closure of a periodic sequence). In otherwords, we have uK = SiηK ·yK
for some yK ∈ {0, 1}Z. We may assume without loss of generality that i = 0 (since
S−i uK and uK are generic for the same measure). Now, (ηK , yK ) is quasi-generic for
a measure ρK defined on XηK ×{0, 1}Z. Note that its projection ρK |XηK

onto the first
coordinate satisfies ρK |XηK

= νηK . Moreover,

M∗(ρK ) = ν

13 For subset A ⊂ Z symmetric with respect to 0, we have d(A) = limN→∞ 1
N |A ∩ [1, N ]| =

limN→∞ 1
2N |A ∩ [−N , N ]|; an analogous relation holds for d.
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as uK = ηK · yK = M(ηK , yK ) is (quasi-)generic for M∗(ρK ) and generic for
ν. Passing to a subsequence, if necessary, ρK → ρ (a measure on Xη × {0, 1}Z).
Therefore, we have

ν = M∗(ρK ) → M∗(ρ),

so ν = M∗(ρ). Moreover,

νηK = ρK |Xη → ρ|Xη

so ρ|Xη = νη, in view of Lemma A.5. ��

A.3 Example related to Question 5(B)

This section is related to Remark 1.12: it turns out that after relaxing the independence
assumption (ii), theremight be plenty of joint distributions of (X,Y) such thatH (X) >

H (M) = 0, with X and Y, satisfying (i). More precisely, one can prove the following
ergodic-theoretic result onB-free systems:

Theorem A.6 For any B ⊂ N \ {1}, there exists ρ ∈ M(Xη × {0, 1}Z, S × S) with
ρ|Xη = νη, such that h(ρ, S × S) > 0 and h(M∗(ρ), S) = 0.

Remark A.7 The proof of Theorem A.6 is quite technical and it is beyond the scope
of this paper, as we put emphasis on the “independent case”. It will be published
elsewhere. We present it below in the simplest possible case, i.e. for B = {2}. Then
Xη = {a, b}, where a := (. . . 0, 1, 0, 1, ◦0, 1, 0, 1 . . .) and b := Sa, where S is the left
shift on {0, 1}Z. Our approach is ergodic-theoretic and draws heavily on the description
of invariant measures for (X̃η, S) from [12, 28]. The notation is also related to the one
in [12, 28].

Proposition A.8 There existsρ ∈ M({a, b}×{0, 1}Z, S×S) such that h(ρ, S×S) > 0,
whereas h(M∗(ρ), S) = 0.

Define � : {a, b} × {0, 1}Z → {a, b} × {0, 1}Z × {0, 1}Z in the following way:
�(a, x) = (a, x̂a , x̃a), where x̂a = (. . . , ◦x1, x3, x5, . . . ) and x̃a = (. . . , ◦x0, x2, x4, . . . ),

�(b, x) = (b, x̂b, x̃b), where x̂b = (. . . , ◦x0, x2, x4, . . . ) and x̃b = (. . . , ◦x1, x3, x5, . . . ).

Clearly, x̃c = x̂Sc for c ∈ {a, b}. Notice that one can interpret x̂c as “survivors”, i.e.
these coordinates of x that “survive” after applying M to (c, x), c ∈ {a, b}. Similarly,
x̃c, c ∈ {a, b} can be seen as “victims”, i.e. the coordinates of x that are “killed” after
applying M to (c, x). Moreover, � is a homeomorphism.

Lemma A.9 We have � ◦ (S × S) = S ◦ �, where

S(a, y, z) = (Sa, y, Sz) and S(b, y, z) = (Sb, Sy, z).

Proof Direct calculation. ��
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Denote the restriction of S to the first to coordinates by Ŝ and to the first and third
coordinate by S̃. All these maps are homeomorphisms. Thus, S can be viewed as a
(topological) joining of Ŝ and S̃. Both, Ŝ and S̃ act on {a, b}× {0, 1}Z; in this joining,
the first coodinates of Ŝ and S̃ are glued diagonally. Each choice of an invariantmeasure
for S yields a joining (in ergodic theoretic sense) of the corresponding projections for
Ŝ and S̃.

Lemma A.10 We have M = m ◦ π1,2 ◦ �, where π1,2 : {a, b} × {0, 1}Z × {0, 1}Z →
{a, b} × {0, 1}Z stands for the projection onto the first two coordinates and
m : {a, b} × {0, 1}Z → {̃a, b} = M({a, b} × {0, 1}) is given by m(a, y) =
(. . . , ◦0, y0, 0, y1, 0, y2, . . . ), m(b, y) = (. . . ,

◦
y0, 0, y1, 0, y2, 0, . . . ).

Proof Direct calculation. ��
We can summarize the above in the following commuting diagram (π1,3 stands for
the projection onto the first and third coordinate):

({a, b} × {0, 1}Z, S × S) ({a, b} × {0, 1}Z × {0, 1}Z, S)

({a, b} × {0, 1}Z, Ŝ) ({a, b} × {0, 1}Z, S̃)

({̃a, b}, S)

�

π1,2

π1,3

m

M

Proof of Proposition A.8 We start with any κ̂ ∈ Me({a, b} × {0, 1}Z, Ŝ) and κ̃ ∈
Me({a, b}×{0, 1}Z, S̃). The projection of both κ̂ and κ̃ onto the first coordinate is the
unique S-invariant measure on {a, b}, i.e. equals 1

2 (δa + δb). Note that this is nothing
but νη corresponding toB = {2}. Therefore, we can “glue” these coordinates together
diagonally and find κ ∈ M({a, b} × {0, 1}Z × {0, 1}Z, S) such that

(π1,2)∗(κ) = κ̂ and (π1,3)∗(κ) = κ̃

(for instance, one can take so-called relatively independent extension of the diagonal
joining of the first coordinates).

Now, suppose additionally that 0 = h(Ŝ, κ̂) < h(S̃, κ̃) (e.g., one can take κ̂ =
νη ⊗ δ(...,0,0,0,...) and κ̃ = νη ⊗ B1/2,1/2). Then

h(S̃, κ̃) � h(S, κ) � h(S̃, κ̃) + h(Ŝ, κ̂) = h(S̃, κ̃),

where the first inequality follows from the fact that (S, κ̃) is a factor of (S, κ), the
second one is a direct consequence of (S, κ) being a joining of (S, κ̃) and (S, κ̂), and
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we use h(̂κ) = 0. Thus,

h(S, κ) = h(S̃, κ̃) > 0.

Moreover,

h(S,m∗(̂κ)) � h(Ŝ, κ̂) = 0, whence h(S,m∗(̂κ)) = 0.

Let ρ := (�
−1

)∗(κ). We obtain

h(ρ, S × S) = h(S, κ) > 0.

Moreover, M∗(ρ) = (m ◦ π1,2 ◦ �)∗(ρ) = (m ◦ π1,2)∗(κ) = m∗(̂κ) and it follows
immediately that

h(M∗(ρ), S) = 0.

��
Remark A.11 Notice that in the above proof κ̂ and κ̃ is arbitrary, the only additional
assumption was concerned with their entropy. This (together with the fact that � is
a homeomorphism) indicates that the set of measures ρ satisfying the assertion of
Proposition A.8 is very rich.
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