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Abstract
We are looking at families of functions or measures on the torus which are specified
by a finite number of parameters N . The task, for a given family, is to look at a small
number of Fourier coefficients of the object, at a set of locations that is predetermined
and may depend only on N , and determine the object. We look at (a) the indicator
functions of at most N intervals of the torus and (b) at sums of at most N complex
point masses on the multidimensional torus. In the first case we reprove a theorem
of Courtney which says that the Fourier coefficients at the locations 0, 1, . . . , N are
sufficient to determine the function (the intervals). In the second case we produce a
set of locations of size O(N logd−1 N ) which suffices to determine the measure.
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1 Introduction

Assume that the function f belongs to a given k-parameter explicit family of functions.
Can we recover f by looking at k (or, at least, not many more than k) of its Fourier
coefficients? This situation is often called “a signal with a finite rate of innovation”
in the engineering literature [1]. We are particularly interested in families where the
dependence on the parameters is non-linear.

The recovery of a function by not toomany of its Fourier coefficientsmay be viewed
as a problem in the general field of sparse representation (see, e.g., [2]). The specific
rules that apply to this paper are the following:

• Weconsider functions ormeasures on the torusT = R/Z orTd , d ∈ N. The classes
of functions we examine have a finite number of degrees of freedomwhose number
is constrained by the parameter N . For instance we might consider sums of point
masses on T with the number of points being at most N .

• We seek an a priori known finite set � = �N of Fourier coefficients (a subset of
Z or Z

d ) which are assumed to be known for our class of functions. The set � is
allowed to depend on N and on nothing else.

• The aim is to show that the mapping f → ̂f �� is one to one. Though our
proofs can often be turned into algorithms for the recovery of f we do not concern
ourselves with matters of numerical stability or efficiency.

We deal with two problems in this paper.

(1) Intervals in T.
Our function f is the indicator function of the union of at most N open intervals
on T. Courtney [3] has shown that such a function is determined by its Fourier
coefficients at the locations 0, 1, . . . , N . We give a new proof of this fact which is
completely elementary (Courtney’s proof uses Blaschke products and conformal
mapping). We further discuss the problem of whether functions of this class are
determined by different sets of Fourier coefficients.
We need to emphasize here that, apart from Courtney [3] this problem has not
been considered elsewhere. There are papers [1] where one recovers a function on
T which is piecewise constant (or even piecewise a polynomial) with the correct
number of samples (roughly equal to the number of degrees of freedom) but all
these methods fail to take into account the fact that the function only takes two
values (0 or 1) and will accordingly use a number of samples that is larger than the
minimum by at least const.N samples. The “extreme” nonlinearity of this problem
(not only in allowing variable nodes in the decomposition of T, but also in the
values of the function) does not seem to make it amenable to the usual methods
such as Prony’s method, if one wants to use the minimal number of samples (or
close to the minimal).
This we do in §2.

(2) Point masses in T
d .

We examine the class of measures which are sums of at most N complex point
masses on T

d . Using the corresponding question in dimension 1 (solvable with
the so-called Prony’s method) we show an explicit set of locations � such
that the Fourier coefficients on � determine the measure. This set � is of size
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Howmany Fourier... 25

O(N logd−1 N ). We believe it is the first such set given of size o(N 2), though
several other methods have been described for this problem under additional
assumptions on the locations of the point masses [4–12]. We emphasize that the
set� depends only on N and is not determined on the fly by looking at the Fourier
coefficients of the measure.
This we show in §3where we also give a set� of size O(kd−1N )whenwe assume
that the set of point masses has at most k points with the same x-coordinate.
In §3 we also describe a general connection of this problem with the problem of
interpolation.

2 At most N intervals on T

2.1 Determination from the Fourier coefficients at 0, 1, . . . ,N

We consider sets E ⊂ T of the form

E =
k
⋃

j=1

(a j , b j )

where k ≤ N and the open intervals (a j , b j ) are disjoint. We show that f = 1E is
determined by the complex data

̂f (0), ̂f (1), . . . , ̂f (N ).

The family has ≤ 2N real degrees of freedom and the data has 2N + 1, since ̂f (0) is
always real.

Several similar problems with functions supported on intervals are treated in [4].

Theorem 1 Suppose that the sets E, E ′ ⊆ T are both unions of at most N open arcs
and that χ̂E (ν) = χ̂E ′(ν) for ν = 0, 1, . . . , N. Then E = E ′.

Proof For x = (x1, . . . , xn) let σk(x) denote the k-th elementary symmetric function
of the variables xi and let sk(x) = ∑n

j=1 xk
j denote the k-th power sum of the xi .

We use the Newton-Girard formulas

k · σk(x) =
k
∑

i=1

(−1)i−1σk−i (x)si (x), (k ≥ 1). (1)

Note that σ0(x) = 1. What is important about these formulas is that if we know
s1, . . . , sν then we know also the numbers σ1, . . . , σν , for all ν ≥ 1. The precise
dependence is irrelevant for our purposes.

Suppose N is given and that the sets E = ⋃n
j=1 I j and E ′ = ⋃n′

j=1 I ′
j (with

n, n′ ≤ N and the I j , I ′
j being arcs) have the same Fourier coefficients of order up to

N :
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26 B. Diederichs et al.

χ̂E (ν) = χ̂E ′(ν), ν = 0, 1, 2, . . . , N .

If I j = (a j , b j ) and I ′
j = (a′

j , b′
j ) then, differentiating the functions χE , χE ′ , we

obtain that the measures

μ =
n
∑

j=1

δa j − δb j , μ′ =
n′
∑

j=1

δa′
j
− δb′

j
,

have the same Fourier coefficients of order up to N . Writing z j = e−2π ia j , w j =
e−2π ib j , z′

j = e−2π ia′
j , w′

j = e−2π ib′
j we obtain the relations

n
∑

j=1

zν
j − wν

j =
n′
∑

j=1

z′ν
j − w′ν

j , ν = 1, 2, . . . , N .

From this we get sν(z, w′) = sν(z′, w), for ν = 1, 2, . . . , N , where

sν(z, w
′) :=

n
∑

j=1

zν
j +

n′
∑

j=1

w′ν
j ,

and

sν(z
′, w) =

n′
∑

j=1

z′ν
j +

n
∑

j=1

wν
j .

By the Newton-Girard formulas the numbers s1, . . . , sN determine the numbers
σ1, . . . , σN , hence we have

σν(z, w
′) = σν(z

′, w), ν = 1, 2, . . . , N . (2)

Write M = n + n′ ≤ 2N and observe that

σM (z, w′) = σM (z′, w),

i.e.,
∏

z jw
−1
j = ∏

z′
jw

′−1
j . This comes from the fact that the total length of E and

E ′ is the same, as testified by χ̂E (0) = χ̂E ′(0).

We now use the fact that
∣

∣z j
∣

∣ = ∣

∣w j
∣

∣ =
∣

∣

∣z′
j

∣

∣

∣ =
∣

∣

∣w′
j

∣

∣

∣ = 1:

σk(z, w′) = σk

(

1

z
,
1

w′

)

= σM−k(z, w′)
σM (z, w′)

, k = 0, 1, . . . , M, (3)
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Howmany Fourier... 27

and similarly for the elementary symmetric functions of the vector (z′, w). For k =
1, 2, . . . , M − N − 1 ≤ N we obtain from (3) the missing values of σν for ν =
N + 1, . . . , M − 1.

We have proved that

σν(z, w
′) = σν(z

′, w), ν = 0, 1, 2, . . . , M,

hence the multisets
{

z j , w
′
j

}

and
{

z′
j , w j

}

are equal, since the elementary symmetric

functions determine the polynomials p and q with roots at
{

z, w′} and
{

z′, w
}

respec-

tively and they are equal. But
{

z j
}∩{w j

} =
{

z′
j

}

∩
{

w′
j

}

= ∅ so the only possibility

is that
{

z j
} =

{

z′
j

}

and
{

w j
} =

{

w′
j

}

, as we had to show. ��

Remark 1 Of course it is also possible to solve this problem using Prony’s method,
which we will introduce in Sect. 3.1. However, Prony’s method will require more
samples, as it cannot exploit the fact that the coefficients of χ̂E alternate between plus
and minus one.

Remark 2 The determination of the elementary symmetric functionsσν from the power
sums sν (essentially the equal coefficient case for Prony’s problem) has also recently
been pointed out in the PhD thesis of M. Wageringel [13, §1.4], in the form of deter-
mining the numbers ξ1, . . . , ξr from the power sums

mk = ξ k
1 + · · · + ξ k

r , k = 0, 1, . . . , r ,

thus also using about half as many power sums than what Prony’s method alone would
require.

2.2 Determination from other sets of Fourier coefficients

The problem is sensitive to the choice of which Fourier coefficients to use in order to
determine the set, even in the case of one interval E = (a, b). In this case, we have

2π iνχ̂E (ν) = e−2π iνa − e−2π iνb := zν − wν, ν = 0. (4)

(Here, again, z = e−2π ia , w = e−2π ib.)
A single Fourier coefficient is not enough to determine the interval uniquely: for

ν = 0 this is obvious as χ̂E (0) = b − a. For ν = 1, consider E ′ = (a′, b′) such that
z′ = −w, w′ = −z (but this is the only other option). Last, for ν ≥ 2, we may take
E = (0, 1

ν
) and E ′ = (a′, a′ + 1

ν
), for some a′ = 0.

For two coefficients, apart from the case when χ̂E (0), χ̂E (1) are known, thus defin-
ing E uniquely, it is also easy to see that knowing χ̂E (1), χ̂E (2) also determines E .
No other combination of two Fourier coefficients χ̂E (m), χ̂E (n) determines the set
(we skip the details).
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28 B. Diederichs et al.

For N ≥ 2, let us point out that even equality of all Fourier coefficients of two sets

E =
N
⋃

j=1

(a j , b j ), E ′ =
N
⋃

j=1

(a′
j , b′

j )

at 1, 2, . . . 2N − 1, is not enough to conclude E = E ′, while, by Theorem 1, the
Fourier coefficients from 0 to N suffice.

To prove the claim, let us begin with a simple observation. Let x = (x1, . . . , x2N ).
Then,

s1(x) = . . . s2N−1(x) = 0 ⇐⇒ σ1(x) = . . . σ2N−1(x) = 0. (5)

(We keep the notation for power sums and elementary symmetric functions that was
used in the proof of Theorem1.) The fact that vanishing power sums give vanishing ele-
mentary symmetric functions follows directly from the Newton-Girard formulas (1).
For the converse, observe that always s1(x) = σ1(x) and then apply (1) consecutively
for k = 2, . . . , 2N − 1 (or observe that the power sums are themselves symmetric
functions, hence they can be expressed via the elementary symmetric functions).

Fix some θ ∈ (0, π/N ) and consider two regular 2N -gons P and Q on the unit
circle, with vertices arranged counterclockwise, defined by

VP = {

z1, . . . , zN , w′
1, . . . , w

′
N

}

and

VQ = {

w1, . . . , wN , z′
2, . . . , z′

N , z′
1

}

(see Fig. 1, where VP is blue and VQ is red) where

z1 = 1, w1 = eiθ .

It follows that the numbers in VP are the roots of the polynomial z2N − 1 and that
the numbers in VQ are the roots of the polynomial z2N − ei2Nθ . Since the elementary
symmetric functions of the roots of a polynomial are the coefficients of the polynomial,
it follows that the numbers σν(z, w′), σν(z′, w) vanish for ν = 1, . . . , 2N − 1. By
(5), we also have sν(z, w′) = sν(z′, w) = 0 for ν = 1, . . . , 2N − 1. Then, we have
χ̂E (ν) = χ̂E ′(ν) for all ν = 1, . . . , 2N − 1, however the sets E , E ′ do not coincide,
as implied by the arrangement of VP , VQ.

It is interesting to see that many more examples are possible with the points
z1, . . . , zN , w′

1, . . . , w
′
N located at the vertices of a regular 2N -gon and the points

z′
1, . . . , z′

N , w1, . . . , wN located at the vertices of a rotated regular 2N -gon, but not
necessarily in the order shown in Fig. 1. As explained above these locations guarantee
that the two sets

⋃N
j=1(z j , w j ) and

⋃N
j=1(z

′
j , w

′
j ) (with an obvious and excusable

abuse of notation) have the same Fourier coefficients of order 1, 2, . . . , 2N − 1 and
they are of course not equal.
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Fig. 1 One possible selection of
arcs

⋃N
j=1(z j , w j ) and

⋃N
j=1(z

′
j , w

′
j ) with the same

Fourier coefficients of order
1, 2, . . . , 2N − 1 (shown for
N = 5)

0
z1

w1

z2

w2

z3w3z4w4

z5

w5

w′
1

z′
2

w′
2
z′
3

w′
3 z′

4
w′

4
z′
5

w′
5

z′
1

One needs to find the arrangements of the points z j , w j , z′
j , w

′
j on the vertices of

these two polygons so that the following rules are satisfied:

(1) The points z1, . . . , zN , w1, . . . , wN appear on the circle in the counterclockwise
order. Same for the points z′

1, . . . , z′
N , w′

1, . . . , w
′
N . This rule ensures that the arcs

(zi , wi ) are non-overlapping and the same for the arcs (z′
i , w

′
i ).

(2) The z j and w′
j are blue (polygon P) and the z′

j and w j are red (polygon Q).

We can enumerate these arrangements by viewing this problem as a variant of the
so-called Terquem’s problem (see, e.g., [14, Problem 30 on p. 120, and solution on
p. 170]). Terquem’s problem asks in how many ways we can choose a sequence
a1 < a2 < . . . < ak from the set {1, 2, . . . , n} whose elements alternate between odd
and even. By viewing blue as odd and red as even on our polygons we see that we can
restate our problem as follows:

In how many ways can we select an alternating sequence a1 < a2 < . . . < a2N

from the set {1, 2, . . . , 4N } such that its complement is also alternating.

The numbers a1, . . . , a2N correspond to the choices for the labels z1, w1, . . . , zN , wN

and the complementary set corresponds to the labels z′
1, w

′
1, . . . , z′

N , w′
N .

Following [14, p. 170] we can encode the sequence ai via the sequence bi defined
by

bi = ai − i + 1.

This sequence is increasing

b1 ≤ b2 ≤ . . . ≤ b2N

and gives back the sequence ai as ai = bi + i −1 (which is strictly increasing). It also
satisfies the bounds

1 ≤ bi ≤ 2N + 1.
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30 B. Diederichs et al.

The alternating property of the sequence ai translates exactly to the bi being all odd.
If we did not care about the complement of the sequence ai being also alternating
then, as explained in [14], all we would have to do is select with replacement the 2N
numbers bi among the odd numbers of the set {1, 2, . . . , 2N + 1}, that is from N + 1
numbers. To ensure that the complement is also an alternating sequence it is necessary
and sufficient to ensure that the intervals (consecutive values) defined by the sequence
ai are all of even length. But an interval of the ai translates into an interval of constancy
for the corresponding bi . Summarizing, the bi must be odd and be selected an even
number of times each. To achieve this we select with replacement N numbers from
the odd numbers of the set {1, 2, . . . , 2N + 1} and then double the number of times
each selection appears. This enumerates the bi and therefore also the ai . We omit the
details.

3 Point masses on T
d

3.1 Point masses onT

The one-dimensional problem has a very long history, going back to Gaspard de
Prony’s work [15] from 1795. Since then, many solutions have been proposed, like
Pisarenko’s method [16], MUSIC [17] or ESPRIT [18]. Still, there is ongoing research
on further improvements, see [19] for a recent approach.

We show here another approach from the Electrical Engineering literature (see e.g.
[1]) with so-called annihilation filters. We will make use of Theorem 2 repeatedly
when solving the same problem on T

d .

Theorem 2 Suppose μ is a measure on T which is a sum of at most N complex point
masses. Then μ is determined by the data

μ̂( j), j = −N + 1,−N + 2, . . . , N . (6)

Proof Suppose that μ = ∑K
j=1 c jδθ j , with c j ∈ C \ {0}, the θ j all different and

K ≤ N . It follows that

μ̂(n) =
K
∑

j=1

c jρ
−n
j , (ρ j = e2π iθ j , n ∈ Z). (7)

Define the polynomial

a(z) =
K
∏

j=1

(z − ρ j ) = â(0) + â(1)z + . . . + â(K − 1)zK−1 + zK ,

123
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and note that â(n) also denotes its Fourier coefficients when viewed as a function on
T. Since aμ = 0 it follows that

â ∗ μ̂(n) = 0, (n ∈ Z). (8)

We now show that the polynomial a(z) is determined up to constant multiples by the
conditions

deg a ≤ K (9)

â ∗ μ̂(n) = 0, (n ∈ [1, K ]). (10)

It is enough to show that (9) and (10) together imply that a(z) vanishes on the ρ j (this
is the same as (8)), whose number is K , the same as the degree of a.

Substituting (7) in (10) we get for l = 1, 2, . . . , K

0 =
K
∑

k=0

â(k)μ̂(l − k),

=
K
∑

k=0

â(k)

K
∑

j=1

c jρ
k−l
j ,

=
K
∑

j=1

c jρ
−l
j

K
∑

k=0

â(k)ρk
j ,

=
K
∑

j=1

c jρ
−l
j a(ρ j ).

Observe that the K × K Vandermonde matrix ρ−ν
j , j, ν = 1, . . . , K , is nonsingular

and, therefore, all c j a(ρ j ) are 0, j = 1, 2, . . . , K . Since all c j are nonzero this implies
that

a(ρ j ) = 0, j = 1, 2, . . . , K .

Suppose μ1, μ2 are two measures with the same Fourier data (6):

μ1 =
K1
∑

j=1

c1, jδθ1, j , μ2 =
K2
∑

j=1

c2, jδθ2, j , K1 ≤ K2 ≤ N ,

and

μ̂1(n) = μ̂2(n), (n = −N + 1, . . . , N − 1, N ). (11)

We are assuming that all θ1, j are distinct and so are all θ2, j , and that c1, j , c2, j ∈ C\{0}.
Write also ρ1, j = e2π iθ1, j and ρ2, j = e2π iθ2, j .
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32 B. Diederichs et al.

Write

a1(z) =
K1
∏

j=1

(z − ρ1, j ), a2(z) =
K2
∏

j=1

(z − ρ2, j ).

We have â1 ∗ μ̂1(n) = â2 ∗ μ̂2(n) = 0 for all n but we also have â1 ∗ μ̂2(n) = 0 for
n = 1, . . . , N , because of (11). Applying the fact that a(z) is determined by (9) and
(10) with K = K2 we obtain that a1(z) = a2(z) hence K1 = K2 and

{

ρ1, j
} = {

ρ2, j
}

.
It remains to show that the linear map

(c1, . . . , cK ) → (μ̂(1), . . . , μ̂(K ))

is injective. This map is given by (7) and it is easily seen to be nonsingular as its
determinant is a multiple of the Vandermonde determinant. ��
Remark 3 The number of samples is sharp, as we recover the 2N parameters using
2N samples. However, note that we use complex samples, to recover N complex
parameters and N parameters in T. One can easily check that the proof extends to the
case of point measures on T + iR, where (7) becomes

μ̂(n) =
K
∑

j=1

c jρ
−n
j , (ρ j = e2π i(θ j +iξ j ), n ∈ Z).

In case of real coefficients and point measures on T one can utilize μ̂(−k) = μ̂(k)

to use only μ̂(k), k = 0, . . . , N . This observation is an important part of the unitary
ESPRITalgorithm [20],which uses only real-valued computation to solve the problem.

3.2 Connections to interpolation

Suppose μ = ∑N
j=1 c jδu j , where u j = (u j1, . . . , u jd) ∈ T

d are distinct points, all
c j are non-zero and d > 1. Can we recover μ from a number of Fourier coefficients
that is close to the number of degrees of freedom (in this case (d + 1)N or (d + 2)N
depending on whether c j ∈ R or c j ∈ C)?

Here the existing results do not seem to be final. In the special case where all u j1
are different (or equivalently all u jk for a fixed k = 1, . . . , d) the problem is solved
using the one-dimensional theory with O(d N ) Fourier coefficients, namely by using
the Fourier coefficients at the locations (m, ε2, . . . , εd) with m = 0, 1, . . . , N and
ε j ∈ {0, 1}, assuming all u j1 are different (we generalize this in Theorem 8). In the
general case and without imposing any restrictions on the locations u j , it has only
been known until this work how to recover μ using O(N 2) Fourier coefficients [5,
Section III.C] in the two dimensional case and using O(N 2 log2d−2 N ) coefficients in
the general case [12].

If one allows for the collection of Fourier coefficients used to depend on the data
then one can recover the parameterswith O(N )Fourier coefficients, see [4] for the case
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Howmany Fourier... 33

d = 2 and [9] for arbitrary d. It was conjectured in [4] that recovery of the parameters
in this problem with d = 2 is always possible with O(N ) Fourier coefficients which
do not depend on the data and are on four predetermined lines. This conjecture was
disproved in [7] but the possibility remains that somemore general set of O(N )Fourier
coefficients suffices. (In Theorem 9 we show that O(N log N ) Fourier coefficients
suffice.) For the general d dimensional case it was shown in [21] that taking a total of
O(N 2) samples on scattered line allows for a reconstruction.

Definition 3.1 Suppose � ⊆ Z
d and k = 1, 2, 3, . . .. We call � k − interpolating

if whenever u1, . . . , u� ∈ T
d , � ≤ k, are distinct and d1, . . . , d� ∈ C we can find

coefficients cω, ω ∈ �, such that

d j =
∑

ω∈�

cωe2π iω·u j , j = 1, 2, . . . , �.

We call� k − sufficient if we can recover any measureμ = ∑�
j=1 c jδu j , � ≤ k, (with

unknown c j ∈ C \ {0}, unknown and distinct u j ∈ T
d ) from its Fourier coefficients

at �

μ̂(ω) =
�
∑

j=1

c j e
−2π iω·u j , ω ∈ �.

The connection between the concepts of k-interpolation and k-sufficiency is the fol-
lowing.

Theorem 3

� is (2N ) − interpolating �⇒ � is N − sufficient �⇒ � is N − interpolating.

(12)

Proof To prove Theorem 3 let us first make the following remark, which says that if
we can solve the problem of sufficiency with the locations fixed then we can also solve
the problem with unknown (but fewer) locations.

Lemma 4 Suppose � ⊆ Z
d is such that the mapping

μ → (μ̂(ω), ω ∈ �) (13)

is injective on the set

⎧

⎨

⎩

μ =
k
∑

j=1

c jδu j : c j ∈ C

⎫

⎬

⎭

, (14)
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34 B. Diederichs et al.

for any choice of k ≤ 2N and distinct points u1, . . . , uk ∈ T
d . Then the mapping (13)

is injective also on the set

⎧

⎨

⎩

μ =
�
∑

j=1

c jδu j : � ≤ N , c j ∈ C, u j ∈ T
d , c j = 0 and the u j are distinct

⎫

⎬

⎭

.

(15)

Suppose μ = ∑�1
j=1 c jδu j and ν = ∑�2

j=1 d jδv j , �1, �2 ≤ N , are two different
measures with the same image under (13). Thenμ−ν is a non-zeromeasure supported
on ≤ 2N points and is mapped to 0 under (13). This conflicts with the injectivity of
(13) on the set (14).

��
For the mapping (13) on the set (14) to be injective it is necessary and sufficient

that the matrix
(

e2π iu j ·ω
)

j=1,...,k, ω∈�
(16)

has rank k. Write eω(x) = e2π iω·x .

Lemma 5 The mapping (13) on the set (14) is injective if and only if the functions eω

form an interpolating set for the set {u1, u2, . . . , uk}, i.e. for any values d j ∈ C there
is a C-linear combination of the eω which takes the value d j at u j .

Proof The eω are interpolating at the u j if and only if the rank of the matrix in (16)
is k. By the preceding remark this is equivalent to the mapping (13) on the set (14)
being injective. ��

Let us complete the proof of Theorem 3. If� is (2N )-interpolating and u1, . . . , u2N

are distinct points in T
d it follows from Lemma 5 that the mapping μ → μ̂|� is

injective on the set (14) (with k = 2N ). From Lemma 4 it follows that it is also
injective on the set (15), hence � is N -sufficient.

If� is N -sufficient and u1, . . . , uk ∈ T
d , k ≤ N , are distinct points then the matrix

(16) has rank k. Therefore the mapping (13) is injective (with the u j fixed) and from
Lemma 5 we get that the functions eω(x) are interpolating, which is what it means for
� to be N -interpolating. ��

Now it becomes clear that the situation in dimension 2 is significantly harder
than in dimension 1. The reason is that interpolation is harder. Indeed, in dimen-
sion 1 one can easily find a set of N functions the linear combinations of
which can interpolate any data on any N points. One such example of func-
tions are the monomials 1, x, x2, . . . , x N−1 and another example are the functions
1, e2π i x , e2π i2x , . . . , e2π i(N−1)x (when all u j ∈ T).

Such a set of functions is called aChebyshev or Haar system and it iswell known and
easy to prove that continuous Chebyshev systems do not exist except in dimension
1 [22]. Indeed, suppose that S ⊆ R

2 is an open set and the continuous functions
f j : S → R, j = 1, 2, . . . , N , are such that for any set of N distinct points u j ∈ S
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we can find a linear combination of the f j which interpolates any given real data
at the u j . This means that for any choice of the distinct points u j the determinant
of the matrix fi (u j ), i, j = 1, 2, . . . , N , is non-zero. Choose then the u j to belong
to an open disk in S and carry out a continuous movement of the points u1 and u2
so that they do not collide between themselves and with any of the other points and
such that, at the end of the motion, the two points have exchanged their positions.
The determinant of the matrix has changed sign and, since it has varied continuously
during the motion, it follows that the determinant has vanished at some point during
the exchange, a contradiction. It is proved in [22] that the existence of a (continuous)
Chebyshev system on a set S ⊆ R

d is only possible when S is homeomorphic to a
closed subset of a circle.

This argument is strictly for the real case of course but it has been extended [23] to
the case of complex functions: there is a complex Chebyshev system for domains in
C but not for domains in C

2 or in higher dimension. More specifically, it is proved in
[23, 24] that a complex continuous Chebyshev system exists on a locally connected

set S if and only if S is homeomorphic to a closed subset of R
2. This result allows us

to prove that the situation in T
2 is strictly worse than in T.

Theorem 6 Let d > 1. Suppose � ⊆ Z
d is N-sufficient. Then |�| > N.

Proof If such an � had size N then, according to Theorem 3, the corresponding set of
characters eω(x) = e2π iω·x , ω ∈ �, would be a continuous Chebyshev system on T

d ,
According to [23, 24] this would make T

d embeddable into the plane, which it is not.
��

Again using the connection to interpolation let us now give a new proof, different
from the one given in [5, Section III.C] for the case d = 2 and [6, 11] for general d,
of the following fact.

Theorem 7 There is � ⊆ Z
d of size O(N d) which is N-sufficient.

Proof It is enough to produce a set � ⊆ Z
d of size O(N d) such that the set of

corresponding exponentials e2π iω·x is 2N -interpolating, i.e. its linear combinations
can interpolate any values at any 2N distinct points in T

d . We use the fact that for
any set of 2N distinct points in C

d and any complex data on them there is a complex
polynomial in d variables of degree at most 2N − 1 (the degree of each monomial
is the sum of the exponents of the variables) which interpolates the data. To see this
observe that for any set of 2N distinct points x1, . . . , x2N ∈ C

d we can find a vector
u ∈ C

d such that the complex numbers ti = v · xi are all different. Let now p be
a one-variable polynomial of degree ≤ 2N − 1 which interpolates the given data on
the points ti . Then q(x) = p(v · x) is a two-variable polynomial that interpolates the
given data on the points xi . The degree of q is no larger than 2N − 1.

Take � =
{

m ∈ N
d
0 : ∑d

j=1 m j ≤ 2N − 1
}

. Suppose u1, . . . , u2N ∈ T
d are dis-

tinct and d1, . . . , d2N ∈ C. Let p(z) = ∑

m pm zm have degree at most 2N − 1 and
interpolate the data dk at the points (e2π iu j1 , . . . , e2π iu jd ) ∈ C

d , j = 1, 2, . . . , 2N
(note that these are distinct points as the ud are in T

d not in R
d ). We have

d j = p(e2π iu j1 , . . . , e2π iu jd ) =
∑

m∈�

pme2π iu j ·m,
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which means that the functions e2π iω·x , ω ∈ �, are interpolating the arbitrary data d j

at the 2N arbitrary points u j , as we had to prove. ��

3.3 Small sufficient sets forT
d

Next we provide a case where the sufficient number of coefficients for N points of T
d

is O(kd−1N ), for some 1 ≤ k ≤ N .

Theorem 8 Let μ = ∑N
j=1 c jδu j , where u j = (x j , y j ) ∈ T × T

d−1 are distinct
points and all c j ∈ C\{0}. Assume that the number of points u j that share the same x
coordinate is at most k, for some 1 ≤ k ≤ N. Then μ can be recovered by O(kd−1N )

Fourier coefficients.

Proof Write U = {

u j : j = 1, . . . , N
}

and X = {

x j : j = 1, . . . , N
}

for the set of
distinct x that appear as first coordinates for the points in U . Notice that X may have
fewer than N points.

Recall that

μ̂(m, n) =
N
∑

j=1

c j e
−2π i(mx j +n·y j )

=
∑

x∈X

⎛

⎝

∑

y: (x,y)∈U

c(x,y)e
−2π in·y

⎞

⎠ e−2π imx ,

for m ∈ Z, n ∈ Z
d−1. For fixed n the numbers μ̂(m, n) are the Fourier coefficients of

a collection of point masses at the points of X (some of these point masses may be 0).
Consider the data

μ̂(−N , �), . . . , μ̂(0, �), μ̂(1, �), . . . , μ̂(N , �),

where � ∈ Z
d−1 is fixed. By Theorem 2, we can recover the sums

S(x, �) =
∑

y: (x,y)∈U

c(x,y)e
−2π i�·y, � ∈ Z

d−1. (17)

and the corresponding x ∈ X . Notice that we only “see” the x for which S(x, �) = 0.
For fixed x ∈ X , define the measure on T

d−1

λx =
∑

y: (x,y)∈U

c(x,y)δy,

which is supported on at most k locations on T
d−1. By Theorem 7, there is � ⊂ Z

d−1

of size at most O(kd−1) that is k-sufficient. Thus, knowing the Fourier coefficients of
λx at � ∈ � is sufficient to recover the measure. Knowing these Fourier coefficients
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means precisely knowing the sums in (17), so we recover the points y sitting over each
x ∈ X and the corresponding coefficients. The proof of the Theorem is complete.

��
Finally we come to the main result of this section. One can view Theorem 9 as a

more sophisticated version of Theorem 8, where the gain comes from being able to
distinguish which x ∈ T have many points projected onto them. This set of x cannot
be large.

This theoremwas first proved in [12], using techniques from computational algebra.
We give an elementary proof.

Theorem 9 There is � ⊆ Z
d of size |�| ≤ Cd N logd−1(N ) which is N-interpolating.

One such set is the positive octant of the hyperbolic cross

�d
N =

⎧

⎨

⎩

n ∈ N
d
0 :

d
∏

j=1

(

n j + 1
) ≤ N

⎫

⎬

⎭

.

Proof Let U = {

u j : j = 1, . . . , N
}

. As noted in (16), it suffices to show that the
vectors

v�(u j ) = (e2π iu j ·w)ω∈�d
N
, j = 1, . . . , N

are linearly independent. We use induction in d. For the base case d = 1, observe
that the matrix (e2π iu j ω) j=1,...,N , ω=0,...,N−1 is Vandermonde. For d ≥ 2, assume on
the contrary that there are cu ∈ C \ {0}, u ∈ U (we can exclude nodes with zero
coefficients) satisfying

∑

u∈U

cuv�(u) = 0.

Let X = {

x j ∈ T
d−1 : j = 1, . . . , N

}

be the set of distinct x that appear as the first
d − 1 entries of points in U (again, X may have fewer than N points). As in the proof
of Theorem 8, we note that the condition of linear dependence rewrites as

N
∑

j=1

cu j e
−2π i(m·x j +ky j ) =

∑

x∈X

⎛

⎝

∑

y: (x,y)∈U

c(x,y)e
−2π iky

⎞

⎠ e−2π im·x

= 0, (18)

for m ∈ Z
d−1, k ∈ Z, (m, k) ∈ �d

N .
Observe that we have

(m, 0) ∈ �d
N for m ∈ �d−1

N and

(m, k − 1) ∈ �d
N for m ∈ �d−1

�N/k�, k ∈ N. (19)
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Then, as (18) holds for (m, 0) ∈ �d
N for all m ∈ �d−1

N , we can use the induction
hypothesis to conclude that

∑

y: (x,y)∈U

c(x,y)e
−2π iyk = 0, for k = 0, for all x ∈ X . (20)

We partition X according to how many points of U project to each point:

X = X1 � . . . � Xr (r ≤ N ),

where Xt = {x ∈ X : |{y : (x, y) ∈ U }| = t}. By (20), we see that

c(x,y) = 0 for all x ∈ X1, (x, y) ∈ U ,

which contradicts cu ∈ C \ {0} and thus X1 = ∅. Now we use the crucial observation
that

|U | =
r
∑

j=1

j |X j | (21)

which implies with X1 = ∅ that |X | ≤ �N/2�.
Taking data at (19) for k = 0, 1, by the induction hypothesis we see that (20) holds

true for k = 0, 1. If X2 is not empty, then, for any x ∈ X2, the summands in (20) are
exactly 2, for each k ∈ {0, 1}. Thus, we have a homogeneous 2 × 2 system, with a
Vandermonde matrix of coefficients, so

c(x,y) = 0 for all x ∈ X2, (x, y) ∈ U ,

a contradiction. That allows us to deduce X2 = ∅, giving us |X | ≤ �N/3�. Repeating
the argument r times results in the contradiction X = ∅. ��

We use Theorem 3 to see that O(N logd−1 N ) samples are sufficient for unique
determination of a point measure μ of at most N peaks.

Corollary 10 There is � ⊆ Z
d of size |�| = O(N logd−1(N )) which is N-sufficient.

One such set is �d
2N .

Note, however, that the proof cannot be converted in an algorithm recovering the
measure from its Fourier samples. Next, we show that such an algorithm exists for a
slightly larger sampling set.

Theorem 11 Any measure μ = ∑K
j=1 c jδu j , K ≤ N, where u j = (x j , y j ) ∈ T

d−1×
T are distinct points and c j ∈ C \ {0}, is determined by its Fourier coefficient on the
set

�̃d
N =

⎧

⎨

⎩

n ∈ N
d
0 :

d
∏

j=1

⌈

n j + 1

2

⌉

≤ N

⎫

⎬

⎭

. (22)
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The measure can be recovered with an algorithm using a finite number of steps.

Proof The proof works by using one-dimensional methods to give a large set of candi-
dates. These candidates are all pointmeasureswith atmost N summands. ByCorollary
10, only one can fit all the available data, as �d

2N ⊂ �̃d
N . We use the same notation as

in the proof of Theorem 9.
Again, we use induction in d, where the case d = 1 is a consequence of Theorem

2. Further, note that for r ∈ N \ {0} we have

(m, k) ∈ �̃d
N for m ∈ �̃d−1

�N/r� and k = 2r − 2, 2r − 1. (23)

We again use the decomposition (18) and introduce the notation

cx (k) =
∑

y: (x,y)∈U

c(x,y)e
−2π iyk,

to write

μ̂(m, k) =
∑

x∈X

cx (k)e−2π im·x , m ∈ Z
d−1, k ∈ Z.

Applying our algorithm for d − 1 to the samples μ̂(m, 0), where m ∈ �̃d−1
N , we

determine the quantities

cx (0) =
∑

y: (x,y)∈U

c(x,y)

as well as all x ∈ X for which cx (0) = 0. This includes all x ∈ X1. Again from our
algorithm for d − 1, the numbers μ̂(m, 1), m ∈ �̃d−1

N , determine the quantities

cx (1) =
∑

y: (x,y)∈U

c(x,y)e
−2π iy,

and all x ∈ X for which cx (1) = 0. So, by the the data (22) corresponding to
n = (m, k), with m ∈ �̃d−1

N and k = 0, 1, we can determine, for each point x , the
Fourier coefficients

̂λx (0), ̂λx (1)

of the one-dimensional measure sitting over x :

λx =
∑

y: (x,y)∈U

c(x,y)δy .

We also determine those x ∈ X for which at least one of the numbers

cx (0), cx (1)
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is non-zero. We collect them in the set Z1. As we said above this includes all x ∈ X1:

X1 ⊂ Z1 ⊂ X .

Now assume for the moment that we could identify the subset X1 in Z1. Then we
could determine the part of μ sitting over X1:

μ1 =
∑

x∈X1

∑

y: (x,y)∈U

c(x,y)δ(x,y).

Subtracting μ̂1(m, k) from μ̂(m, k) we see that we know the Fourier coefficients of
the measure μ − μ1 for all indices in (22).

The next stage is to determine μ2, the part of μ sitting over X2, the points on the
x-axis with two point masses over them. We will do this using the data

μ̂ − μ1(m, k) for (m, k) ∈ �̃d−1
N × {0, 1} and (m, k) ∈ �̃d−1

⌊

N
2

⌋ × {2, 3}. (24)

From (21) the measure μ − μ1 contains at most N/2 point masses, therefore, by the
induction hypothesis, the data (24) are now enough to determine the quantities

cx (k) =
∑

y: (x,y)∈U

c(x,y)e
−2π iky, x ∈ X2 � X3 � · · · � Xr ,

for k = 0, . . . , 3, and those x ∈ X for which at least one of the numbers cx (k),
k = 0, . . . , 3, is non-zero, which we collect in the set Z2. This includes all x ∈ X2 by
using the induction hypothesis. Again, assume we were somehow able to identify X2
from the larger set Z2.

If x ∈ X2 this information suffices, because of Theorem 2, to determine λx , that
is, the part of measure μ sitting over x . So the data (m, k) ∈ N

d−1
0 × N0 in (22) with

k ≤ 3 determine μ2, the part of measure μ sitting over X2.
This process continues. The next step is to find, using the data

(μ − μ1 − μ2)
∧(m, k),

where

(m, k) ∈ N
d−1
0 × N0 as in (22) with k ≤ 5

the measureμ3, the part ofμ sitting over X3. This is again possible sinceμ−μ1−μ2
contains at most N/3 point masses.

Continuing like this we determine the measure μ completely.
However, we do not know which subset of Z1 is X1. Instead, we run the whole

procedure for every possible choice, not only for X1 but also X2 ⊂ Z2 and so on. As
all sets are finite and only one solution exists, this procedure will recover μ in a finite
number of operations. ��
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Theorem 11 is a new result, showing that in principle O(N logd−1 N ) samples
enable not only to conclude uniqueness (which allows to search the continuous
parameter space to recover μ), but to recover the measure using a finite number of
computational steps. It was sketched in the PhD thesis [25, Thm. 3.24] of the first-
named author. However, the algorithm does not have polynomial runtime. It would be
interesting to examine whether this is a conceptual barrier or whether more efficient
methods exist. The result should be contrasted with the result of Sauer [12], which
uses O(N 2 log2d−2 N ) samples but has polynomial runtime.
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