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Abstract
A generic uniformly distributed sequence (xn)n∈N in [0, 1) possesses Poissonian
pair correlations (PPC). Vice versa, it has been proven that a sequence with PPC
is uniformly distributed. Grepstad and Larcher gave an explicit upper bound for the
discrepancy of a sequence given that it has PPC. As a first result, we generalize here
their result to the case ofα-pair correlationswith 0 < α < 1. Since the highest possible
level of uniformity is achieved by low-discrepancy sequences it is tempting to assume
that there are examples of such sequences which also have PPC. Although there are
no such known examples, we prove that every low-discrepancy sequence has at least
α-pair correlations for 0 < α < 1. According to Larcher and Stockinger, the reason
why many known classes of low-discrepancy sequences fail to have PPC is their finite
gap property. In this article, we furthermore show that the discrepancy of a sequence
with the finite gap property plus a condition on the distribution of the different gap
lengths can be estimated. As a concrete application of this estimation, we re-prove
the fact that van der Corput and Kronecker sequences are low-discrepancy sequences.
Consequently, it follows from the finite gap property that these sequences have α-pair
correlations for 0 < α < 1.
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1 Introduction

Let ϕ = 1+√
5

2 be the golden mean and consider the Kronecker sequence (xn)n∈N =
({nϕ})n∈N, where {x} := x − �x� denotes the fractional part of x ∈ R. It exhibits
several remarkable properties. First, it is a uniformly distributed sequence and even
a classical example of a low-discrepancy sequence which means that it is roughly
speaking as uniformly distributed as possible, see e.g. [22]. Second, the famous Three
Gap Theorem going back to Sós in [26] holds: if we place the first N points of the
sequence on a circle, then there are at most three distinct distances between adjacent
points. Despite this high level of uniformity, (xn)n∈N fails to have another property
of a generic uniformly distributed sequence: the Kronecker sequence of the golden
mean does not have Poissonian pair correlations, [15]. On the contrary, it is known
that (xn)n∈N very tightly fails to have this property because it has α-pair correlations
for all 0 < α < 1, see [32].
This paper is intended to shed more light on the connections between the properties
mentioned in the first paragraph. Let us start with the third-named concept which
was originally introduced in [24]. A sequence (xn)n∈N in [0, 1) has Poissonian pair
correlations if the pair correlation statistics

FN (s) := 1

N
#

{
1 ≤ l �= m ≤ N : ‖xl − xm‖ ≤ s

N

}
(1)

tends to 2s for all s ∈ R≥0 as N → ∞, where ‖·‖ is the distance to the nearest integer.
Although Poissonian pair correlations are a generic property of uniformly distributed
sequences in [0, 1), only some explicit example sequences with this property have
been found hitherto, see [8] and [16].
The concept of Poissonian pair correlations can be generalized to dimension d and an
arbitrary norm ‖·‖ on the d-dimensional torusTd = [0, 1)d by saying that a sequence
(xn)n∈N in Td has Poissonian pair correlations with respect to ‖·‖ if

lim
N→∞

1

N 2

#
{
1 ≤ l �= m ≤ N : ‖xl − xm‖ ≤ s

N1/d

}

vol(B(0, sN−1/d))
= 1

for all s ≥ 0, where vol(B(0, r)) is the (Lebesgue) volume of the ball of radius r ,
compare [20]. Note that vol(B(0, sN−1) = 2s/N for e.g. the maximum metric and
thus the definition truly generalizes the one-dimensional case from (1). As a concrete
example in higher dimension, the following was studied in detail in [13]: let the
norm of a point x ∈ R be again defined by its distance to the nearest integer and for
(x1, . . . , xd) ∈ R

d set

‖x‖∞ := max(‖x1‖ , . . . , ‖xd‖).

According to [13], Theorem 1, uniformly distributed sequences then generically have
Poissonian pair correlations. Amongst others, the authors moreover showed that also
the opposite is true, i.e. having Poissonian pair correlations implies uniform distri-
bution of the sequence (Theorem 2 in [13]). The choice of the exponent 1

d in the
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definition of Poissonian pair correlations is a coherent approach because if the expo-
nent was > 1

d , then obviously the left hand side would go to ∞ and thus α = 1
d is

the biggest possible choice. However, the exponent might be chosen smaller than 1
d

which leads for 0 < α < 1
d to the expression

Fα
N (s) := 1

N 2

#
{
1 ≤ l �= m ≤ N : ‖xl − xm‖ ≤ s

Nα

}

vol(B(0, sN−α))
.

If Fα
N (s) → 1 for all s ≥ 0, then a sequence is said to have α-pair correlations,

see [20]. In other contexts α-pair correlations are also called number variance (with
exponent α), compare [17]. In [10], Theorem 4, it is proven for dimension d = 1 and
‖·‖∞ that Fα1

N (s) → 1 implies Fα2
N (s) → 1 for all s ≥ 0 if α1 ≥ α2. Hence the larger

α is, the harder it is to achieve α-pair correlations under the mentioned conditions.
The proof from [10] is however general enough to almost verbatim transfer the same
implication also to our more general setting.
Next recall that the discrepancy of a sequence (xn) ∈ [0, 1)d is defined by

DN (xn) := sup
B⊂[0,1)d

∣∣∣∣
1

N
#({xi |1 ≤ i ≤ N } ∩ B) − λd(B)

∣∣∣∣ ,

where the supremum is taken over all intervals B = [a, b) ⊂ [0, 1)d . If the sup
is further restricted to sets of the form B∗ = [0, b) ⊂ [0, 1)d , then we speak of
the star-discrepancy D∗

N (xn). In fact, both types of discrepancies are related by the
inequalities D∗

N (xn) ≤ DN (xn) ≤ 2d D∗
N (xn), which means that their asymptotic

behavior is equivalent, see e.g. [14]. Therefore, it often depends on the context if it
is more convenient to work with the usual discrepancy or the star-discrepancy. If the
condition on the sup is instead relaxed to all convex subsets C ⊂ [0, 1)d , then the
corresponding quantity JN (xn) is called isotropic discrepancy and the inequalities
DN (xn) ≤ JN (xn) ≤ 4dDN (xn)1/d hold. For more details we refer the reader to [7,
22]. If a sequence (xn)n∈N ∈ [0, 1)d exhibits a star-discrepancy of order

D∗
N (xn) = O(N−1(log N )d), (2)

then it is called a low-discrepancy sequence. It is conjectured that this is the fastest
possible rate of convergence. In fact, this is known to be true for dimension one by
the work of Schmidt, [25]. Since low-discrepancy sequences may be interpreted as
sequences which are as uniformly distributed as possible, there might be examples of
sequences in this class having Poissonian pair correlations. However, all attempts to
find such examples have failed so far and it has evenbeenproved formany explicit types
of low-discrepancy sequences (in dimension d = 1 and also in higher dimensions)
that they do not have Poissonian pair correlations, see [4, 15, 23, 32]. In this article,
we will argue why it might nonetheless be worth to keep on looking for examples of
Poissonian pair correlations in the class of low-discrepancy sequences. We will not
only restrict our analysis to dimension 1 but also consider higher dimensions. It is the
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912 C. Weiß

first aim of this article to show that all low-discrepancy have α-pair correlations for
‖·‖∞ and 1

d > α > 0.

Theorem 1.1 Let (xn)n∈N ∈ Td (equipped with ‖·‖∞) be a sequence with DN (xn) =
o(N−(1−ε)) for 0 < ε < 1

d , then (xn)n∈N has α-pair correlations for any 0 < α <

( 1−ε
d ).

As an immediate consequencewe can derive that low-discrepancy sequences almost
have Poissonian pair correlations.

Corollary 1.2 Let (xn) ∈ Td (equipped with ‖·‖∞) be a low-discrepancy sequence.
Then (xn)n∈N has α-pair correlations for all 0 < α < 1

d .

Using technical number theoretic arguments, the corresponding statement in d = 1
was proved for the Kronecker sequence {nϕ} and van der Corput sequences in [32]. In
[29], the authors prove that Kronecker sequences ({nz})n∈N where the partial quotients
in the continued fraction expansion of z satisfy a certain growth condition possess this
property, for details see Remark 2.2. Our proof of Theorem 1.1 is short and only relies
on the order of convergence of the star-discrepancy although there are similarities to
the proof in [29].
The applications of Theorem 1.1 are not limited to low-discrepancy sequences but can
be used to show that also higher-dimensional Kronecker sequences often have α-pair
correlations (it is not known whether they are low-discrepancy sequences, see [22])
although they fail to have Poissonian pair correlations, cf. [13], Theorem 3.

Corollary 1.3 Let z := (z1, . . . , zd) ∈ R
d such that 1, z1, . . . , zd are linearly inde-

pendent over Q. Then {nz} has α-pair correlations for all 0 < α < 1
d and ‖·‖∞.

Indeed, Corollary 1.3 follows from a result in [21] according to which multi-
dimensional Kronecker sequences satisfying the mentioned condition have discrep-
ancy of order O(N−(1−ε)) for all ε > 0.
Conversely, it was independently proved in [1] and [9] that a sequence which has
Poissonian pair correlations is also uniformly distributed. Alternative proofs of this
fact were also given in [27] and [18]. In this paper, we generalize the quantitative
version from [9] to α-pair correlations.

Theorem 1.4 Let (xn)n∈N be a sequence in [0, 1), and suppose that there exists a
function F : N×N → R which is monotonically increasing in its first argument, and
which satisfies

max
s=1,...,K

∣∣∣∣
1

2s
#

{
1 ≤ l �= m ≤ N : ‖xl − xm‖ <

s

Nα

}
− N 2−α

∣∣∣∣ < F(K , N )

for some 0 < α ≤ 1 and all K ≤ N/2. Then there exists an integer N0 > 0 such that
for all N ∈ N, N ≥ N0, and arbitrary K satisfying

1

2
N

2
5α ≤ K ≤ N

2
5α

.
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Some connections between discrepancy… 913

we have

ND∗
N (xn) ≤ 5max

(
N 1− 1

5α
,
√
Nα · F(K 2, N )

)
.

In comparison to the result in [9], our condition on K is a little bit stronger but
in exchange the theorem can be formulated more compactly. From this result we can
immediately deduce the following corollary in a very similar manner as in [9].

Corollary 1.5 If the sequence (xn)n∈N in [0, 1) has α-pair correlations for an 0 < α <

1, then it is uniformly distributed.

The corollary was proven for Poissonian pair correlations in [1] independent of [9]
by a different type of argument. Also the statement for α-pair correlations is well-
known due to Steinerberger in [28]. An alternative proof was moreover given in [6].
It is enlightening to compare Corollary 1.3 in dimension d = 1 more closely to a
result from [15] which traces back the non-Poissonian pair correlations of Kronecker
sequences to their finite gap property. Before we come to it let us at first recall the
so-called three gap theorem.We formulate it here similarly as in [2] (without the point
0) and for that purpose denote the continued fraction expansion of z ∈ R \ Q by
[a0, a1, a2, . . .] and let the convergents be pn/qn (see Sect. 2).

Theorem 1.6 (ThreeGap Theorem) Let (nz)n∈N be the Kronecker sequence of z ∈
R \ Q and write N ∈ N uniquely as

N = cqn + qn−1 + r

with 1 ≤ c ≤ an+1 and 0 ≤ r < qn. Then the gaps between two adjacent terms in the
set {{nz} : 1 ≤ n ≤ N } that can appear have lengths

L1 = ‖qnz‖ ,

L2 = ‖qn−1z‖ − cL1,

L3 = L1 + L2,

and their multiplicities are

N1 = N − qn,

N2 = r ,

N3 = qn − r .

The following theorem by Larcher and Stockinger in [15] indeed shows that the
three gap property of Kronecker sequences prevents them from having Poissonian pair
correlations.

Theorem 1.7 (Larcher, Stockinger, [15], Theorem 1) Let (xn)n∈N be a sequence in
[0, 1)with the following property: There is an s ∈ N, positive real numbers K , γ ∈ R,
and infinitely many N ∈ N such that the point set x1, . . . , xN has a subset with
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914 C. Weiß

M ≥ γ N elements, denoted by x j1 , . . . , x jM , which are contained in a set of points
with cardinality at most K N having at most s different distances between neighbour-
ing sequence elements, so-called gaps. Then (xn)n∈N does not have Poissonian pair
correlations.

A main part of the proof of Theorem 1.7 is contained in Proposition 1 of [15].
Therein a trichotomy for gap lengths is identified. This approach, can be transferred
from the context of Poissonian pair correlations to α pair correlations. Suppose there
is a a sequence N1 < N2 < ... such that the set of points x1, . . . , xNi has exactly
s different gap lengths (due to the Three Gap Theorem 1.6 we have s ∈ {2, 3} for
Kronecker sequences). For every i denote the lengths of these gaps by L(i)

1 < L(i)
2 <

. . . < L(i)
s . Let 1 ≥ α > 0. Then there exist w1 = w1(α) < w2 = w2(α) ∈ N and

K1 = K1(α), K2 = K2(α) > 0, which lead to the following definitions:

• For α-small gap lengths we have limi→∞ Nα
i L

(i)
j = 0 for j = 1, . . . , w1.

• For α-intermediate gap lengths with j = w1 + 1, . . . , w2 − 1, the inequalities

K1/N
α
i ≤ L(i)

j ≤ K2/N
α
i

hold for all i ∈ N.
• For α-large gap lengths with j = w2, . . . , s we have limi→∞ Nα

i L
(i)
j = ∞.

It is obvious that for any 1 > α > 0 Kronecker sequences never possess α-large gaps
because for N = qn+1 we have

NαLmax ≤ qα
n+1 ‖qnz‖ ≤ qα−1

n+1 → 0.

More generally, for α1 > α2 > 0 being an α2-large (α2-intermediate) gap implies
that the gap is also a α1-large (at least α2-intermediate) gap. On the other hand, being
a 1-large gap implies that the gap length is ≥ 1

N for N large enough. Conversely,
1-intermediate or 1-large gaps thus exist for all sequences with the finite gap property.
The following two obstructions for Poissonian pair correlations have been identified
in Proposition 1 of [15] and the proof therein verbatim works for α pair correlations:

• Obstruction 1: There exists an α-intermediate gap length.
• Obstruction 2: The largest α-small gap is also a 1-small gap (in other words,
d
w

(i)
1
Ni → 0).

Note that Kronecker sequences fail to have Poissonian pair correlations because
Obstruction 1 holds for α = 1. In contrast, we prove (independently of Theorem 1.1)
that a Kronecker sequence cannot fulfill Obstruction 1 or Obstruction 2 if α < 1 for
z algebraic of degree ≤ 2.

Proposition 1.8 For all algebraic z ∈ R of degree ≤ 2, the Kronecker sequence does
neither fulfill Obstruction 1 nor Obstruction 2 for α < 1.

A corresponding property as assumed in Theorem 1.7 also holds for Kronecker
sequences in dimensions d ≥ 2, compare e.g. the recent publications [11, 12]: the
number of nearest neighbor distances of multi-dimensional Kronecker sequences is
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Some connections between discrepancy… 915

universally bounded for the Euclidean and the maximummetric. Thus, it is an obvious
question to ask whether it is true also in higher dimensions that a finite number of near-
est neighbor distances prevents a sequence from having Poissonian pair correlations.
This question is left open for future research.
Conversely, we show here that if a sequence only has a finite number of gap lengths
and if these different gap lengths distribute over the unit interval in a nice way, then
the star-discrepancy cannot be too large. In view of the observations in [15] (finite
gap property implies that the sequence does not have Poissonian pair correlations)
and Theorem 1.1 (low-discrepancy almost implies Poissonian pair correlations), this
result might be a bit surprising at first sight but completes the picture in a sense.

Theorem 1.9 Let (xn)n∈N be an arbitrary sequence and denote by (x∗
n )

N
n=1 the

sequence of the first N ∈ N elements of (xn)n∈N ordered by size. Assume that the
gap lengths of (x∗

n )
N
n=1 are L1 < L2 < . . . < LK and that for the largest gap length

LK = R+2
N for some R > −1 holds. Furthermore let N1, N2, . . . , Nk denote the

corresponding multiplicities of the occurring gap lengths. If for all j = 1, . . . , N we
have

x∗
j = x∗

1 +
K∑

k=1

nk( j)Lk

with nk( j) ∈ [ Nk
N j − ε; Nk

N j + ε] for k = 1, . . . , K, then

D∗
N (x1, . . . , xN ) ≤ R + 3

N
+ ε

K∑
k=1

Lk .

Remark 1.10 The assumption LK = R+2
N is not a restriction for fixed N because we

always have NLK ≥ 1 and thus LK ≥ 1
N . The condition that the largest gap length

converges to zero (and so do all other gap lengths) means that R = R(N ) is o(N ). The
latter is obviously a necessary condition for the sequence to be uniformly distributed.
Moreover, note that also K = K (N ), L j (N ) and ε = ε(N ) depend on N .

Theorem 1.9 may be regarded as a tool to bound the discrepancy and even to prove
for certain sequences that they have low-discrepancy. In fact, we discuss in Sect. 3, that
Theorem 1.9 can indeed be applied to show for both Kronecker and van der Corput
sequences that they are low-discrepancy sequences. This is done in Examples 3.1 and
3.5 respectively by using the fact that these two types of sequences have the finite gap
property, i.e. K = O(1) for N → ∞, and proving that ε = ε(N ) = O(log(N )).
These examples indicate that looking at the gap structure of a sequence in a precise
way is sufficient for calculating the asymptotic behavior of the discrepancy. Since
the machinery is kept quite universal, it can presumably be applied to other classes
of sequences, too. For example, also LS-sequences from [5] and the low-discrepancy
sequences stemming from interval exchange transformations in [30] have a finite gap
property.
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916 C. Weiß

2 Discrepancy and pair correlations

A sequence (xn) ∈ [0, 1)d is uniformly distributed if and only if limN→∞ DN (xn) →
0. According to Theorem 1.1 the speed of convergence of the discrepancy to 0 deter-
mines the α-pair correlation statistics. Vice versa Theorem 1.4 implies that the relation
is to a certain extentmutual. This section is dedicated to the proof of these two theorems
and some related results.

Proof of Theorem 1.1 Assume that (xn)n∈N is a sequence with DN (xn) = o(N−(1−ε))

for 0 < ε < 1
d and let s > 0 be arbitrary. A ball of radius sN−α in ‖·‖∞ contains

Nvol(B(0, sN−α) + o(N ε)

points because of the order of convergence of DN (xn). In other words, for an arbi-
trary xm with 1 ≤ m ≤ N there exist Nvol(B(0, s/N−α) + o(N ε) points xl with
‖xl − xm‖∞ ≤ sN−α , because of the compatibility of the usual discrepancy with
‖·‖∞. Keeping in mind that vol(B(0, sN−α)) = o(N−dα), we obtain

Fα
N (s) = 1

N 2

#
{
1 ≤ l �= m ≤ N : ‖xl − xm‖∞ ≤ s

Nα

}

vol(B(0, sN−α))

= 1

N 2 · N · Nvol(B(0, sN−α) + o(N ε)

vol(B(0, sN−α))

= 1 + o(N ε+α·d−1)

Letting N → ∞ completes the proof Theorem 1.1 because α < 1−ε
d . ��

For arbitrary norms ‖·‖ we can, in general, only use the isotropic discrepancy
JN (xn) instead of the discrepancy because the former takes into account all convex
sets and hence can be applied to sets of the form ‖xl − ·‖ for l ≤ N . From DN (xn) ≤
JN (xn) ≤ 4dDN (xn)1/d , the following corollary can be immediately derived.

Corollary 2.1 Let (xn) ∈ Td (equipped with an arbitrary norm ‖·‖)) be a low-
discrepancy sequence. Then (xn)n∈N has α-pair correlations for all 0 < α < 1

d2
.

We now briefly fix notation and summarize some of the important properties of
continued fractions. For more details, we refer the reader to [3, 22]. Let [a0; a1, . . .]
be the continued fraction expansion of z and denote the corresponding sequence of
convergents by (pn/qn)n∈N0 . Recall that

p−2 = 0, p−1 = 1, pn = an pn−1 + pn−1, n ≥ 0

q−2 = 1, q−1 = 0, qn = anqn−1 + qn−1, n ≥ 0

Remark 2.2 In [29], the assertion of Corollary 1.2 was shown for Kronecker sequences
({nz})n∈N under the following growth condition on the partial quotients ai of z: Given
N ∈ N, let i(N ) be such that the convergent denominator qi(N ) of z satisfies qi(N ) ≤
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Some connections between discrepancy… 917

N < qi(N )+1. If for each ε > 0, we have

∑
j≤i(N )

a j � N ε,

then the Kronecker sequence has α-pair correlations for all 0 < α < 1.

In order to show Proposition 1.8, we recall that algebraic numbers of degree ≤ 2
have bounded continued fraction expansion and prove the following lemma.

Lemma 2.3 If the continued fraction expansion of z has bounded coefficients, then
for any α < 1, the Kronecker sequence (xn)n∈N = ({nz})n∈N only has α-small
gap lengths. If we restrict to the subsequence ({qi z})i∈N of the Kronecker sequence,
where only two gap lengths appear, then the larger gap length is a 1-intermediate gap
(independent of whether the ai are bounded).

Proof Let qn < N ≤ qn+1. According to the Three Gap Theorem 1.6 the gap length
‖qnz‖ is the minimal one and the maximal possible one is ‖qn−1z‖+‖qnz‖. From the
fact that the ai are bounded, say by K ∈ N, we obtain

qn < qn+1 < (K + 1)qn

for all n ∈ N. Using the well-known inequalities

1

qn+1 + qn
≤ ‖qnz‖ ≤ 1

qn+1

yields

NαLmax ≤ 2Nα ‖qn−1z‖ ≤ 2
qα
n+1

qn
≤ 2(K + 1)α

1

q1−α
n

Therefore Nα · Li → 0 for all α < 1 and Li any appearing gap length at step N . In
our wording this means that only α-small gap lengths appear for α < 1. However,
N · Lmax → 0 does not hold because for N = qn+1 we have

1

2
<

qn+1

qn+1 + qn
≤ qn+1(‖qnz‖ + ‖qn−1z‖) < 2

and thus a 1-intermediate gap length occurs. ��
Finally, we come to the proof of Theorem 1.4. Since the arguments in our proof

are essentially the same as in [9], Theorem 1, we leave away the derivation of two
inequalities here and refer the reader to the respective article for more details.

Proof of Theorem 1.4 At first we set

H(N , K ) := 5 · max
(
N 1− 1

5α,
√
Nα · F(K 2, N )

)
.
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918 C. Weiß

and assume that ND∗
N > H(N , K ) for infinitely many N , K which will lead to a

contradiction at the end of the proof. This implies that there exist sequences 1 <

N1 < N2 < . . . and (K j ) j∈N of integers and a sequence of real numbers (Bj ) j∈N
such that we have without loss of generality

#
{
1 ≤ n ≤ N j : xn ∈ [0, Bj )

} − N j B j > H(N j , K j )

for all j (the other possible case can be treated similarly). Let N := N j , K :=
K j , B := Bj and H := H(N j , K j ). Then the equation above implies

N − N B − H > 0.

Furthermore we define the numbers

Ai := #

{
1 ≤ n ≤ N : xn ∈

[
i · K

Nα
, (i + 1) · K

Nα

)}

for i = 0, 1, . . . , �Nα/K � − 1 and

A�Nα/K � := #

{
1 ≤ n ≤ N : xn ∈

[⌊
Nα

K

⌋
· K

Nα
, 1

)}
.

For arbitrary l ∈ N we set Al := Al mod �Nα/K �. Finally, we introduce the notation

HL := #

{
1 ≤ l �= m ≤ N : ‖xl − xm‖ ≤ K L

Nα

}

for L = 1, 2, . . . , K . By definition we have

∣∣∣∣
1

2LK
HL − N 2−α

∣∣∣∣ ≤ F(K 2, N ). (3)

Following the lines of the proof of Theorem 1 in [9] almost verbatim yields the two
inequalities

1

2LK N 2−α
HL ≥

�N/K �∑
i=0

(Ai (Ai − 1) + 2Ai (Ai+1 + . . . + Ai+L−1))

≥ 2

K + 1
ZK − 1

2LK
Nα−1,

(4)

where

ZK ≥ Nα−1

2K 2N

(
K 2(N B + H)2

K + �Nα/K � + K 2(N (1 − B) − H)2

�Nα/K � − K − �NαB/K �
)

. (5)
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As both denominators are positive, this implies

ZK ≥ 1

2N

(
K (N B + H)2

N + K 2N 1−α
+ K (N (1 − B) − H)2

N (1 − B) − K 2N 1−α

)
.

The expression ZK is monotonic decreasing in the range of K and furthermore we
have K 2N 1−α ≤ H/5. Hence

ZK ≥ K

2N

(
(N B + H)2

N + H/5
+ (N (1 − B) − H)2

N (1 − B) − H/5

)

≥ K

2N

(
N + 16

25

NH2

(N B + H/5)(N (1 − B) − H/5)

)

>
K

2

(
1 + H2

2N 2

)
(6)

From the Inequalities (3)–(6) we deduce

1

N 2−α
F(K , N 2) + 1 ≥ max

L=1,...,K

1

2K LN 2−α
HL > 1 + H2

2N 2 − 3

2

1

K
− 1

2K
Nα−1.

Then K ≥ 1
2N

2/5α implies N 2/K ≤ 2N 2(1− 1
5α)and hence

H2 <
4N 2

K
+ 2NαF(K 2, N )

< 6max

(
N 2

K
, NαF(K 2, N )

)

< 12max

(
N 2(1− 1

5α)
, NαF(K 2, N )

)
< H2,

and thus a contradiction. ��

Corollary 1.5 can be deduced from Theorem 1.4 by a relatively short proof, which
again only contains small amendments of the ideas in [9]. We only include the proof
for the sake of completeness.

Proof of Corollary 1.5 Let ε > 0 be arbitrary. Since (xn)n∈N has α-pair correlations for
α, it follows that

∣∣∣∣
1

2s
#

{
1 ≤ l �= m ≤ N : ‖xm − xn‖ ≤ s

Nα

}
− N 2−α

∣∣∣∣ ≤ εN 2−α.
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for N ≥ N0. Define F(K , N ) := εN 2−α and choose K such that 12N
2
5α ≤ K ≤ N

2
5α .

Then Theorem 1.4 implies

D∗
N ≤ 5

N
· max

(
N 1− 1

5α
,
√
NαN 2−αε

)
= 5

√
ε.

��

3 Gaps and discrepancy

In this section we analyze how the gap structure of a sequence influences its star-
discrepancy. For a finite sequence (xn)Nn=1 ∈ T

1 let the gap lengths be denoted by

L(N )
1 < · · · < L(N )

K and let N (N )
1 , . . . , N (N )

k be their multiplicities. We assume that
(xn)n∈N has the finite gap property, i.e. K (N ) ≤ K for some K ∈ N and all N ∈ N.
We avoid the upper index (N ) in the following because N is always clear from the
context. It follows that

K∑
k=1

NkLk = 1.

Furthermore we will denote by (x∗
n )

N
n=1 ∈ [0, 1) the elements of xn ordered by magni-

tude, i.e. x∗
1 ≤ x∗

2 ≤ . . . ≤ x∗
N . In the case of Kronecker sequences, note that x

∗
1 = L j

for some j ≤ K does not necessarily hold because the three gap theorem is in the
version presented here a statement about T1 and not about [0, 1).
Example 3.1 Let z ∈ R \ Q have bounded partial quotients, i.e. z = [a0, a1, . . .] with
ai ≤ R for all i ∈ N. Consider the Kronecker sequence (nz)Nn=1 and let N = qi be
the denominator of a convergent. Then there exist only two different gap lengths by
the three gap Theorem 1.6. From the basic theory of continued fractions we get

1

(R + 2)N
<

1

qi + qi+1
≤ L j ≤ 1

qi−1
≤ (R + 1)

N

for all L j in this case. If qi−1 < N < qi , then there are at most three different gap
lengths. The smallest gap length is the same as for N = qi and the maximal length is
bounded from above by 1

qi−1
in this case, too. Hence

1

(R + 2)N
<

1

qi + qi+1
≤ L j ≤ 1

qi−1
<

(R + 1)

N
.

Precise upper bounds for the quantities NLK are only known in special cases and a
current research topic on their own, see [19].

The next aim is to establish the general link between the finite gap property of a
sequence and its star-discrepancy which is described in Theorem 1.9. For that purpose
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it proves useful to use the following formula for calculating the star-discrepancy, see
e.g. [22], Theorem 2.6.

Lemma 3.2 The star-discrepancy can be calculated by the formula

D∗
N (x∗

1 , . . . , x
∗
N ) = 1

2N
+ max

1≤n≤N

∣∣∣∣x∗
n − 2n − 1

2N

∣∣∣∣ .

From Lemma 3.2 we see that (xn)n∈N and (1 − xn)n∈N have the same star-
discrepancy for every N ∈ N. This leads us to the proof of Theorem 1.9. The
notational convention for the length LK therein is, of course, a reminiscence to Kro-
necker sequences.

Proof of Theorem 1.9 At first, we bound D∗
N (x1, . . . , xN ) from above. Since

x∗
j = x∗

1 +
K∑

k=1

nk( j)Lk ≤ x∗
1 + j

N

K∑
k=1

NkLk + ε

K∑
k=1

Lk

= x∗
1 + j

N
+ ε

K∑
k=1

Lk .

it follows that

x∗
j − 2 j − 1

2N
≤ x∗

1 + j

N
− 2 j − 1

2N
+ ε

K∑
k=1

Lk ≤ 1

2N
+ LK + ε

K∑
k=1

Lk

≤ R + 3

N
+ ε

K∑
k=1

Lk .

In the same way, the lower bound for nk( j) can be applied to bound x∗
j − 2 j−1

2N from

below by ε
∑K

k=1 Lk .

In our next example we show how Theorem 1.9 can be applied to Kronecker
sequences to prove that they are low-discrepancy sequences.

Example 3.3 (Continuation of Example 3.1) The proof is split into four steps. In the
first preparatory step we fix the notation and discuss Three Gap Theorem 1.6 in more
detail. Next we consider the simplest case, namely N = qi . Even stronger bounds
for the star-discrepancy can be derived from the gap structure for these N . Third we
come to the N where only two different gap lengths occur. In a final step, we consider
the general case. While, of course, the usual proof of the low-discrepancy property of
Kronecker sequences is much shorter, see e.g. [22], our approach has the advantage
that it sheds light upon how it can be derived from the gap structure.
(1) Description of notation
Let qi be the denominators of the convergents. According to Theorem 1.6, the number
of small gaps is S(N ) = N −qi , and the sum of the number of medium and large gaps
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satisfies M(N ) + L(N ) = qi . While the notion of small gaps remains the same for
qi < N ≤ qi+1, the notion for medium and large size changes whenever N reaches
cqi +qi−1 for some c ∈ N. More precisely, if cqi +qi−1 ≤ N < (c+1)qi +qi−1, then
the number of medium size gaps is M(N ) = N − cqi − qi−1. Let S(N , k) for k ≤ N
denote the number of small gaps between x∗

1 and x∗
k+1. Accordingly L(N , k) is the

number of large gaps between x∗
1 and x∗

k+1 and M(N , k) the corresponding number
of medium gaps. In the following we (almost) exclusively pay attention to S(N , k)
because very similar arguments apply for L(N , j) and M(N , k) = k − S(N , k) −
L(N , k).
(2) The case N = qi
At first, we consider the case N = qi . Therefore, there are only qi − qi−1 small gaps
and qi−1 large gaps. We claim that

S(N , k) ∈
(
S(N )

N
k − 1,

S(N )

N
k + 1

)
.

We prove this by induction on i . For N = q1 = 1 the claim is trivial. Let x∗
1,N <

x∗
2,N . . . < x∗

N ,N be the elements x1, x2, . . . , xN ordered by size. We may without loss
of generality assume that x∗

1,N = x∗
1,qi+1

because either x∗
1,N = x∗

1,qi+1
or x∗

N ,N =
x∗
qi+1,qi+1

and we can replace x1, . . . , xN by 1 − x1, . . . , 1 − xN if necessary. When
passing from N = qi to N∗ = qi+1 an (old) small gap is split up into ai+1 − 1
(new) small gaps and 1 (new) large gap as can be seen from the dynamics behind the
continued fraction algorithm, compare [31]. Similarly, an (old) large gap is split up
into ai+1 (new) small gaps and 1 (new) large gap. Therefore, the point x∗

k+1,N is the
same point as x∗

k∗,N∗ , where

k∗ = ai+1S(N , k) + (k − S(N , k))(ai+1 + 1) = (ai+1 + 1)k − S(N , k).

From that we can calculate the number of small gaps as

S(N∗, k∗) = (ai+1 − 1)S(N , k) + (k − S(N , k))ai+1 = kai+1 − S(N , k) = k∗ − k.

We now compare S(N∗, k∗) to S(N∗)
N∗ k∗ and obtain

∣∣S(N∗, k∗) − S(N∗)
N∗ k∗

∣∣∣∣ =
∣∣∣∣k∗ − k − S(N∗)

N∗ k∗
∣∣∣∣ =

∣∣∣∣k∗ N∗ − S(N∗)
N∗ − k

∣∣∣∣

=
∣∣∣∣k∗ qi

qi+1
− k

∣∣∣∣ =
∣∣∣∣((ai+1 + 1)k − S(N , k))

qi
ai+1qi + qi−1

− k

∣∣∣∣

=
∣∣∣∣
k(qi − qi−1) − S(N , k)qi

ai+1qi + qi−1

∣∣∣∣ <
qi

ai+1qi + qi−1
< 1,

wherewe applied the induction hypothesis in the penultimate step. If k∗ < j < (k+1)∗
and if the gap between k and k+1 was small (old), then the biggest difference between
S(N∗, j) and S(N∗)

N j occurs for j−k∗ = ai+1−1. An analogous calculation as above
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yields

∣∣S(N∗, j) − S(N∗)
N∗ j

∣∣∣∣ =
∣∣∣∣S(N∗, k∗) + ai+1 − 1 − S(N∗)

N∗ (k∗ + ai+1 − 1)

∣∣∣∣

<
qi

ai+1qi + qi−1
+ (ai+1 − 1)qi

ai+1qi + qi−1
< 1.

If k∗ < j < (k + 1)∗ and if the gap between k and k + 1 was large (old), then this gap
splits into ai+1 small gaps (new) and 1 large gap (new). Hence it remains to consider
the case j − k∗ = ai+1. However, it follows inductively as well that for large gaps we

have
∣∣∣S(N∗, k∗) − S(N∗)

N k∗
∣∣∣ <

qi−1
ai+1qi+qi−1

and the claim follows.

(3) The case N∗ = (c + 1)qi + qi−1
From (2) we now have knowledge about S(N , k) for the case N = qi . In this part
of the proof, we use this information to obtain a corresponding result for N∗ =
(c + 1)qi + qi−1: if N = qi and N∗ = qi + qi−1 we have only two sizes of gaps in
both cases and k �→ k∗ = k + (k − S(N , k)) = 2k − S(N , k) and M(N ,∗ , k∗) =
S(N , k) + (k − S(N , k)) = k∗ − k − S(N , k). If N = cqi + qi−1 with c ≤ ai+1 − 1
and N∗ = (c+ 1)qi +qi−1, then again k∗ = 2k − S(N , k) and this time S(N∗, k∗) =
k∗ − k − S(N , k). A similar calculation as for N∗ = qi+1 yields M(N ,∗ , k∗)) ∈(
M(N∗)
N∗ k∗ − 1, M(N∗)

N∗ k∗ + 1
)
(and thus a corresponding statement for S(N∗, k∗)) in

all mentioned cases.
(4) All other N
The remaining cases are those, where N∗ = N + n with

N ∈ {qi , qi + qi−1, 2qi + qi−1, . . . , (ai − 1)qi + qi−1} .

Again the strategy for (4) is to use information for N from (3) to derive results for
N∗. Now we take a x∗

k+1 ∈ (x∗
i )Ni=1 and let k∗ denote the index of x∗

k in (x∗
i )N

∗
i=1.

If we assume for a moment k∗ = k + k n
N + ε for some ε ∈ R, then S(N∗, k∗) =

S(N , k)+ n
N k + ε because the new points also contribute new small gaps. This yields

∣∣S(N∗, k∗) − S(N∗)
N∗ k∗

∣∣∣∣ =
∣∣∣∣S(N , k) + n

N
k + ε − S(N∗)

N∗ k∗
∣∣∣∣

≤
∣∣∣∣
S(N )

N
k + n

N
k + ε + 1 − S(N∗)

N∗ k∗
∣∣∣∣

=
∣∣∣∣
S(N ) + n

N
k + ε + 1 − S(N∗)

N∗
N + n

N
k − S(N∗)

N∗ ε

∣∣∣∣

=
∣∣∣∣
S(N ) + n

N
k − S(N ) + n

N + n
· N + n

N
k + ε − S(N∗)

N∗ ε + 1

∣∣∣∣ < |ε| + 1.

It remains to be shown that k∗ = k+ k n
N + ε(k) and to find a more explicit expression

for ε(k). For that purpose we split the full sequence (xn)N
∗

n=1 into several subsequences.
For (xn)Nn=1, we can deduce from the fact that there are only two gap lengths and the
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formulae for S(N ) and L(N ) that x∗
k = x∗

1 + k/N + εk/N with εk < 1. Next we
consider the subsequence (yh)

qi−1
h=1 = (xN+h)

qi−1
h=1. As this is a shifted usual Kronecker

sequence it follows that y∗
h = y∗

1 + h/qi−1 + εh
1

qi−1
with εh < 1 for h = 1, . . . , qi−1.

Thus, both (xn − x∗
1 ) and (yh − y∗

1 ) consist up to a small error of equidistant points.
Combining these results we see that between k · qi−1/N − 1 and k · qi−1/N + 1 of
the yh are smaller than x∗

k+1. These (additional) points contribute to k∗. Using the
Ostrowski expansion of N∗, i.e. writing

N∗ =
l(N∗)∑
n=1

bnqn

with 0 ≤ bn ≤ an and bn−1 = 0 if bn = an , see e.g. [22], and induction, it follows
that the total number of elements of (zn) = (xn)N

∗
n=N+1 which are smaller than x∗

k+1
deviates from kn/N by at most

∑
l≤i al . Hence

k∗ ∈
⎛
⎝ j + j

n

N
−

∑
l≤i

al , j + j
n

N
+

∑
l≤i

al

⎞
⎠ .

Finally, we have to consider the new points x∗
h which were not already in the sequence

(xn)Nn=1. These new points are those that split an (old) large gap into a small and
a medium one. Hence they can contribute at most 1 to S(N , k). Since

∑
l≤i al ≤

c0 log(N ), we get in total that

S(N , k) ∈
(
S(N )

N
k − c log(N ),

S(N )

N
k + c log(N )

)
.

This finishes the proof that Kronecker sequences with bounded continued fraction
expansion are low-discrepancy sequences.

Eventually, wewant to apply Theorem1.9 to van der Corput sequences to show their
low-discrepancy property. They are defined as follows: for an integer b ≥ 2 the b-ary
representation of r ∈ N is r = ∑∞

j=0 a j (r)b j with a j (r) ∈ N. The radical-inverse

function is defined by gb(r) = ∑∞
j=0 a j (r)b− j−1 for all n ∈ N. Finally, the van der

Corput sequence in base b is given by (xr ) = gb(r). In order to check the assumptions
of Theorem 1.9 for van der Corput sequences, we use the following intermediate result
of the proof of Theorem 3.6 in [22].

Lemma 3.4 Let (xr )Nr=1 be the van der Corput sequence in base b and N ≤ be − 1,
then the number of points N (k) in [0, xk] satisfies

|Nxk − N (k)| ≤ 1

2
e(b − 1) + 1.

Example 3.5 Consider the van der Corput sequence in base b. We add 0 as zeroth
element of the sequence. If N = be −1, then there is only one gap length and showing
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the assumptions of Theorem 1.9 is trivial. If N = abe − 1 with a < b, then the
sequence consists of be blocks with (a − 1) short and 1 long gaps. The proof is again
trivial with ε < (a − 1) < b. Now let abe − 1 ≤ N < (a + 1)be − 1 and consider
(xr )Nr=1 and its ordered version (x∗

r ). The largest gap length is at most b
N . Write R for

the real number such that LK = (R+ 2)/N . Now we set N := abe and N∗ := N + n
with n < be. Similarly as for Kronecker sequences, we split up the complete sequence
into the subsequences (zr )

abe−1
r=0 = (xr )

abe−1
r=0 and (y j )nj=1 = (xabe−1+ j )

n
j=1.

Any point z∗k must be of the form z∗k = ib+l
be+1 with 0 ≤ i ≤ be−1 −1 and 0 ≤ l ≤ a−1

where k = i · a + l. We know that there are S(N , k) ∈
(

(a−1)be

abe k − 1, (a−1)be

abe k + 1
)

small gaps between z∗0 and z∗k and that L(N , k) = k− S(N , k). Note that any point y∗
j

cuts a long interval of the sequence (z∗r ) into a small one and amedium one. According
to Lemma 3.4, the interval [0, z∗k ) contains in total

k∗ := N∗z∗k + εk = (abe + n)
ib + l

be+1 + εk = k + a − b

b
l + nz∗k + εk

points of (xr ) with εk ≤ 1
2 (b − 1)e + 1. Comparing this number to N∗

N k yields

∣∣∣∣
N∗

N
k − k∗

∣∣∣∣ =
∣∣∣∣
n

abe
k − a − b

b
l − n

ib + l

be+1 + εk

∣∣∣∣

=
∣∣∣∣
1

b
(b − a)l

( n

abe
+ 1

)
+ εk

∣∣∣∣ <

∣∣∣∣
1

b
(b − a)(a − 1)

(
1

a
+ 1

)
+ εk

∣∣∣∣

<
3

8
(b − 1) + 1

2
e(b − 1) + 1 =: ε

Now let S(N∗) be the number of small gaps of (x∗
r ) and let S(N∗, k) be the number

of small gaps between x∗
0 and x∗

k . Note that S(N∗) = S(N ) + n and S(N∗, k∗) =
S(N , k) + k∗ − k. Hence

∣∣∣∣
S(N∗)
N∗ k∗ − S(N∗, k∗)

∣∣ =
∣∣∣∣
S(N∗)
N

k + ε
S(N∗)
N∗ − (

S(N , k) + k∗ − k
)∣∣∣∣

≤
∣∣∣∣
S(N ) + n

N
k + ε

S(N ) + n

N + n
−

(
S(N )

N
k + ε̃ + N∗

N
k + ε − k

)∣∣∣∣

= ε
N − S(N )

N∗ + ε̃ ≤ 3

8
(b − 1) + 1

2
e(b − 1) + 1 + 1

<
1

2
(e + 1)(b − 1) + 2 < c

log N

log b
.

A corresponding result for L(N∗, k) can be derived in the same manner and
M(N∗, k) = k − L(N∗, k) − S(N∗, k) follows. Thus, van der Corput sequences
satisfy the assumptions of Theorem 1.9 with ε = ε(N ) = c log Nlog b . We obtain the
well-known result that van der Corput sequences are low-discrepancy sequences.
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