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Abstract
The aim of this note is to give an alternative proof for the following result originally
proved by Bonatti, Díaz and Kwietniak. For every n ≥ 3 there exists a compact
manifold without boundaryM of dimension n and a non-empty open setU ⊂ Diff(M)

such that for every f ∈ U there exists a non-hyperbolic measure μ invariant for f
with positive entropy and full support. We also investigate the connection between the
Feldman-Katok convergence of measures and the Kuratowski convergence of their
supports.

Keywords Entropy · Lyapunov exponents · Hyperbolic measures ·
F-bar pseudometric · Feldman-Katok pseudometric
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1 Introduction

Thanks to the work of Abraham and Smale it is well known that hyperbolic diffeomor-
phisms are not dense in the space of all diffeomorphisms of a given manifold [1]. Even
more is true: diffeomorphisms that do not admit any non-hyperbolic measure are not
dense in this space as well. Let us recall that a measure is non-hyperbolic if it has at
least one zero Lyapunov exponent (we recall the definition of the Lyapunov exponents
in the preliminaries). This notion was introduced by Pesin [24] in the 70’s. It is worth
mentioning that every hyperbolic diffeomorphism admits only hyperbolic measures
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but there are non-hyperbolic diffeomorphisms such that all invariant measures with
respect to them are hyperbolic [2, 9].

In 2005 Gorodetski, Ilyashenko, Kleptsyn and Nalsky introduced royal measures1

and used them to construct non-hyperbolic diffeomorphisms on the skew product
of Bernoulli shift with a circle as a fibre. They also conjectured that there exists a
non-empty open subsetU of the set of all diffeomorphisms of the 3-dimensional torus
such that every f ∈ U admits at least one non-hyperbolic measure. Note that Lapunov
exponents are sensitive under perturbation so one could suspect that the opposite is
true. The conjecture was however proved by Kleptsyn and Nalsky in [19] and the idea
of their work was somehow inspired by [15].

Royal measures were also under consideration of other authors, see for instance [6,
8, 10, 11, 19, 21, 28]. It was shown in [21] that the entropy of every royal measure
vanishes. Themain tool used for thatwas theFeldman-Katok convergence ofmeasures.
It allowed the authors to reprove also some already known properties of royalmeasures
originally proved in [15] and in [6] in the more abstract setting. They did not mention
however the connection between the Feldman-Katok convergence and the Kuratowski
convergence of measures’ supports. In this note we prove that under some additional
assumptions the Feldman-Katok convergence implies the Kuratowski convergence
of supports. This result can be applied to royal measures. We also give an example
demonstrating that the sole Feldman-Katok convergence is not enough to conclude
that the support of the limit measure is also a limit in the sense of Kuratowski.

Alternative to the construction of non-hyperbolic measures from [15] was the one
introduced by Bochi, Bonatti and Díaz. In the series of papers [3–5] they strengthened
the results of Kleptsyn and Nalsky showing the following:

• [5, Theorem 1] For every n ≥ 3 there exists a compact manifold without boundary
M of dimension n and a non-empty open set U ⊂ Diff(M) such that for every
f ∈ U there exists a non-hyperbolic measure μ invariant for f with positive
entropy.

• [4, Theorem 9] For every n ≥ 3 there exists a compact manifold without boundary
M of dimension n and a non-empty open set U ⊂ Diff(M) such that for every
f ∈ U there exists a non-hyperbolic measure μ invariant for f with full support.

The above result ( [4, Theorem9]) applies in fact to awide class ofmanifolds, including
anymanifold carrying a transitiveAnosov flow, in particular to the n-dimensional torus
for every n ≥ 3.

In [4, p. 3] authors conjectured that one may strengthen their results so that the
resulting non-hyperbolic measure would have both: positive entropy and full support.
That was shown in [7]. In this note we give an alternative, shorter proof of this fact. We
demonstrate that actually the construction from [4] already leads to a measure with
positive entropy.

1 They did not give them any name, we use the name from [21] which is inspired by the fact that the first
letters of the surnames of the authors of [15] form the word ’KING’.
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Non-hyperbolic ergodic measures... 165

2 Basic terminology and notation

2.1 The Kuratowski limit

In this section we outline Kuratowski limit, based on [20, Volume I]. For a sequence
of non-empty, compact sets A1, A2, . . . ⊂ X we define the lower Kuratowski limit
Li topn→∞ An and the upper Kuratowski limit Ls topn→∞ An of such a sequence by
the conditions:

• x ∈ Li topn→∞ An if for every neighborhood U of x we have Am ∩U �= ∅ for all
sufficiently large m.

• x ∈ Ls topn→∞ An if for every neighborhood U of x we have Am ∩ U �= ∅ for
infinitely many m.

Naturally, for every sequence of non-empty, compact sets A1, A2, . . . ⊂ X we have:

Li topn→∞ An ⊂ Ls topn→∞ An .

We say that A1, A2, . . . converges to A ⊂ X , if A = Li topn→∞ An = Ls topn→∞.
Such a limit is then denoted by

Lim topn→∞ An = A.

The Kuratowski convergence is equivalent to the convergence with respect to the
Hausdorff metric (defined on the family of closed and non-empty subsets of X ) if X
is a compact metric space.

2.2 Invariant measures

LetMT(X) be a set of all Borel probabilistic measures on X that are invariant under
the map T acting on the space X and Me

T (X) ⊂ MT (X) be the set of measures
that are ergodic as well. We consider the weak∗ topology on MT (X), making it a
compact and a metrizable space. A sequence (μn)

∞
n=1 converges to μ with respect

to this topology if and only if for all continuous functions ϕ : X → R a sequence∫
ϕ dμn converges to

∫
ϕ dμ in R. It is known that if X is a compact metric space,

then this topology is given by the Prokhorov metric DP :

DP(μ, ν) = inf
{
ε > 0 : μ(B) ≤ ν(Bε) + ε for every Borel set B

}
,

where Bε = {y ∈ X : dist(y, B) < ε} is an ε-hull of B. Moreover, the following
portmanteau theorem holds (the portmanteau theorem says in fact more, but we cite
only the part we will use in this paper).

Theorem 1 (The portmanteau theorem) The following conditions are equivalent:

(i) A sequence (μn)n∈N ⊂ MT(X) weakly∗ converges to μ ∈ MT(X).
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166 M. Łącka

(ii) For each measurable set B ⊂ Y for which μ(∂B) = 0 it holds that:

lim
n→∞ μn(B) = μ(B).

2.3 Empirical measures

Given n ∈ N and a sequence x = (xi )i∈N ⊂ X we define the empirical measure
m(x, n) as follows:

m(x, n) = 1

n

n∑

i=0

δxi ,

where δz denotes the Dirac measure supported at z. If we fix a map T : X → X , then
for x ∈ X we put

mT (x, n) = m((T i (x))i∈N, n)

and we sometimes omit the subscript T if it can be derived from the context. A point
x ∈ X is said to be generic for μ ∈ MT(X) if (m(x, n))n∈N converges to μ with
respect to the weak∗ topology. We denote by ω̂(x) the set of all weak∗ accumulation
points of the sequence (m(x, n))n∈N (if x is generic for μ then ω̂(x) = {μ}, but in
general ω̂(x) can contain more than one element).

2.4 Hyperbolic measures

LetM be a smooth m-dimensional manifold. For a diffeomorphism T : M → M and
T -invariant ergodic measure μ, there exists � ⊂ M as well as χ1

μ ≤ . . . ≤ χm
μ ∈ R,

such that μ(�) = 1 and for all x ∈ � and 0 �= v ∈ TxM the following is true:

lim
n→∞

1

n
log ‖DTn

x (v)‖ = χ i
μ for some i ∈ {1, . . . ,m}.

Numbers χ i
μ are the Lyapunov exponents and if they are all non-zero we call μ hyper-

bolic. If χ i
μ = 0 for some i ∈ {1, . . . ,m} then the measure μ is non-hyperbolic.

2.5 Royal measures

A T -periodic orbit 
 approximates (γ, κ)-well a T -periodic orbit � if there exist
 ⊂ 
 with ||/|
| ≥ κ and a constant-to-one surjection ψ :  → � such that for
each y ∈  and 0 ≤ j < |�| we have

ρ(T j (y), T j (ψ(y))) < γ.

Such ψ is called (γ, κ)-projection.
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Non-hyperbolic ergodic measures... 167

The following theorem was given in [6, Lemma 2.5]. The proof that μ is ergodic
[6] uses Lemma 2 from [15].

Theorem 2 We are given a sequence of T -periodic orbits (
n)n∈N such that |
n|
increases with n, and the ergodic measureμn supported on
n. If there exist sequences
of real positive numbers (γn)

∞
n=1 and (κn)

∞
n=1 that satisfy

(1) for each n the orbit 
n+1 is a (γn, κn)-good approximation of 
n,

(2)
∑∞

n=1 γn < ∞,

(3)
∏∞

n=1 κn > 0,

then (μn)n∈N weak∗ converges to an ergodic measure μ supported on the Kuratowski
limit of (
n)n∈N.

The sequence of T -periodic orbits fulfilling the assumptions of Theorem 2 is called
a GIKN sequence. Royal measures are (by the definition) weak∗ limits of GIKN-
sequences.

2.6 The symbolic dynamics

Throughout this paper A is a finite set with the discrete topology. We define a shift
space over an alphabet A as A∞ equipped with the product topology together with
the shift map σ given by the formula σ((xn)∞n=0) = (xn)∞n=1. We denote byAn the set
of the words of length-n over A. Let A∗ = ⋃

n≥1An and let |u| be the word-length
of u ∈ A∗. Each word u ∈ A∗ defines its cylinder set [u] ⊂ A∞ consisting of all the
sequences inA∞ which are prefixed by u. The cylindric sets form a open-closed basis
of the topology for the shift space A∞. For A = a1 · · · an ∈ A ∗ and k ∈ N let

Ak := a1 · · · an a1 · · · an · · · a1 · · · an,︸ ︷︷ ︸
k times

A∞ := a1 · · · an a1 · · · an a1 · · · an a1 · · · an · · ·

Let also p(A) ∈ Me
σ (A ∞) be a periodic measure generated by a periodic sequence

A∞.

2.7 Entropy

Let P be a finite and a measurable division of X and μ ∈ MT (X). The entropy P
with respect to μ and T is denoted by h(X , T , μ,P) = h(μ,P) and the entropy μ

with respect to T - by h(X , T , μ) = h(μ), that is h(μ) = supP h(μ,P). In [12] the
reader will find more information about the entropy.

2.8 The f̄ pseudometric

In this section we introduce the f̄ pseudometric that was defined by Feldman [14] and
independently by Katok [17].
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168 M. Łącka

Given u = u0u1 · · · un−1, w = w0w1 · · ·wn−1 ∈ A n let

f̄n(u, w) = 1 − k

n
,

where k is such that for some

0 ≤ i1 < i2 < · · · < ik < n and 0 ≤ j1 < j2 < · · · < jk < n

we have uis = w js for all s = 1, · · · , k and there is no larger k with this property. The
f̄ pseudometric is defined for u, w ∈ A ∞ as

f̄ (u, w) = lim sup
n→∞

f̄n(u0 · · · un−1, w0 · · ·wn−1).

If A = a1 · · · an , A′ = a′
1 · · · a′

n′ and m ≤ |A|, |A′|, then we define

f̄m(A, A′) = f̄m(a1 · · · am, a′
1 · · · a′

m).

The following theorem comes from [13].

Theorem 3 Given a finite setA and ε > 0 one can find δ > 0 such that if x, z ∈ A N

satisfy f̄ (x, z) < δ and ω̂(x) = {μ}, ω̂(z) = {ν} for some (not necessarily ergodic)
measures μ and ν, then |h(μ) − h(ν)| < ε.

For the further properties of f̄ we refer to [14, 16, 17, 23, 26].

2.9 The Feldman-Katok pseudometric 8̄

Let (X , ρ) be a compact metric space. Fix x = (x j )∞j=0, z = (z j )∞j=0 ∈ X∞, δ >

0, and n ∈ N. An (n, δ)-match of x and z is an increasing bijection π : D(π) →
R(π) such that D(π),R(π) ⊂ {0, 1, · · · , n − 1} and for every i ∈ D(π) we have
ρ(xi , zπ(i)) < δ. An (n, δ)-match π : D(π) → R(π) ismaximal if |D(π)| the largest
possible. The (n, δ)-gap between x and z is defined by

f̄n,δ(x, z) = 1 − max{|D(π)| : π is an (n, δ) − match of x with z}
n

.

The f̄δ-pseudometric between x and z is given by

f̄δ(x, z) = lim sup
n→∞

f̄n,δ(x, z).

Finally, we define the Feldman-Katok pseudometric on X∞ as follows

�̄(x, z) = inf{δ > 0 : f̄δ(x, z) < δ}.
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The above formula induces a pseudometric on X (which we also call the Feldman-
Katok pseudometric and denote by �̄) in the following way:

�̄(x, z) := �̄
(
(T i (x))i∈N, (T i (x))i∈N).

We define f̄n,δ(x, z) and f̄δ(x, z) in the obvious way.
It is not known if the pseudometric �̄ induces somehow a (pseudo)metric on the

simplex of invariant measuresMT(X). It gives us however the notion of convergence
as explained below. We say that z = (zn)∞n=0 ∈ X∞ is a quasi-orbit for T if d̄({n ≥
0 : zn+1 �= T (zn)}) = 0, where d̄ denotes the upper asymptotic density. A sequence
of measures (μn)

∞
n=1 ⊂ MT(X) converges in �̄ or �̄-converges to μ ∈ MT(X) if

there exists a sequence of quasi-orbits (x (n))∞n=1 ⊂ X∞ with ω̂(x (n)) = {μn} such
that for some μ-generic quasi-orbit z ∈ X∞ we have �̄(z, x (n)) → 0 as n → ∞.

We cite the below lemmas for the future reference. The details and other properties
of the Feldman-Katok topologies can be found in [21].

Lemma 4 If f̄n,δ(x, z) < ε, then DP (m(x, n),m(z, n)) < max{δ, ε}. Consequently,
the Feldman-Katok convergence implies the weak* convergence.

Lemma 5 If i ≥ 0, then f̄δ(x, z) = f̄δ(x, σ i (z)). In particular, f̄δ(x, σ i (x)) = 0.

3 Non-hyperbolic measures with the full support and positive
entropy

To prove Theorem 7 (which together with the theorem of Bochi, Bonatti and Díaz
implies our main result — Theorem 9 concerning the existence of non-hyperbolic
measures with the full support and positive entropy) we need the below technical
lemma. Informally, it says the following.Assume that twoweak∗ convergent sequences
of periodic measures on the shift space are given. If the periodic orbits generating
these sequences are Feldman-Katok close to each other, then using them one can build
generic points for the limit measures for which the Feldman-Katok pseudometric is
small.

Lemma 6 Let (sn)n∈N, (w(n))n∈N ⊂ A ∗, μ, ν ∈ Mσ (A ∞) and δ > 0. Assume also
that:

(1) p(s(n)) → μ and p(w(n)) → ν as n → ∞,
(2) for every n ∈ N one has |s(n)| < |s(n+1)| and |w(n)| < |w(n+1)|,
(3) there exists M ∈ N such that for all sufficiently large n ∈ N and m ≥ M and

for all k satisfying k · min{|s(n)|, |w(n)|} > m the following inequality holds
f̄m((s(n))k, (w(n))k) ≤ δ.

Then there exist s′, w′ ∈ A ∞ such that s′ is generic for μ, w′ is generic for ν and
f̄ (s′, w′) ≤ δ.

Proof For every n ∈ N pick Mn ∈ N such that for all m ≥ Mn one has
min{|s(m)|, |w(m)|} > 2n . Since the cylinder sets are clopen it follows from the port-
manteau theorem that for every n ∈ N there is kn ∈ N such that for all k ≥ kn and
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170 M. Łącka

A ∈ A n the following inequalities hold:

|p(s(k))([A]) − μ([A])| < 1/2n and |p(w(k))([A]) − ν([A])| < 1/2n . (1)

Let (ln)n∈N ⊂ N satisfy for every n ∈ N the following condition:

ln ≥ 2n · max

{

|s(kn+1)|,
n−1∑

i=0

li |s(ki )|, |w(kn+1)|,
n−1∑

i=0

li |w(ki )|
}

. (2)

We will show that the sequences

s′ = s(k1)s(k1) · · · s(k1)

︸ ︷︷ ︸
l1 times

s(k2)s(k2) · · · s(k2)

︸ ︷︷ ︸
l2 times

s(k3)s(k3) · · · s(k3)

︸ ︷︷ ︸
l3 times

· · · ,

w′ = w(k1)w(k1) · · · w(k1)

︸ ︷︷ ︸
l1 times

w(k2)w(k2) · · · w(k2)

︸ ︷︷ ︸
l2 times

w(k3)w(k3) · · · w(k3)

︸ ︷︷ ︸
l3 times

· · ·

are generic for μ and ν, respectively. Since cylinder sets form a basis for the product
topology onA ∞ and are clopen it is enough to prove that for every A ∈ A ∗ one has

lim
p→∞ |m(s′, p)([A]) − μ([A])| = 0 and lim

p→∞ |m(w′, p)([A]) − ν([A])| = 0.

Fix A ∈ A ∗ and ε > 0. Let N ∈ N be such that ε > (N + 2)/2N and |A| ≤ N . Pick
n ≥ N . Let c(A, n) denote the frequency with ihich A occurs as a subword of s(kn).
Then

|skn | · p(skn )([A]) ≤ |skn | · c(A, n) ≤ |skn | · p(skn )([A]) + (|A| − 1).

Since |s(kn)| > 2N and |A| ≤ N it follows from (1) that

μ([A]) − N/2N ≤ c(A, n) ≤ μ([A]) + 1/2N . (3)

Define

P0 =
N∑

i=1

li |s(ki )|.

Fix p ≥ P0 and put

R = max

{

P ∈ N :
P∑

i=1

li |s(ki )| ≤ p

}

.

123



Non-hyperbolic ergodic measures... 171

In other words prefix of s′ of the length p is of the form

s(k1)s(k1) . . . s(k1)

︸ ︷︷ ︸
l1 times

· · · s(kR)s(kR) · · · s(kR)

︸ ︷︷ ︸
lR times

s(kR+1)s(kR+1) · · · s(kR+1)

︸ ︷︷ ︸
0≤l<lR+1 times

t,

where t is (possibly, empty) prefix of s(kR+1) (different from s(kR+1)). Since p ≥ P0,
one has R ≥ N . Consequently, it follows from (3) that

μ([A]) − N/2N ≤ c(A, R) ≤ μ([A]) + 1/2N

and μ([A]) − N/2N ≤ c(A, R + 1) ≤ μ([A]) + 1/2N .

The above inequalities imply that the frequency with which A occurs in the block

s(kR)s(kR) · · · s(kR)

︸ ︷︷ ︸
lR times

s(kR+1)s(kR+1) · · · s(kR+1)

︸ ︷︷ ︸
l times

is not smaller than μ([A])− N/2N and not larger than μ([A])+ 1/2N . What is more,
the condition (2) says that the length of this block is at least 2N/(2N + 2) times more
than the length of the prefix of s′ of the length p. Therefore

μ([A]) − ε < μ([A]) − (N + 2)/2N < m(s′, p)([A])
≤ μ([A]) + (N + 2)/2N < μ([A]) + ε.

Since ε is arbitrary we have that |m(s′, p)([A]) − μ([A])| → 0 as p → ∞. Analo-
gously one can show that |m(w′, p)([A]) − ν([A])| → 0 as p → ∞.

To finish the proof it is enough to notice that f̄ (s′, w′) ≤ δ. This is however
obvious since for sufficiently large n the match π of n-prefixes of s′ and w′ satisfying
|D(π)| ≥ n(1− δ) can be obtained by taking a concatenation of the optimal matches
of words s(ki ) and w(ki ) from these prefixes. ��

Theorem 7 Let (X , T ) be a dynamical system, α — a positive constant, ψ : X → R

— a continuous function, (Mn)n∈N — an increasing sequence of positive integers,
(s(n))n∈N—asequence of finitewords over the alphabet {+,−}, (xn)n∈N—asequence
of points from the space X, and let K (+), K (−) ⊂ X be compact sets. Fix a measure
μ ∈ Mσ ({+,−}∞) with the positive entropy and ε ∈ (0, h(μ)) and pick δ > 0 for
this ε as in Theorem 3. Assume also that:

(1) ψ |K (+) > α and ψ |K (−) < −α,
(2) M1 divides Mn for every n ∈ N,
(3) for every n ∈ N there exists a set In ⊂ {0, 1, · · · Mn/M1} such that |s(n)| = |In|,

the inequality |In| > (1 − δ)Mn/M1 is satisfied and for every j ∈ In one has

T jM1(xn) ∈ K (s(n)
�n( j)

),
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172 M. Łącka

where the function �n : {0, 1, · · · , |In| − 1} → N is given by

�n( j) = ∣
∣{0 ≤ i < j : i ∈ In}

∣
∣,

(4) p(s(n)) → μ as n → ∞.

Let ω be an accumulation point with respect to the weak∗ topology of the sequence of
empirical measures

⎛

⎝ 1

Mn

Mn−1∑

j=0

δT j (xn)

⎞

⎠

n∈N
.

Then h(ω) > (h(μ) − ε)/M1 > 0.

Proof Note that ω is a T -invariant measure concentrated on the orbit’s closure of the
point x . For every n ∈ N and 0 ≤ j < Mn/M1 put l(n)

j = jM1. Since ω is a finite
measure and the interval (−α, α) is uncountable, there is a real number β such that
−α < β < α and

ω
(
∂ψ−1((−∞, β)

)) = ω
(
∂ψ−1([β,∞)

)) = 0.

Denote P(−) = ψ−1 (−∞, β)) and P(+) = ψ−1
([β,∞)

)
. Notice that K (+) ⊂

P(+), K (−) ⊂ P(−) and P = {P(−), P(+)} is a measurable finite partition of
X . For n ∈ N define the words t (n) ∈ {+,−}Mn and w(n) ∈ {+,−}Mn/M1 by the
formulas:

t (n)
i = ∗, if T i (xn) ∈ P∗, where 0 ≤ i < Mn and ∗ ∈ {+,−},
w

(n)
j = ∗, if T jM1(xn) ∈ P∗, where 0 ≤ j < Mn/M1 and ∗ ∈ {+,−}.

Passing to a subsequence if necessary we can assume that ω is a limit (not only an
accumulation point) of the sequence

⎛

⎝ 1

Mn

Mn−1∑

j=0

δT j (xn)

⎞

⎠

n∈N
,

(p(w(n)))n∈N → ω̃ and (m(w(n)))n∈N → ν̃ for some ν̃, ω̃ ∈ Mσ ({+,−}∞). We will
show that h(ω,P) > 0. To this end note that the sequences (s(n))n∈N and (w(n))n∈N
satisfy the assumptions of Lemma 6 for δ. Thereforewe can use Theorem3 to conclude
that h(ν̃) > h(μ) − ε and consequently h(ω,P) = h(ω̃) ≥ h(ν̃)/M1 > (h(μ) −
ε)/M1 > 0. ��
Remark 8 Bochi, Bonatti and Díaz proved in [5] that for every n ≥ 3 there exists a
compact manifold without boundaryM of dimension n such that for every δ > 0 one
can find a non-empty open set U ⊂ Diff(M) such that for every map T ∈ U one of
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the Lapunov exponents with respect to T is given by the integral of some continuous
function ψT : M → R and there are non-empty compact sets K (+), K (−) ⊂ M, a
number α > 0 and an increasing sequence (Mn)n∈N ⊂ N satisfying the following
properties:

(1) ψT |K (+) > α, ψT |K (−) < −α,
(2) M1 divides Mn for every n ∈ N,
(3) there are sets In ⊂ {0, 1, · · · Mn/M1} for n ∈ N such that:

(i) |In| > (1 − δ)Mn/M1 for every n ∈ N,
(ii) if we pick a sequence s ∈ {+,−}∞ in such a way that |s(n)| = |In| for every

n ∈ N and s(m) is a prefix of s(n) for all m < n, then we can find a point
x ∈ X such that for every j ∈ In we have

T jM1(x) ∈ K
(
s�n( j)

)
,

where the function �n : {0, 1, · · · , |In| − 1} → N is given by the formula

�n( j) = ∣
∣{0 ≤ i < j : i ∈ In}|,

(4) In addition, for the above point x the following holds. For everymeasureω ∈ ω̂(x)
and for ω-almost every point z ∈ M the conditions below are satisfied:

i.
1

N

N−1∑

j=0

ψ
j
T (z) → 0 as N → ∞,

ii. the orbit of z is dense inM..

We will now prove the main theorem of this section.

Theorem 9 For every n ≥ 3 there exist a compact n-dimensional manifold without
boundaryM and a non-empty open set U ⊂ Diff(M) such that for every T ∈ U there
exists an non-hyperbolic measure μ ∈ Me

T (M) with the full support and positive
entropy.

Proof Pick s ∈ {+.−}∞ which is generic for some measure μ ∈ Mσ ({+,−}∞)

with positive entropy. Fix ε ∈ (0, h(μ)) and let δ > 0 be chosen for this ε as in
Theorem 3. Let M and U ⊂ Diff(M) be defined as in Remark 8. Fix T ∈ U . Let
K (+), K (−) ⊂ M, α > 0, ψT ∈ C(M) and the sequences (Mn)n∈N and (In)n∈N be
defined as in Remark 8 for T and δ.

Use Theorem 7 for the following set of data:

(1) sets K (+), K (−) ⊂ M, α > 0, ψT ∈ C(M) and the sequence (Mn)n∈N ⊂ N,
(2) the sequence (s(n))n∈N of the form s(n) = s0s1 · · · s|In |−1,
(3) the measure μ and the numbers ε > 0 and δ > 0,
(4) the sequence (xn)n∈N ⊂ M constantly equal to x ,
(5) the measure ω ∈ MT (M) which is an accumulation point of the sequence

⎛

⎝ 1

Mn

Mn−1∑

j=0

δT j (x)

⎞

⎠

n∈N
.
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We get h(ω) > (h(μ) − ε)/M1 > 0. Note that ω ∈ ω̂(x) and hence it follows from
Remark 8 that for ω-almost every point z ∈ M the following conditions are satisfied:

(i)
1

N

N−1∑

j=0

ψ
j
T (z) → 0, as N → ∞,

(ii) the orbit of z is dense inM.

Let ω′ be a measure from the ergodic decomposition of ω with a positive entropy
(such a measure exists since h(ω) > 0). Let Z ⊂ M be the set of points for which
both conditions (i) and (ii) are satisfied. It follows from the ergodic decomposition
theorem that ω′(Z) = 1. The Birkhoff ergodic theorem together with the condition (i)
imply that

∫
M ψT dω′ = 0, and so ω′ is a non-hyperbolic measure. Moreover, from

the condition (ii) we get that ω′ is fully supported. ��

4 Feldman-Katok convergence of measures vs kuratowski
convergence of supports

The aim of this section is to describe the relationship between the Feldman–Katok
convergence of measures and the Kuratowski convergence of their supports.

Theorem 10 Let (xn)n∈N ⊂ X be a Cauchy sequence of periodic points with respect
to �̄. For m, n ∈ N denote by pn the period of xn, by μn the measure generated by xn
and by π

(p)
m,n : D(π

(p)
m,n) → R(π

(p)
m,n) the maximal (p, �̄(xm, xn))-match of xm and xn.

Assume that

inf
m≥n

lim inf
p→∞

|R(π
(p)
m,n) ∩ (pn · Z + j)|

p
> 0 for every 0 ≤ j < pn .

Denote by μ the limit of the sequence (μn)n∈N.
Then

suppμ = Lim topn→∞ suppμn .

Proof We will prove that Ls topn→∞ suppμn ⊂ suppμ which is enough as the
inclusion suppμ ⊂ Li topn→∞ suppμn follows from the weak∗ convergence of the
sequence (μn)n∈N (see [22, Theorem 1.59]). Choose z ∈ Ls topn→∞ suppμn .Let
kn ↗ ∞ and (x ′

n)n∈N be such that for every n ∈ N one has x ′
n ∈ suppμkn and

ρ(z, x ′
n) → 0 as n → ∞. Fix ε > 0. We will show that μ(B(z, ε)) > 0. To this end

choose n such that

(i) x ′
n ∈ B(z, ε/3),

(ii) supm≥n �̄(x ′
m, x ′

n) < ε/3 (this condition is satisfied for n large enough as it
follows from Lemma 5 that �̄(x ′

n, x
′
m) = �̄(xkn , xkm )).

Let x ′
n = T j (xkn ) for some 0 ≤ j < pkn . Denote

inf
m≥n

lim inf
p→∞

|R(π
(p)
km ,kn

) ∩ (pkn · Z + j)|
p

=: α > 0. (4)
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Fix m ≥ n. Note that for every p ∈ N we can consider the match π
(p)
km ,kn

as

(p, �̄(x ′
m, x ′

n))-match π(p) of the points x ′
n and x ′

m that satisfies the following:

|π(p)| > |π(p)
km ,kn

| − pkm . It follows from (4) that if p is large enough, then

{
j ∈ D(π(p)) : T π( j)(xm) = xn

}
≥ pα/2.

This together with (i) imply that

{
i ∈ D(π(p)) : T π(i)(xm) ∈ B(z, ε/3)

}
≥ pα/2.

Therefore:

mT (x ′
m, p)(B(z, 2ε/3)) = 1

p

∣
∣
∣
{
0 ≤ i < p : T i (x ′

m) ∈ B(z, 2ε/3)
}∣
∣
∣

≥ 1

p

∣
∣
∣
{
0 ≤ i < p : T i (x ′

n) ∈ B(z, ε/3) and i ∈ R(π
(p)
km ,kn

)
}∣
∣
∣ ≥ α

2
.

Consequently,

μkm (B(z, 2ε/3)) ≥ lim sup
p→∞

mT (x ′
m, p)(B(z, 2ε/3)) ≥ α/2

and hence

μ(B(z, ε)) ≥ μ(B(z, 2ε/3)) ≥ lim sup
m→∞

μkm (B(z, 2ε/3)) ≥ α/2 > 0.

Because ε is arbitrary, we get that z ∈ suppμ. ��
Remark 11 As a corollary of the above Theorem 10 we obtain a part of Theorem 2:
the support of every royal measure equals the Kuratowski limit of supports of periodic
measures used for the construction of that measure. The notion of the Feldman-Katok
convergence allows to give an alternative proof for the whole Theorem 2, see [21] for
the details.

Example 12 The Feldman-Katok convergence of measures does not imply the Kura-
towski convergence of their supports. To see that consider a point x , whose trajectory
is convergent to z with respect to the natural topology (we assume that x is not a fixed
point). Let (xn)n∈N be a sequence of periodic points such that for every n ∈ N the
following holds:

(i) the period of the point xn equals 2(n2 + n),
(ii) for every 0 ≤ j < 2n one has ρ

(
T j (xn), T j (x)

)
< 1/n,

(iii) for every 2n ≤ j ≤ 2n2 + 2n one has ρ
(
T j (xn), z

)
< 1/n.
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Fig. 1 A dynamical system illustrating that the sole Feldman-Katok convergence of measures does not
imply the Kuratowski convergence of its supports

Then �̄(xn, z) ≤ 1/n and so the sequence (xn)n∈N tends to z with respect to �̄. On
the other hand, z is a generic point for the atomic measure supported at {z}, while the
Kuratowski limit of supports of measures generated by xn contains the whole orbit of
x .

It is easy to see that a dynamical system that admits the above described situation
can be constructed. For example (see Fig. 1), let

X = ({0} ∪ {1/k : k ≥ 1}) × {0} ∪
⋃

n≥1

{1/ j : 1 ≤ j ≤ 2(n2 + n)} × {1/2n}.

We equip X with the maximum metric (induced from R
2). Let T : X → X be given

by the formula

T ((m, n)) =
⎧
⎨

⎩

(
0, 0

)
, if m = 0 and n = 0,(

1/(1/m + 1), 0
)
, if m �= 0 and n = 0,(

1/(1/m + 1 mod 2n2 + 2n), n
)
, if m �= 0 and n �= 0.

We define x = (1, 0) and xn = (1, 1/2n) for n ∈ N. It obvious that such a system
satisfies the requested conditions.
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