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Abstract
We study branch structures in Grigorchuk–Gupta–Sidki groups (GGS-groups) over
primary trees, that is, regular rooted trees of degree pn for a prime p. Apart from a
small set of exceptions for p = 2, we prove that all these groups are weakly regular
branch over G ′′. Furthermore, in most cases they are actually regular branch over
γ3(G). This is a significant extension of previously known results regarding periodic
GGS-groups over primary trees and general GGS-groups in the case n = 1. We also
show that, as in the case n = 1, a GGS-group generated by a constant vector is not
branch.
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1 Introduction

Groups of automorphisms of regular rooted trees are a rich source of examples with
very interesting properties in group theory. The first Grigorchuk group, defined by
Grigorchuk in 1980 [5], is one of the first instances of an infinite finitely generated
periodic group, thus providing a negative solution to the General Burnside Problem.
It is also the first example of a group with intermediate growth [6], hence solving
the Milnor Problem [2]. Many other groups of automorphisms of rooted trees have
since been defined and studied. Prominent examples are the Gupta–Sidki p-groups
[7], for p an odd prime, and the second Grigorchuk group [5], which belong to the
family of the so-calledGrigorchuk-Gupta-Sidki groups (GGS-groups, for short). This
paper is devoted to the study of branch structures in GGS-groups over primary trees,
extending results of Vovkivsky [10], Fernández-Alcober and Zugadi-Reizabal [4], and
Fernández-Alcober, Garrido, and Uria-Albizuri [3]. Before stating our main results
we quickly introduce all relevant concepts.

Let m ≥ 2 be an integer and let X = {x1, . . . , xm} be a set with m elements. We
write X∗ for the free monoid generated by X . The descendants of a word u ∈ X∗ are
the words v = uz with z ∈ X∗, and v is an immediate descendant of u if z ∈ X . The
m-adic tree T is the rooted tree whose vertices are the words in X∗ (the root being the
empty word ∅), and where two vertices are connected by an edge if any of the two is
an immediate descendant of the other. The �-th level L� of T consists of all words of
length � in X∗. If m is a power of a prime p, we say that T is a primary tree.

The automorphisms of T as a graph form a group Aut T under composition. Given
f ∈ Aut T and a vertex u of T , we can write f (uz) = f (u) fu(z) for all z ∈ X∗,
where fu ∈ Aut T is called the section of f at u. For every � ≥ 1, we let st(�) denote
the pointwise stabilizer of L� in Aut T . Then we have an isomorphism

ψ� : st(�) −→ Aut T × m�

· · · × Aut T
f �−→ ( fu)u∈L�

,

where the entries of the tuple ( fu)u∈L�
are ordered according to the lexicographic

order in L� derived from the ordering x1 < · · · < xm of X . For simplicity, we write ψ

for ψ1. An automorphism f of T is rooted if it permutes rigidly the subtrees hanging
from the vertices in the first level of T . In other words, if x ∈ X and z ∈ X∗ then
f (xz) = ρ(x)z for some ρ ∈ Sym(X). We then say that f is the rooted automorphism
corresponding to the permutation ρ.

Now let G be a subgroup of Aut T . We say that G is spherically transitive if it acts
transitively on every level L�, and that G is self-similar if gu ∈ G for every g ∈ G
and u ∈ X∗. The �th level stabilizer of G is stG(�) := st(�) ∩ G. For a vertex u of
T , we write stG(u) for the stabilizer of u in G, and rstG(u) for the rigid stabilizer of
u in G, that is, the subgroup consisting of the automorphisms in G that stabilize all
vertices that are not descendants of u. Note that rstG(u) ≤ stG(u). Then the �th rigid
stabilizer of G is
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GGS-groups over primary trees: branch... 783

rstG(�) := 〈rstG(u)|u ∈ L�〉 =
∏

u∈L�

rstG(u).

If G is spherically transitive, we say that G is weakly branch if rstG(�) �= 1 for all
�, and that G is branch if |G : rstG(�)| is finite for all �. On the other hand, if G
is spherically transitive and self-similar, and for some 1 �= K ≤ stG(1) we have

K × m· · ·× K ⊆ ψ(K ), we say that G is weakly regular branch over K . If furthermore
|G : K | is finite, we say that G is regular branch over K . It is easy to see that (weakly)
regular branch groups are also (weakly) branch.

We can now introduce GGS-groups. Given a non-zero tuple e = (e1, . . . , em−1) in
(Z /m Z)m−1, theGGS-group G corresponding to the defining vector e is the subgroup
G = 〈a, b〉 of Aut T , where a denotes the rooted automorphism corresponding to
the permutation σ = (x1, x2, . . . , xm) and b ∈ st(1) is defined recursively by the
condition

ψ(b) = (ae1, . . . , aem−1 , b).

Note that a is of orderm and that b is of orderm/d, where d = gcd(e1, . . . , em−1,m).
It is obvious that e and λe define the same GGS-group if λ is invertible modulo m.

Throughout the paper, for a given prime p and n ∈ N, we letG denote a GGS-group
defined over the pn-adic tree, having canonical generators a and b, and defining vector
e = (e1, . . . , epn−1). Our aim is to study whether G is a (regular) weakly branch or
branch group. This problem was first addressed by Vovkivsky, who proved that the
following three conditions are equivalent when G is periodic (see [10, Theorem 3]):

(a) There exists i ∈ {1, . . . , pn − 1} such that ei �≡ 0 mod p.
(b) The group G is regular branch over G ′′.
(c) The group G is branch.

He also showed that G is periodic if and only if

Si := epi + e2pi + · · · + epn−pi ≡ 0 (mod pi+1), for every i = 0, . . . , n − 1.

(1.1)

Thus the defining vectors for periodic GGS-groups can be obtained by arbitrarily
choosing all entries e j where j is not a power of p, and then using the conditions in
(1.1) to determine epi modulo pi+1 for every i = 0, . . . , n−1 (actually in reverse order
of these values). It follows that the proportion of vectors defining periodicGGS-groups
is roughly

1

p
· 1

p2
· · · 1

pn
= 1

pn(n+1)/2
,

and as a consequence, Vovkivsky’s criterion does not apply to a majority of GGS-
groups.On the other hand, in the special case of the p-adic tree, Fernández-Alcober and
Zugadi-Reizabal [4] proved that all GGS-groups with non-constant defining vector are
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784 E. Di Domenico et al.

regular branchover eitherG ′ orγ3(G). Later on, Fernández-Alcober,Garrido andUria-
Albizuri [3] showed that the groupwith constant defining vector is not branch, although
it is weakly regular branch. This completes the analysis of the branch properties of
GGS-groups over the p-adic tree. The goal of the present paper is to extendVovkivsky’s
results and the results regarding the p-adic tree to non-periodic groups and to general
primary trees, respectively.

Before stating our main theorem we need to introduce some notation. Let

F(pn) = (Z /pn Z)p
n−1 \ (pZ /pn Z)p

n−1

be the set of defining vectors that are not trivial modulo p. Observe that Vovkivsky’s
criterion says that a periodic GGS-group over a primary tree is branch if and only if
e ∈ F(pn). We will prove (see Lemma 2.2) that a GGS-group with e /∈ F(pn) is
not spherically transitive, so it cannot be (weakly) branch. Hence our study reduces to
GGS-groups with defining vector in F(pn). Given e ∈ F(pn), let

Y (e) := {1 ≤ i ≤ pn − 1 | ei �≡ 0 mod p} (1.2)

be the set of indices having invertible entries in e, and let

t(e) := max{s ∈ Z | s ≥ 0 and ps | i for all i ∈ Y (e)}. (1.3)

If there is no confusion about the vector e then we simply write Y and t for Y (e) and
t(e), respectively. Note that t ∈ {0, 1, . . . , n − 1} and Y ⊆ {pt , 2pt , . . . , pn − pt }.
We say that Y is maximal if Y = {pt , 2pt , . . . , pn − pt }.

Now we define two special subsets ofF(pn). On the one hand, let E(pn) be the set
of all tuples e that are constant modulo p on the set Y , and such that Y is maximal. This
is equivalent to the condition eipt ≡ e jpt mod p for 1 ≤ i, j ≤ pn−t −1. On the other
hand, we define E ′(2n) = {e ∈ F(2n) | t = n − 1}; in other words, E ′(2n) consists of
the vectors whose only odd entry is e2n−1 . Obviously, we have E ′(2n) ⊆ E(2n). Then
our first main theorem reads as follows.

Theorem 1 Let G be a GGS-group over the pn-adic tree with defining vector e ∈
F(pn). The following hold:

(i) If e /∈ E ′(2n) then G is weakly regular branch over G ′′.
(ii) If e /∈ E(pn), then G is regular branch over γ3(G).

Observe that (i) of Theorem 1 extends Vovkivsky’s result to practically all GGS-
groups; in fact, to all GGS-groups if p is odd. On the other hand, part (ii) applies to
most defining vectors in F(pn), since

|F(pn)| = (p pn−1 − 1)p(n−1)(pn−1)

and

|E(pn)| = n(p − 1)p(n−1)(pn−1).
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It also applies to periodic GGS-groups (see Corollary 2.12), and consequently it
improves Vovkivsky’s result by showing that periodic GGS-groups are regular branch
over a larger subgroup than G ′′. Finally, we want to remark that in some of the cases
in (ii) we actually get the better result that G is regular branch over G ′.

The question of which GGS-groups with e ∈ E ′(2n) are weakly branch is still
open. Observe that for n = 1 we simply have E ′(2) = F(2) = {(e1) | e1is odd}.
These vectors define just one GGS-group, which is isomorphic to the infinite dihedral
group and is not weakly branch.

On the other hand, it is far from clear when a GGS-group with defining vector in
E(pn) is branch or simply weakly branch. For some special defining vectors, we can
show that the corresponding groups are also regular branch over γ3(G) (see Theo-
rem 2.13). However, if the defining vector is constant, we have the following result.

Theorem 2 Let G be a GGS-group over the pn-adic tree with constant defining vector.
Then G is not a branch group.

Finally, observe that, in the case of the p-adic tree, F(p) consists of all non-zero
vectors and E(p) reduces to the constant non-zero vectors. Consequently, Theorems 1
and 2 generalize the above-mentioned results of Fernández-Alcober and Zugadi-
Reizabal [4], and of Fernández-Alcober, Garrido, and Uria-Albizuri [3], respectively.
Notation If σ and τ are two permutations of a set, we write their composition (where
we apply first σ and then τ ) as στ , by juxtaposition, rather than τ ◦ σ . This applies
in particular to the composition in Aut T . On the other hand, when we write dots in a
tuple in between two entries equal to 1, like in (1, . . . , 1, g), that means that all entries
represented by the dots are also equal to 1. However, if the dots are not between two
entries equal to 1, like in (g, . . . , 1), then they represent unspecified elements.

2 Regular branch GGS-groups

Recall that G always denotes a GGS-group over the pn-adic tree, having canonical
generators a and b, and defining vector e = (e1, . . . , epn−1). Following the notation in
[10],we let pR0 be the highest power of p dividing all entries of e. Hence o(b) = pn−R0

and the set F(pn) consists of all defining vectors for which R0 = 0. Also we set
bi := ba

i
for every integer i . Then

ψ(b0) = (ae1, . . . , aepn−1 , b),

ψ(b1) = (b, ae1 , . . . , aepn−1),

...

ψ(bpn−1) = (ae2 , . . . , aepn−1 , b, ae1),

(2.1)

and bi = b j if i ≡ j (mod pn). Since G/〈b〉G is generated by the image of a, and

a pi ∈ stG(1) if and only if i ≥ n, it readily follows that

stG(1) = 〈b〉G = 〈b0, b1, . . . , bpn−1〉 (2.2)
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786 E. Di Domenico et al.

has index pn in G. Similarly, we have stG(1) = stG(xi ) for every xi ∈ X .
Our first theorem gives the structure of the abelianization of G. This can be accom-

plished by using a result of Rozhkov [8, Proposition 1], and the proof follows exactly
the same strategy as in Propositions 4.2 and 4.3 of [1], where Alexoudas, Klopsch,
and Thillaisundaram determine the abelianization of multi-edge spinal groups. For
this reason, we omit the details of the proof of the theorem, and refer the reader to
the latter paper. Strictly speaking, Rozhkov’s result applies to the so-called Aleshin
type groups (AT-groups), which are spherically transitive by definition. GGS-groups
over a primary tree are not necessarily spherically transitive (see Lemma 2.2 below);
however, a careful analysis of the proof of Proposition 1 of [8] shows that this transi-
tivity is not actually needed, and the result also applies in our setting. We thus have
the following theorem.

Theorem 2.1 Let G be a GGS-group over the pn-adic tree. Then G/G ′ = 〈aG ′〉 ×
〈bG ′〉 ∼= Cpn × Cpn−R0 .

Note also that all terms of the lower central series have finite index in G, since G
can be generated by two elements of order p.

It readily follows from the definition that all GGS-groups are self-similar. Con-
sequently we can consider the group homomorphism ψu : stG(u) → G given by
g �→ gu . Recall that a subgroup G of Aut T is said to be fractal if it is self-similar
and ψu is onto. We have the following result.

Lemma 2.2 Let G be a GGS-group over the pn-adic tree with defining vector e. Then
the following conditions are equivalent:

(i) G is spherically transitive.
(ii) G is fractal.
(iii) e ∈ F(pn).

Proof We prove that e ∈ F(pn) implies that G is spherically transitive and fractal,
and that e /∈ F(pn) implies that G is neither spherically transitive nor fractal.

We first assume that e ∈ F(pn). By [9, Lemma 2.7] in order to prove that G
is spherically transitive and fractal, it suffices to see that G acts transitively on the
vertices of the first level of T and thatψxi (stG(xi )) = G for some xi ∈ X . The former
is obvious, since a ∈ G, and for the latter observe that since e ∈ F(pn)we have p � ei
for some i and then ψxp (b−i ) = aei and ψxp (b) = b generate G.

Now let e /∈ F(pn). Since p divides all components of e, for every xi ∈ X and
g ∈ stG(xi ) the section gxi is a word in {a p, b}. Thus G is not fractal. Now assume
for a contradiction that G is spherically transitive. Then there exists g ∈ G such that
g(x1x1) = x1x2. However, by the above we have g(x1x1) = g(x1)gx1(x1) = x1x j for
some j ≡ 1 (mod p), which is a contradiction. ��

As a consequence, since (weakly) branch groups are spherically transitive by def-
inition, in the remainder we will always assume that e ∈ F(pn), unless otherwise
stated. Then R0 = 0 and both a and b have order pn .

The next lemma is one of the main tools for finding a branch structure in a GGS-
group and it can be proved as in [4, Proposition 2.18].
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Lemma 2.3 Let G be a spherically transitive fractal subgroup of Aut T , where T is
a regular rooted tree, and let L and N be two normal subgroups of G. Suppose that
L = 〈S〉G and that (1, . . . , 1, s, 1, . . . , 1) ∈ ψ(N ) for every s ∈ S, where s appears
always at the same position in the tuple. Then L × · · · × L ⊆ ψ(N ).

The next lemma generalizes [4, Theorem 2.16]. It shows that if a component ek of
e is invertible modulo p then there exists another GGS-group that is conjugate to G
in Aut T , and whose defining vector has the ps-th component equal to 1, where ps is
the highest power of p dividing k.

Lemma 2.4 Let G be a GGS-group over the pn-adic tree with defining vector e ∈
F(pn), and assume that ek �≡ 0 mod p. If ps is the highest power of p dividing k then
there exist α ∈ Sym(pn − 1) and f ∈ Aut T such that:

(i) α(ps) = k.
(ii) α(pn − i) = pn − α(i) for all i = 1, . . . , pn − 1.
(iii) G f is the GGS-group with defining vector e′ = e−1

k (eα(1), . . . , eα(pn−1)). In
particular, e′

ps = 1.

Proof By hypothesis we can write k = hps where h �≡ 0 mod p. If r is a solution
to the congruence hr ≡ 1 mod pn−s , then the permutation δ ∈ Sym(pn) given by
δ(i) ≡ ri mod pn for every i satisfies that σ δ = σ r and δ(k) = ps .

Let us define f ∈ Aut T recursively by f = dh, where d is the rooted automor-
phism corresponding to δ, and h ∈ st(1) is defined via ψ(h) = ( f , . . . , f ). Note that
h commutes with any rooted automorphism, since its components under ψ are all the
same. Then

a f = (ad)h = (ar )h = ar , (2.3)

since ad is the rooted automorphism corresponding to the permutation σ δ = σ r .
Now let α = δ−1 and observe that α satisfies (i) and (ii). Also

ψ(b f ) = ψ(bd)ψ(h) = (aeα(1) , . . . , aeα(pn−1) , b)ψ(h) = (areα(1) , . . . , areα(pn−1) , b f ),

by using (2.3). Since r �≡ 0 (mod p), it follows that G f = 〈ar , b f 〉 = 〈a, b f 〉 is the
GGS-group with defining vector (reα(1), . . . , reα(pn−1)). If we multiply this vector by
the inverse of rek modulo pn then we see that G f is also the GGS-group with defining
vector e′, which proves (iii). ��

It is easy to see that, for any subgroup G of Aut T and any f ∈ Aut(T ), we have
rstG(u) f = rstG f ( f (u)) for every vertex u of T . Hence rstG(�) f = rstG f (�) for
every � ∈ N. Thus, by the previous lemma, in order to study branch properties in a
GGS-group, we may assume without loss of generality that ept = 1, where t = t(e)
is as in (1.3). In the remainder of this section, we fix the notation k := pt .

Definition 2.5 A GGS-group is invertible-symmetric, IS for short, if the set Y is sym-
metric, in the sense that i belongs to Y if and only if pn − i does. In other words, a
component ei of e is invertible if and only if epn−i is.
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788 E. Di Domenico et al.

We start our analysis of branch structures in GGS-groups by dealing with the case
when G is not IS. We assume that ek = 1, and then q := epn−k ≡ 0 mod p by (ii) of
Lemma 2.4. We define a sequence {gi }i≥0 of automorphisms of T by means of

ψ(gi ) = (1, . . . , 1, [a, b], 1, . . . , 1) · (1, . . . , 1, [bqi , aqi+1 ], 1, . . . , 1), (2.4)

where the non-trivial components appear in the k-th position and in the (pn − 2ik)-th
position, respectively, the latter being understood modulo pn .

Lemma 2.6 The sequence {gi }i≥0 defined in (2.4) is contained in stG(1)′.

Proof Since ψ([b, bk]) = (1, . . . , 1, [a, b], 1, . . . , 1, [b, aq ]), where the non-trivial
components are at positions k at pn , we have g0 = [b, bk]. Similarly,

ψ([bqi , bqi−1

k ]a−(2i−1)k
) = (1, . . . , 1, [aqi , bqi−1 ], 1, . . . , 1) · (1, . . . , 1, [bqi , aqi ], 1, . . . , 1),

(2.5)

where the non-trivial components appear at positions pn−(2i−2)k and pn−(2i−1)k,
respectively, and

ψ([bqi , bqik ]a−2ik
) = (1, . . . , 1, [aqi , bqi ], 1, . . . , 1) · (1, . . . , 1, [bqi , aqi+1 ], 1, . . . , 1),

(2.6)

with non-trivial components at positions pn − (2i − 1)k and pn − 2ik. By combining
(2.4), (2.5), and (2.6), one can readily check that

gi = gi−1[bqi , bq
i−1

k ]a−(2i−1)k [bqi , bqik ]a−2ik

for all i ≥ 1. Thus gi ∈ stG(1)′ by induction on i . ��
The following result is a consequence of the previous lemma.

Theorem 2.7 If G is not IS then ψ(stG(1)′) = G ′ × · · · × G ′. In particular, G is
regular branch over G ′.

Proof The inclusion ⊆ is obvious since G is self-similar, so we only need to prove
⊇. Let gi be defined as in (2.4). Since o(b) = pn and q is divisible by p, we have
[bqn , aqn+1 ] = 1. Thus ψ(gn) has all components equal to 1 with the exception of the
component at position k, which is equal to [a, b]. Since gn ∈ stG(1)′ by Lemma 2.6
and G ′ = 〈[a, b]〉G , the desired inclusion follows from Lemma 2.3. ��

After having proved Theorem 2.7, we next assume that G is IS. We continue our
analysis of branch structures by considering the case when Y is not maximal, that is,
when Y � {pt , 2pt , . . . , pn − pt }.

Let h be the smallest integer in {1, . . . , pn−t − 1} such that hk /∈ Y . Note that
h ≥ 2. Then we set q := epn−hk , y := epn−(h−1)k , and z := epn−k ; in other words,
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q, y and z are the symmetrical components of ehk , e(h−1)k and ek . Thus p divides
q, and y and z are invertible modulo p. In this case we define a sequence {gi }i≥0 of
automorphisms of T as follows:

ψ(gi ) = (1, . . . , 1, [a, b, a], 1, . . . , 1) · (1, . . . , 1, [bzi , azi+1
,

aq
2i+1y−(2i+1) ], 1, . . . , 1), (2.7)

where the non-trivial components are the k-th and the (pn − 2ik)-th.

Lemma 2.8 The sequence {gi }i≥0 defined in (2.7) is contained in γ3(stG(1)).

Proof It is easy to see that g0 = [b, bk, by
−1

hk ]. We claim that gi = gi−1c
−1
1 c2, where

c1 = [bzi−1

k , bz
i
, bq

2i−1y−2i

hk ]a−(2i−1)k

and

c2 = [bzi , bzik , bq
2i y−(2i+1)

hk ]a−2ik
.

Then gi belongs to γ3(stG(1)) by induction on i .
The claim follows immediately from (2.7) by taking into account that

ψ(c1) = (1, . . . , 1, [bzi−1
, az

i
, aq

2i−1y−(2i−1)], 1, . . . , 1)
·(1, . . . , 1, [azi , bzi , aq2i y−2i ], 1, . . . , 1),

where the non-trivial components appear in positions pn−(2i−2)k and pn−(2i−1)k,
and that

ψ(c2) = (1, . . . , 1, [azi , bzi , aq2i y−2i ], 1, . . . , 1)
·(1, . . . , 1, [bzi , azi+1

, aq
2i+1y−(2i+1)], 1, . . . , 1),

with non-trivial components pn − (2i − 1)k and pn − 2ik. ��
Theorem 2.9 If G is IS and Y is not maximal, then ψ(γ3(stG(1))) = γ3(G) × · · · ×
γ3(G). In particular, G is regular branch over γ3(G).

Proof Since p divides q and a has order pn , for large enough i we have

ψ(gi ) = (1, . . . , 1, [a, b, a], 1, . . . , 1),

where [a, b, a] appears in the k-th component. Also gi ∈ γ3(stG(1))) by Lemma 2.8.
Moreover, since z is invertible modulo p,

ψ(bz
−1

k b−1
−k ) = (. . . , bz

−1
a−e2k , . . . , 1)
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where the first displayed component is the k-th one. Hence

ψ([b, bk, bz−1

k b−1
−k ]) = (1, . . . , 1, [a, b, bz

−1
a−e2k ], 1, . . . , 1)

where the non-trivial component appears in position k. SinceG = 〈a, bz
−1
a−e2k 〉 then

γ3(G) = 〈[a, b, a], [a, b, bz
−1
a−e2k ]〉G,

and the result follows from Lemma 2.3. ��
We now consider the case when Y is maximal. In this case G is trivially IS.

Theorem 2.10 Suppose that Y is maximal. If there exists m ∈ Y \ {k, pn − k} such
that

δm := det

(
em−k em
em em+k

)
�≡ 0 mod p

then ψ(γ3(stG(1))) = γ3(G) × · · · × γ3(G). In particular, G is regular branch over
γ3(G).

Proof In the following formulas the displayed components are the k-th and the last
one. We observe that

ψ(bem−k−m b−em−m+k) = (. . . , aδm , . . . , 1).

Since by hypothesis δm is invertible modulo pn , there exists g ∈ stG(1) such that
ψ(g) = (. . . , a, . . . , 1). On the other hand,

ψ(bkb
−epn−k
−k ) = (. . . , ba−e2kepn−k , . . . , 1)

and so by multiplying bkb
−epn−k
−k by a suitable power of g we can find h ∈ stG(1) such

that ψ(h) = (. . . , b, . . . , 1). Consequently

ψ([b, bk, g]) = (1, . . . , 1, [a, b, a], 1, . . . , 1),
ψ([b, bk, h]) = (1, . . . , 1, [a, b, b], 1, . . . , 1),

and ψ(γ3(stG(1))) = γ3(G) × · · · × γ3(G) by Lemma 2.3. ��
Theorem 2.11 Suppose that Y is maximal and that for all m ∈ Y \ {k, pn − k} we
have

δm := det

(
em−k em
em em+k

)
≡ 0 mod p. (2.8)

If e /∈ E(pn) then ψ(γ3(stG(1))) = γ3(G) × · · · × γ3(G). In particular, G is regular
branch over γ3(G).
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Proof We first deal with the case where the condition on δm in the statement holds
vacuously. This happens if Y ⊆ {k, pn − k}, or equivalently, if |Y | ≤ 2. It follows
that k = pn−1 and p = 2 or p = 3. Since e /∈ E(pn), we necessarily have p = 3
and x := e3n−k ≡ 2 (mod 3). Let y be the inverse of x modulo 3n , so that y ≡ 2
(mod 3). Then we have

ψ([b2k, b, bb−x
k ]) = (1, . . . , 1, [a, b, ba−x2 ])

and

ψ([byk , b, by2kb−1]) = (1, . . . , 1, [a, b, ayb−1]).

Now observe that 〈ba−x2 , ayb−1〉 = 〈ba−x2 , ay−x2〉 coincides withG, since y−x2 ≡
1 (mod 3). This proves that ψ(γ3(stG(1))) = γ3(G) × · · · × γ3(G) in this case.

Next we assume that |Y | ≥ 3. From (2.8) we get

eik ≡ ei−1
2k mod p (2.9)

for all i = 2, . . . , pn−t − 1. Since e is not constant modulo p for the indices in Y , it
follows that e2k �≡ 1 mod p.

We observe that

ψ([b, bk, bkb−epn−k
−k ]) = (1, . . . , 1, [a, b, ba−e2k epn−k ], 1, . . . , 1), (2.10)

where the displayed component is the k-th one.

Now set g := bepn−3k b
−epn−k
2k . Note that the condition |Y | ≥ 3 implies that pn > 3k,

and so epn−3k is a well defined entry of e. Then

ψ(g) = (. . . , aepn−3k−e2pn−k , . . . , 1, . . .),

where the displayed components are the k-th one and the (pn − k)-th one. If y is the
inverse of e2k modulo pn , we get

ψ([by−k, bk, g]) = (1, . . . , 1, [a, b, aepn−3k−e2pn−k ], 1, . . . , 1), (2.11)

where the only non-trivial component is the k-th one.
Let s := pn−t . By (2.9) and Fermat’s Little Theorem, we have

epn−3k − e2pn−k = e(s−3)k − e2(s−1)k ≡ es−4
2k − e2(s−2)

2k ≡ e−3
2k (1 − e2k) �≡ 0 mod p,

since e2k �≡ 1 (mod p). Hence {aepn−3k−e2pn−k , ba−e2kepn−k } is a generating set of G,
and the result follows from (2.10) and (2.11). ��

After these preliminary results we can now prove Theorem 1.
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Proof of Theorem 1 We first prove (ii). So we assume that e /∈ E(pn). By the previous
theorems in this section, G is regular branch over G ′ or γ3(G). If G is regular branch
over G ′, we know that ψ(stG(1)′) = G ′ × · · · × G ′. Since the stabilizer of every
vertex in the first level coincides with stG(1) and G is fractal by Lemma 2.2, it follows
that ψ(stG(1)) is a subdirect product of G × · · · × G. It immediately follows that
ψ(γ3(stG(1))) = γ3(G)×· · ·×γ3(G), and G is also regular branch over γ3(G). This
completes the proof of (ii).

Now we assume that e /∈ E ′(2n) and prove (i). If G is not IS, then it is regular
branch over G ′ by Theorem 2.7. Consequently

ψ(stG(1)′′) = G ′′ × · · · × G ′′,

and G is weakly regular branch over G ′′. Let us now suppose that G is IS. For every
g1, g2 ∈ G there exist h1, h2 ∈ stG(1) such that the k-th components of ψ(h1) and
ψ(h2) are g1 and g2, respectively. Then

ψ([[b, bk]h1, [bk, b2k]h2 ]) = (1, . . . , 1, [[a, b]g1 , [b, aepn−k ]g2 ], 1, . . . , 1),

where the non-trivial component is at the k-th position. Here we need to use that
2k �= pn , since e /∈ E ′(2n). Now since G is IS, the component epn−k is not divisible
by p. Thus the sets {[a, b]g1 | g1 ∈ G} and {[b, aepn−k ]g2 | g2 ∈ G} are generating
sets for G ′. Then G ′′ = 〈[[a, b]g1 , [b, aepn−k ]g2 ] | g1, g2 ∈ G〉G and thus G is weakly
regular branch over G ′′ by Lemma 2.3. ��

We can deduce an improved version of Vovkivsky’s result from Theorem 1.

Corollary 2.12 Let G be a periodicGGS-group over the pn-adic tree. ThenG is regular
branch over γ3(G).

Proof It suffices to show that e /∈ E(pn). Otherwise all eipt have the same (non-zero)
value modulo p, for i = 1, . . . , pn−t − 1. Now since G is periodic, from (1.1) we get

St = ept + e2pt + · · · + epn−pt = (pn−t − 1)ept ≡ 0 (mod p).

This implies that ept ≡ 0 (mod p), which is a contradiction. ��
We close this section by showing that G is also regular branch over γ3(G) in some

special cases with e ∈ E(pn).

Theorem 2.13 Suppose that e is constant on Y and constant equal to 0 outside Y ,
without e being constant. Then G is a regular branch group over γ3(G).

Proof We have

ψ([b, a]) = (b, 1, . . . , 1, a−1, a, 1, . . . , 1, a−1, a, 1, . . . , 1, b−1), (2.12)

where the components equal to a−1 are those in positions multiple of k. From the
assumptions about e, we have e1 = 0, and by taking the commutator of (2.12) with
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ψ(b), it follows that [b, a, b] = 1.Hence γ3(G) = 〈[a, b, a]〉G . Now the result follows
from

ψ([b, bk , b]) = (1, . . . , 1, [a, b, a], 1, . . . , 1, [b, a, b]) = (1, . . . , 1, [a, b, a], 1, . . . , 1).

��

3 GGS-groups with constant defining vector

In this section we prove that the GGS-groups with constant defining vector are not
branch, as in the case of the p-adic tree. Note that, by Theorem 1, they are weakly
branch unless pn = 2.

In the following,G denotes the GGS-group defined on the pn-adic tree by the vector
e = (1, . . . , 1). We introduce the subgroup K = 〈ba−1〉G of G, and we set y0 = ba−1

and yi = ya
i

0 for all i ∈ Z. Then yi = y j if i ≡ j (mod pn). One can easily check
that

ypn−1ypn−2 · · · y1y0 = 1.

Also G/K = 〈aK 〉 = 〈bK 〉, and consequently G′ ≤ K and |G : K | = pn . The
following lemma generalizes [4, Lemma 4.2] to the case n > 1, and it can be proved
similarly.

Lemma 3.1 The following hold:

(i) K = 〈y0, . . . , ypn−1〉.
(ii) K ′ × · · · × K ′ ⊆ ψ(K ′) ⊆ ψ(G′) ⊆ K × · · · × K. In particular G is weakly

regular branch over K ′.

Proposition 3.2 We have stG(1)′ = stG(2).

Proof From (2.2) we get stG(1)′ = 〈[bi , b j ] | i, j = 1, . . . , pn〉G ≤ stG(2). For the
reverse inclusion, let g ∈ stG(2) be arbitrary.We canwrite g = hg′, where g′ ∈ stG(1)′
and h is of the form

h = bk11 bk22 · · · bkpnpn ,

for some integers ki . Observe that ψ(h) is given by the vector

(bk1ak2+···+kpn , ak1bk2ak3+···+kpn , . . . , ak1+···+kpn−2bkpn−1akpn , ak1+···+kpn−1bkpn ).

Since h = g(g′)−1 ∈ stG(2) and a has order pn modulo stG(1), if we set S =
k1 + · · · + kpn , then S − ki ≡ 0 mod pn for i = 1, . . . , pn . From these congruences
it readily follows that ki ≡ 0 mod pn for all i , and consequently g = g′ ∈ stG(1)′,
as desired. ��

The following result generalizes [4, Lemma 4.4].
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Proposition 3.3 Let g ∈ stG(1) and write ψ(g) = (g1, . . . , gpn ). Then the following
hold:

(i) If g ∈ G′ then
∏pn

i=1 gi ∈ K ′.
(ii) If g ∈ K ′ then

∏pn−1
i=1 gai g

a2
i · · · gaii ∈ K ′.

Proof (i) For every h ∈ stG(1) we define π(h) = ∏pn

i=1 hi , where ψ(h) =
(h1, . . . , h pn ). Since stG(1) = 〈bi | i = 1, . . . , pn〉 and

π(bi ) = ai−1ba pn−i = (ba−1)a
−i+1 = y−i+1 ∈ K ,

it follows that π(stG(1)) ⊆ K . Then the map π : stG(1) → K/K ′ given by π(h) =
π(h)K ′ is a group homomorphism, and since ker π is clearly invariant under conjuga-
tion by a, we have ker π � G. Now observe that ψ([a, b]) = (b−1a, 1, . . . , 1, a−1b)
implies that [a, b] ∈ ker π . Hence G′ = 〈[a, b]〉G ≤ ker π and (i) follows.

(ii) This can be proved exactly as in [4, Lemma 4.4]. ��
Corollary 3.4 Let g ∈ K ′ stG(�) for some � ∈ N. If ψ(g) = (x, 1, . . . , 1, y) then both
x and y lie in K ′ stG(� − 1).

Proof Part (i) of Proposition 3.3 implies that xy ∈ K ′ stG(� − 1), and part (ii) that
xa ∈ K ′ stG(� − 1). Thus x, y ∈ K ′ stG(� − 1). ��
Lemma 3.5 For every � ≥ 2 the quotient Q� = G/K ′ stG(�) is a p-group of class �

and order p(�+1)n.

Proof It is obvious that Q� is a finite p-group, since G/ stG(�) is so. The lemma will
be proved if we show that |Q� : Q′

�| = p2n , that |γi (Q�) : γi+1(Q�)| = pn for
2 ≤ i ≤ �, and that γ�+1(Q�) = 1.

First of all, observe that Q�/Q′
�

∼= G/G′ stG(�) = G/G′ ∼= Cpn × Cpn , by using
that stG(2) ≤ G′ from Proposition 3.2, and Theorem 2.1. Hence

exp γi (Q�)/γi+1(Q�) | exp Q�/Q
′
� = pn (3.1)

for every i ≥ 2.
Let us use the bar notation modulo K ′ stG(�). Then Q′

� = 〈[b, a], γ3(Q�)〉. Since
A� = K/K ′ stG(�) is an abelian normal subgroup of Q� and Q� = 〈a, A�〉 = 〈b, A�〉,
it follows that

γi (Q�) = 〈[b, a, b, i−2. . ., b], γi+1(Q�)〉 = 〈[b, a, i−1. . ., a], γi+1(Q�)〉 (3.2)

for every i ≥ 2. From (3.1) we get |γi (Q�) : γi+1(Q�)| ≤ pn for i ≥ 2. Hence the
proof will be complete if we show that:

(1) [b, a, b, �−1. . ., b] ∈ K ′ stG(�).
(2) [b, a, b, �−2. . ., b]pn−1

/∈ K ′ stG(�).
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for every � ≥ 2. Indeed (1) then shows that γ�+1(Q�) = 1, while (2) shows that
|γi (Q�) : γi+1(Q�)| ≥ |γi (Qi ) : γi+1(Qi )| ≥ pn , by applying it with i in the place
of �. Note that, according to (3.2), (1) is equivalent to [b, a, �. . ., a] ∈ K ′ stG(�) and
(2) is equivalent to [b, a, �−1. . ., a]pn−1

/∈ K ′ stG(�).
We prove (1) and (2) by induction on � ≥ 2. Suppose first that � = 2. We have

ψ([b, a]) = ψ(b−1ba) = (a−1b, 1, . . . , 1, b−1a)

and

ψ([b, a, b]) = ([a−1b, a], 1, . . . , 1, [b−1a, b]) = ([b, a], 1, . . . , 1, [a, b]). (3.3)

The latter shows that [b, a, b] ∈ stG(2) and (1) holds for m = 2. On the other hand,
if [b, a]pn−1 ∈ K ′ stG(2) then Corollary 3.4 implies that (b−1a)p

n−1 ∈ K ′ stG(1) =
stG(1). Since (b−1a)p

n−1 ≡ a pn−1
(mod stG(1)), this is a contradiction and (2) holds

for � = 2.
Now we assume that � ≥ 3. From (3.3), we get

ψ([b, a, b, i. . ., b]) = ([b, a, i. . ., a], 1, . . . , 1, [a, b, i. . ., b]) (3.4)

for every i ≥ 1. Thus, by the induction hypothesis,

ψ([b, a, b, �−1. . ., b]) ∈ (K ′ stG(� − 1) × · · · × K ′ stG(� − 1)) ∩ imψ.

Now observe that

(K ′ stG(� − 1) × · · · × K ′ stG(� − 1)) ∩ imψ

= (K ′ × · · · × K ′)(stG(� − 1) × · · · × stG(� − 1)) ∩ imψ

= (K ′ × · · · × K ′)(stG(� − 1) × · · · × stG(� − 1) ∩ imψ)

⊆ ψ(K ′)ψ(stG(�)) = ψ(K ′ stG(�)),

where the second equality follows from Dedekind’s Law and the inclusion from G
being weakly regular branch over K ′. Thus [b, a, b, �−1. . ., b] ∈ K ′ stG(�) and (1) holds.
Now if [b, a, b, �−2. . ., b]pn−1 ∈ K ′ stG(�) then from (3.4) and Corollary 3.4 we get
[b, a, �−2. . ., a]pn−1 ∈ K ′ stG(� − 1), contrary to the induction hypothesis. This proves
(2). ��

Our next step is to determine the structure of the factor group G/K ′.

Theorem 3.6 The quotient G/K ′ is isomorphic to the semidirect product 〈x〉�Z
pn−1,

where the element x is of order pn and acts on Z
pn−1 via the companion matrix of the

polynomial X pn−1 + X pn−2 + · · · + X + 1.

Proof Let P be the semidirect product in the statement of the theorem. We first study
the lower central series of P . Set V = Z

pn−1 and write (v1, . . . , vpn−1) for the

123



796 E. Di Domenico et al.

canonical basis of V . Since we use right actions of groups, if M is the companion
matrix of f (X) = X pn−1 + X pn−2 + · · · + X + 1, then vx = vM for every v ∈ V .

For every W ≤ V that is normal in P , we have [W , P] = {[w, x] | w ∈ W }, since
V is abelian and the map v �→ [v, x] is a homomorphism on V . Since P/V is cyclic,
we have P ′ = [V , P], and consequently

γi (P) = {[v, x, i−1. . ., x] | v ∈ V } = {v(M − I )i−1 | v ∈ V },

where I stands for the identity matrix of order pn − 1. Hence the rows of (M − I )i−1

are generators of γi (P). Since V is a free abelian group of finite rank, it follows that

|P : γi (P)| = pn |V : γi (P)| = pn det(M − I )i−1 = pn f (1)i−1 = pin (3.5)

for every i ≥ 2, since f (X) is the characteristic polynomial of M . Observe also that
∩i≥1 γi (P) = 1, since P is residually a finite p-group.

Now recall that K = 〈y j | j = 0, . . . , pn−1〉with yaj = y j+1 for all j . In particular

yapn−2 = ypn−1 = y−1
0 . . . y−1

pn−2.Hence the assignments x �→ a and vi �→ yi−1 define
a homomorphism α from P onto Q = G/K ′. Suppose that 1 �= w ∈ ker α and let
� ≥ 1 be such that w /∈ γ�+1(P). Then α induces an epimorphism from P/γ�+1(P)

onto Q/γ�+1(Q) whose kernel is not trivial, and consequently

|P : γ�+1(P)| > |Q : γ�+1(Q)| ≥ |Q� : γ�+1(Q�)|,

where Q� = G/K ′ stG(�). This is a contradiction, since |P : γ�+1(P)| = p(�+1)n by
(3.5) and |Q� : γ�+1(Q�)| = |Q�| = p(�+1)n by Lemma 3.5. Thus ker α = 1 and we
conclude that P ∼= G/K ′, as desired. ��

Now we can generalise [3, Theorem 3.7] and show that G is not a branch group.

Theorem 3.7 Let G be a GGS-group with constant defining vector. Then G is not a
branch group.

Proof Let L = ψ−1(K ′ × pn· · · × K ′). By (ii) of Lemma 3.1 we have L ≤ rstG′(1). For
the reverse inclusion, we show that rstG′(v) ≤ L for every vertex v of the first level.
Let g ∈ rstG′(v) and let h be the component of ψ(g) at the position of v. Then from
(i) of Proposition 3.3 we get h ∈ K ′, and so g ∈ L , as desired.

Now assume by way of contradiction that the group G is branch. Then |G : rstG(1)|
is finite and from [3, Lemma 3.6] also |G′ : rstG′(1)| is finite. Thus |G : L| is finite,
and since L ≤ K ′ by Lemma 3.1, also |G : K ′| is finite. This is a contradiction, since
Theorem 3.6 shows that the factor group G/K ′ is infinite. ��
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