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Abstract
Let G be a finite group, N a normal subgroup of G and K a conjugacy class of G. We
prove that if K ∪K−1 is union of cosets of N , then N is soluble, K is a real-imaginary
class, that is, every irreducible character of G takes real or purely imaginary values
on K , and if, in addition, the elements of K are p-elements for some prime p, then
N has normal p-complement. We also prove that if K ∪ K−1 is a single coset of N ,
then 〈K 〉 has a normal 2-complement.

Keywords Conjugacy classes · Cosets of normal subgroups · Finite simple groups ·
Characters

Mathematics Subject Classification 20C15 · 20D20 · 20E45

1 Introduction

Let G be a finite group and N a proper normal subgroup of G. The set G − N is union
of conjugacy classes ofG, and at the same time, is the union of all non-trivial cosets of
N . It makes sense then to consider certain relations between unions of some conjugacy
classes of G out of N and unions of some cosets of N . A particularly studied case is
Camina groups (also generalized Camina groups), in which every conjugacy class of
G outside the derived subgroup G ′ is a single coset of G ′. It turns out that Camina
groups are soluble and, in fact, were completely classified in [8, 15]: A Camina group
is either a p-group or a Frobenius group whose complement is cyclic or quaternion.
More generally, A.R. Camina introduced in [5] the subsequently called Camina pairs,
that is, those groups G having a normal subgroup N such that each non-trivial coset
of N is contained in a conjugacy class of G. He proved that if G is not a Frobenius
group, then one of N or G/N is a p-group. In the latter case, moreover, Isaacs proved
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that N has normal p-complement [14]. Several decades later, instead of pondering all
conjugacy classes ofG out of N , Guralnick andNavarro focused on a single conjugacy
class K ofG that is union of cosets of N [10, TheoremB]. It was necessary, however, to
appeal to the Classification of Finite Simple Groups so as to demonstrate the solubility
of N .

Inspired by the above results, in this note we address the case in which the union
K ∪ K−1, where K is a conjugacy class of G, is union of some cosets of N . This
is easily seen to be equivalent to the fact that xN ⊆ K ∪ K−1 where K is the
conjugacy class of x . Actually, the solubility of N under these assumptions remained
an unsolved problem in [3]. We give an affirmative answer by following a different
approach to that of [3], which requires the Classification of Finite Simple Groups as
well as several extensibility properties of irreducible characters of normal subgroups
and simple groups.

Theorem A Suppose that G is a finite group, N is a normal subgroup of G, and K a
conjugacy class of G such that K ∪ K−1 is union of cosets of N . Then

(a) N is soluble.
(b) K is a real-imaginary class, that is, every χ ∈ Irr(G) takes real or purely imagi-

nary values on K .
(c) if, in addition, the elements of K are p-elements, then N has normal p-complement.

We will show that under the hypotheses of Theorem A, the normal subgroup 〈K 〉
need not be soluble. However, in the particular case in which K ∪ K−1 is exactly
one coset, we do have the solubility of 〈K 〉, in fact, we get a slight improvement of
Theorem A of [3].

Corollary B Suppose that G is a finite group, N is a normal subgroup of G and K = xG

is a conjugacy class of G such that xN = K ∪ K−1. Then 〈K 〉 has a normal 2-
complement and x is a 2-element. Furthermore, if x has order 2, then the normal
2-complement of 〈K 〉 is nilpotent.

All groups considered are finite, the notation and terminology are usual and we will
employ [12] and [13] to refer to standard results on Character Theory.

2 Preliminaries

We include some results that were previously developed and are necessary for our
purposes, the first of which helps to solve the particular case KC = K−1 for some
conjugacy class C of G contained in N under the assumptions of Theorem A.

Lemma 2.1 [2, Lemma 2] Let G be a finite group and K , L and D non-trivial conju-
gacy classes of G such that K L = D with |D| = |K |. Then 〈L〉 is soluble.
Lemma 2.2 [3, Lemma 2.3] Let G be a finite group and let N be a normal subgroup
of G. Let K = xG be the conjugacy class of an element x ∈ G. Suppose that xN ⊆
K∪K−1. Ifχ ∈ Irr(G) does not contain N in its kernel, thenχ(x) is purely imaginary.
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Conjugacy classes and union of cosets of normal subgroups 351

The proof of Theorem A(a) reduces to the case when N is product of non-abelian
simple groups and then we make use of the existence of irreducible characters of
coprime degree in certain non-abelian simple groups. Likewise, we need some results
concerning extensions (sometimes real or rational extensions) of irreducible characters
of simple groups. Regarding the alternating and sporadic groups we will use the
following.

Theorem 2.3 [4, Theorem 3] If n ≥ 6, thenAlt(n) has irreducible characters of degree
(n − 1)(n − 2)/2 and n(n − 3)/2 that extend to Sym(n).

Observe that (n − 1)(n − 2)/2 and n(n − 3)/2 are coprime numbers.

Theorem 2.4 [4, Theorem 4] Let S be a sporadic simple group or the Tits group
and let A be the automorphism group of S. Then there exist nonlinear characters
χm, χn ∈ Irr(S) such that (χm(1), χn(1)) = 1 and that both χm and χn extend to A.

Moreover, Table 1 of [4] lists, according to the Atlas [7], the specific characters of
Theorem 2.4 with their respective degrees. Furthermore, by using tensor inductions
of characters, the authors of [4] attained the following result.

Theorem 2.5 [4, Lemma 5] Let N be a minimal normal subgroup of a group G so
that N = S1 × . . . × St , where Si ∼= S is a non-abelian simple group. Let A be the
automorphism group of S. If σ ∈ Irr(S) extends to A, then σ × . . . × σ ∈ Irr(N )

extends to G.

With regard to simple groups of Lie type, we also require some well-known prop-
erties of the Steinberg character. We refer the reader to [6] for its standard properties.
The Steinberg character of a simple group of Lie type S is a (rational) character that
extends toAut(S). This was first proved by Schmid in [17, 18]. Furthermore, according
to the main result of [9], the Steinberg character extends to the character of a rational
representation of Aut(S). This is not enough for our purposes, however, and we still
need to bemore accurated so as to find real extensions of real characters of normal sub-
groups that are direct product of simple groups of Lie type. For that purpose, instead of
using tensor inductions like in the proof of Theorem 2.5, we will employ a particular
case of a result in [16].

Theorem 2.6 Let G be a finite group, N � G and θ ∈ Irr(N ) be a G-invariant real
character. Suppose that θ(1) is odd and that N is perfect. Then θ extends to a real
character of G.

Proof This is an immediate consequence of [16, Theorem 2.3]. 
�

3 Proofs

Webegin by giving a characterization, in terms of irreducible characters, of an equality
involving conjugacy classes. This equation arises when considering the hypotheses of
Theorem A and will play a relevant role in its proof.
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Lemma 3.1 Let G be a finite group and x, c ∈ G. Let K = xG and C = cG be
conjugacy classes of G. The following conditions are equivalent:

(1) KC = K ∪ K−1.
(2) For every χ ∈ Irr(G)

|C |χ(x)χ(c) = χ(1)(aχ(x) + bχ(x−1)).

for some integers a, b ≥ 0 such that a + b = |C |.

Proof Suppose first that KC = K ∪ K−1. We remark that the possibility K = K−1

is included. Let us denote by ̂K , ̂K−1 and ̂C the sum of all elements in K , K−1 and
C respectively, when considering them as elements of the complex group algebra

C[G]. Write ̂K̂C = âK + b̂K−1 for some integers a, b ≥ 0. Notice that, by counting
elements, |K ||C | = a|K | + b|K−1|, which implies that a + b = |C |. On the other
hand, by applying [12, Lemma 3.8 and Theorem 3.9], we have

|K |χ(x)

χ(1)

|C |χ(c)

χ(1)
= a

|K |χ(x)

χ(1)
+ b

|K−1|χ(x−1)

χ(1)

for every χ ∈ Irr(G), and hence, the equality stated in (2) follows.
Conversely, suppose that (2) holds. Let {C1, . . . ,Ct } be the set of conjugacy classes

of G. We know that (for instance by [13, Exercise 3.9]) for every pair of conjugacy
class sums ̂Cm and ̂Cn with representatives cm and cn

̂Cm̂Cn =
∑

i

αi ̂Ci

where

αi = |Cm ||Cn|
|G|

∑

χ∈Irr(G)

χ(cm)χ(cn)χ(ci )

χ(1)

and ci ∈ Ci . In particular,

̂K̂C =
∑

i

αi ̂Ci with αi = |K ||C |
|G|

∑

χ∈Irr(G)

χ(x)χ(c)χ(c−1
i )

χ(1)
. (3.1)

On the other hand, if we pour out χ(x)χ(c) from the equation in (2)

χ(x)χ(c) = χ(1)(aχ(x) + bχ(x−1))

|C | ,
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and by replacing it in Eq. (3.1), we have

αk = |K ||C |
|G|

∑

χ∈Irr(G)

(aχ(x) + bχ(x−1))χ(c−1
i )

|C | =

= |K |
|G| (a

∑

χ∈Irr(G)

χ(x)χ(c−1
i ) + b

∑

χ∈Irr(G)

χ(x−1)χ(c−1
i )).

We use now the second orthogonality relation. If we assume K �= K−1 we easily
deduce that: αi = a when Ci = K ; αi = b when Ci = K−1; and αi = 0 otherwise.
This implies that KC = K ∪ K−1. If, on the contrary, we assume K = K−1, it
follows that αi = a + b = |C | when Ci = K , and αi = 0 when Ci �= K , so we get
̂K̂C = |C |̂K . Therefore, the equality in (1) also holds. 
�
Before giving the proof of Theorem A, we prove an easy observation made in the

Introduction, which allows us to restate Theorem A in a somewhat different manner
for our convenience.

Lemma 3.2 Let G be a finite group, N a normal subgroup of G and K = xG the
conjugacy class of x ∈ G. Then xN ⊆ K ∪ K−1 if and only if K ∪ K−1 is union of
cosets of N .

Proof Suppose first that xN ⊆ K ∪ K−1. As K ∪ K−1 is a normal subset, it is clear
that K N = (xN )G ⊆ K ∪ K−1. By taking inverses, K−1N = (K N )−1 ⊆ K ∪ K−1.
Therefore, (K ∪ K−1)N = K ∪ K−1. This equality shows that K ∪ K−1 is union of
cosets of N . Conversely, suppose now that K ∪ K−1 is union of cosets of N and let
yN ⊆ K ∪ K−1 for some y ∈ G. As y ∈ K ∪ K−1, there exists g ∈ G such that
either yg = x or yg = x−1, and then, either xN = ygN = (yN )g ⊆ K ∪ K−1 or
analogously x−1N ⊆ K ∪ K−1. In the latter case, we also obtain xN ⊆ K ∪ K−1, as
wanted. 
�
Theorem 3.3 Suppose that G is a finite group, N is a normal subgroup of G and
K = xG is a conjugacy class of G such that xN ⊆ K ∪ K−1. Then

(a) N is soluble.
(b) K is a real-imaginary class, that is, χ(x) is real or purely imaginary for every

χ ∈ Irr(G).
(c) if x is a p-element, then N has normal p-complement.

Proof (a) We argue by induction on |G| and take M to be a minimal normal subgroup
of G contained in N . Let us denote with bars the factor group G/M . Since xN ⊆
K ∪K−1, the inductive hypothesis implies that N is soluble, so we only have to prove
the solubility of M . Since xM ⊆ K ∪ K−1 we can assume then that N is minimal
normal in G. We will assume henceforth that N is non-soluble, that is, is the direct
product of isomorphic non-abelian simple groups, say N ∼= S × . . . × S, and seek a
contradiction.

First, note that xN ⊆ K ∪ K−1 includes the possibility xN ⊆ K , but this case is
solved in [10, Theorem B(a)]. Hence, it is clear that we can assume K �= K−1 and
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354 A. Beltrán

that K N = K ∪ K−1. So, for every conjugacy class C of G contained in N we have
KC ⊆ K ∪ K−1. If KC = K or KC = K−1 for some class C �= 1, then 〈C〉 = N
would be soluble by Lemma 2.1, against our assumption. Thus we assume throughout
the proof that every class C �= 1 contained in N satisfies KC = K ∪ K−1.

Suppose that χ ∈ Irr(G) extends some θ ∈ Irr(N ) with θ �= 1N , and we calculate
the possible values that χ may take on x . By Lemma 2.2, we know that χ(x) is
purely imaginary (possibly zero), and write χ(x) = αi , with α ∈ R. Furthermore, by
applying [13, Lemma 8.14(c)] we have

|N | =
∑

y∈xN
χ(y)χ(y) =

∑

y∈xN⊆K∪K−1

|αi |2 = |N |α2.

This forces α = ±1, so χ(x) = ±i . The rest of the proof consists of proving that
this property leads to a contradiction according to the distinct cases for S given by the
Classification of the Finite Simple Groups.

Assume first that S is isomorphic to an alternating or a sporadic simple group. We
postpone the case Alt(5) ∼= PSL(2, 5), which will be treated as a group of Lie type.
Then, by Theorems 2.3 and 2.4, there exist two (nonlinear) irreducible characters of
S, say θ1 and θ2, having coprime degrees that extend to Aut(S). By Theorem 2.5, the
characters θ j × . . . × θ j ∈ Irr(N ) for j = 1, 2 also extend to G. Let χ1, χ2 ∈ Irr(G)

denote two respective extensions of θ j × . . . × θ j for j = 1, 2. Since we have proved
that χ j (x) = ±i for j = 1, 2, if we fix a non-trivial class C of G contained in N and
take c ∈ C , by Lemma 3.1, there exist a, b ≥ 0 with a + b = |C | such that

|C |(±i)χ j (c) = χ j (1)(a(±i) + b(∓i)).

for j = 1, 2. This yields

χ j (c) = ± (a − b)χ j (1)

|C | for j = 1, 2.

Now, since χ1(1) and χ2(1) are coprime, there exist m, n ∈ Z such that mχ1(1) +
nχ2(1) = 1. It follows that

mχ1(c) + nχ2(c) = m
(a − b)χ1(1)

|C | + n
(a − b)χ2(1)

|C | = a − b

|C |
is algebraic integer and rational, so it must be integer. However, as we are assuming
K �= K−1, then 0 < a, b < |C |, and this leads to a contradiction unless a = b. But if
a = b for every classC �= 1 ofG contained in N , then (θ j × . . .×θ j )(n) = χ j (n) = 0
for j = 1, 2 and for every 1 �= n ∈ N , which is not possible. This contradictionfinishes
this case.

Assume now that S is a simple group of Lie type and let St denote the Steinberg
character of S. As St extends to Aut(S), by Theorem 2.5 we know that θ = St ×
. . . × St ∈ Irr(N ) also extends to G. We take then χ ∈ Irr(G) to be an extension of θ .
Suppose first that the defining characteristic of S is 2. It is well-known that St vanishes
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on 2-singular elements of S, and this means that χ(c) = 0 for every c ∈ N of order
divisible by 2. Say, for instance, c ∈ C for some conjugacy class C of G. Moreover,
we have proved above that χ(x) = ±i . Then, since K �= K−1, by applying Lemma
3.1, there exist integers a, b > 0 with a + b = |C | such that

0 = χ(1)(a(±i) + b(∓(i)).

This forces a = b = |C |/2, so every conjugacy class of G of any element of even
order of N must have even cardinality. This is certainly not true for if we choose
P a Sylow 2-subgroup of G, then N ∩ P � P , and also Z(P) ∩ N �= 1. Then, if
1 �= c ∈ Z(P) ∩ N , we certainly have that |cG | is odd.

Assume finally that the defining characteristic of S is p > 2. Since θ isG-invariant,
rational and has degree a power of p, and hence is an odd number (St is G-invariant
and St(1) = |S|p), we can apply Theorem 2.6 to affirm that θ has a real extension to
G. This contradicts the fact that every extension to G of a non-principal irreducible
character of N must take values ±i on x . This contradiction completes the proof of
(a).

(b) To prove that K is a real-imaginary class we will make use of a property
[1, Theorem A] that characterizes real-imaginary classes within the complex group
algebra C[G]. We employ the following notation in C[G]. Let C1, . . . ,Ct be the
conjugacy classes of G and let ̂S = ∑t

i=1 ni ̂Ci ∈ C[G] with ni ∈ N for 1 ≤
i ≤ t . Then we write (̂S, ̂Ci ) = ni . We just recall an elementary property of these
multiplicities (for instance, as a result of Theorem 4.6 of [12]):

(̂CîC j , ̂Ck) = |C j |
|Ck | (

̂Ci
̂C−1
k ,

̂C−1
j )

for every 1 ≤ i, j, k ≤ t .
We will assume that K is non-real, otherwise the result is trivial. Now, the hypothe-

ses imply that K N ⊆ K ∪ K−1, so if we take any conjugacy class C of G contained
in N we can write

̂K̂C = âK + b̂K−1 and ̂K̂C−1 = ĉK + d̂K−1

for some integers a, b, c, d ≥ 0. Then ̂K−1̂C = ĉK−1 + d ̂K and

̂K−1(̂K̂C) = âK−1 ̂K + b̂K−2

̂K (̂K−1̂C) = ĉK̂K−1 + d ̂K 2.

Since K is assumed to be non-real, then (̂K−2,̂1) = (̂K 2,̂1) = 0, and then, by
applying the above property on multiplicities

(̂K−1(̂K̂C),̂1) = (âK−1 ̂K + b̂K−2,̂1) = a|K |(̂K , ̂K ) = a|K |
(̂K (̂K−1̂C),̂1) = (ĉK̂K−1 + d ̂K 2,̂1) = c|K |(̂K , ̂K ) = c|K |.
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As class sums belong to Z(C[G]) then ̂K−1(̂K̂C) = ̂K (̂K−1̂C), and hence a = c. It
follows that b̂K−2 = d ̂K 2, and by taking cardinalities we get b = d. Consequently,
̂K−2 = ̂K 2, and this is exactly the aforementioned property that characterizes real-
imaginary classes in C[G].

(c) The proof is practically identical to the proof of [10, Theorem B(b)], but we
include a sketch for the reader’s convenience. Let H be a p-complement of N . By the
Frattini argument we have G = NG(H)N , so we can write x = mn withm ∈ NG(H)

and n ∈ N . Hence xn−1 ∈ K ∪ K−1 normalizes H . Since xn−1 = xg or (x−1)g

for some g ∈ G, it follows that x normalizes some G-conjugate of H , which by the
Frattini argument, is some N -conjugate of H . We deduce that every element in xN
fixes at least one p-complement of N . The same argument that appears in the last
paragraph of the proof of [10, Theorem 3.2(c)], based on an extension of Burnside’s
Lemma, works to show that N has just one p-complement, and thus, it is normal in
N . 
�

Proof of Corollary B. Note that by hypothesis xN = K ∪K−1 = (xN )−1 = x−1N ,
and then x2N = N . Since x2 ∈ N , then the 2′-part of x belongs to N . Therefore,
as all elements of xN have the same order, it follows that every element of xN is
a 2-element, in particular, x is a 2-element too. By Theorem A(c), N has a normal
2-complement. Since

〈K 〉 = 〈xN 〉 = 〈x, N 〉 = 〈x〉N ,

then 〈K 〉/N is a 2-group (cyclic of order 2, indeed), and consequently, 〈K 〉 has a
normal 2-complement too.

Finally, suppose that x has order 2, so every element of xN has order 2. Then

〈K 〉 = N ∪ Nx = N ∪ K ∪ K−1,

so every element of 〈K 〉 − N has order 2 as well. It is clear that the 2-normal
complement of 〈K 〉 lies in the subgroup generated by all elements of 〈K 〉 of
order distinct from 2, and this subgroup is nilpotent by a renowned theorem of
Hughes, Thompson and Kegel [11, V.8]). This proves the last assertion of the
corollary. 
�

Corollary 3.4 Suppose that G is a finite group, N is a normal subgroup of G such that
every non-trivial coset of N is the union of a conjugacy class of G and its inverse.
Then G has normal 2-complement and G/N is an elementary abelian 2-group. In
particular, G is soluble.

Proof For every x ∈ G−N , we apply Corollary B to conclude that 〈xG〉 has a normal
2-complement. Since G = ∏

x∈G−N 〈xG〉, we obtain the first assertion. The fact that
G/N is an elementary abelian 2-group follows from the fact that x2 ∈ N for every
x ∈ G − N . 
�
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4 Some examples and questions

1)Aswe pointed out in the Introduction, the fact that xN ⊆ K∪K−1, with the notation
in Theorem A, does not imply that 〈K 〉 is soluble. The double cover G = 2.M12 of
the sporadic simple group M12 has four non-real conjugacy classes of elements of
order 8, say K = xG , K−1, L = yG and L−1, which satisfy x Z ⊆ K ∪ K−1 and
yZ ⊆ L ∪ L−1, were Z = Z(G). Also, K Z = K ∪ K−1 and LZ = L ∪ L−1. These
equalities can be easily checked by using the Atlas [7] and Lemma 3.1. Of course,
〈K 〉/Z is non-abelian simple and 〈K 〉 = G is non-soluble. Likewise, the fact that
xN ⊆ K does not either lead to the solubillity of 〈K 〉. The easiest example is the
unique class K of elements of order 4 in SL(2,5), which satisfies K Z = K , where
Z = Z(SL(2, 5)).

2) An easy example of a group satisfying the hypotheses of Theorem A, with N
being non-central is G = 〈a, b | a8 = b2 = 1, ab = a3〉, the semidihedral group of
order 16. If we take K = aG and N = 〈a2〉, then we have aN ⊆ K ∪ K−1.

3) This example illustrates Corollary B and Corollary 3.4. Let G be the semidirect
product of C2

3 and C4 acting faithfully,

G = 〈a, b, x | a3 = b3 = x4 = 1, ab = ba, xax−1 = a−1b, xbx−1 = ab〉,

and take N = 〈a, b, x2〉 ∼= C3 � S3, K = xG and C = (x2)G , with |K | = |C | = 9.
Then KC = K−1 and xN = K ∪ K−1. Notice that the 2-complement of N , which is
also of 〈K 〉 = G, is nilpotent. Bearing in mind the results on Camina pairs quoted in
the Introduction as well as Corollary 3.4, we are led to the following question.

Question. Is it possible to determine solubility conditions or classify those finite
groups inwhich every coset of a given normal subgroup lies in the union of a conjugacy
class and its inverse class?

4) The hypotheses of Theorem A cannot be extended by increasing from 2 to 3 the
number of conjugacy classes in which a given coset of N is contained, because in that
case the solubility of N is not guaranteed. For instance, the Mathieu group M10 has
three conjugacy classes out of the normal subgroup N isomorphic to Alt(6): a real
class of elements order 4, say L , and two (non-real) classes K and K−1 of elements of
order 8. It is not difficult to check that every conjugacy class C �= 1 of M10 contained
in N satisfies KC = K−1C = LC = K ∪ K−1 ∪ L, and K N = K ∪ K−1 ∪ L ,
whereas N is obviously non-soluble.
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