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Abstract
Recently introduced by the authors in [Proc. Edinb. Math. Soc. 60 (2020), 139–167],
quasi-densities form a large family of real-valued functions partially defined on the
power set of the integers that serve as a unifying framework for the study of many
known densities (including the asymptotic density, the Banach density, the logarithmic
density, the analytic density, and the Pólya density). We further contribute to this line
of research by proving that (1) for each n ∈ N+ and α ∈ [0, 1], there is A ⊆ N with
k A ∈ dom(μ) and μ(k A) = αk/n for every quasi-density μ and every k = 1, . . . , n,
where k A := A + · · · + A is the k-fold sumset of A and dom(μ) denotes the domain
of definition of μ; (2) for each α ∈ [0, 1] and every non-empty finite B ⊆ N, there
is A ⊆ N with A + B ∈ dom(μ) and μ(A + B) = α for every quasi-density μ;
(3) for each α ∈ [0, 1], there exists A ⊆ N with 2A = N such that A ∈ dom(μ)

and μ(A) = α for every quasi-density μ. Proofs rely on the properties of a little
known density first considered by R.C. Buck and the “structure” of the set of all
quasi-densities; in particular, they are rather different than previously known proofs
of special cases of the same results.
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1 Introduction

Given X1, . . . , Xn ⊆ Z, we denote by X1+· · ·+Xn the sumset of X1, . . . , Xn (i.e., the
set of all sums of the form x1+· · ·+xn with xi ∈ Xi for all i = 1, . . . , n); in particular,
we write kX for the k-fold sumset (i.e., the sumset of k copies) of a given X ⊆ Z.
Sumsets are some of the most fundamental objects studied in additive combinatorics
[9,12], with a great variety of results relating the “size” of the summands X1, . . . , Xn

to that of the sumset X1 + · · · + Xn .
When the summands are finite, the size is usually the number of elements. Oth-

erwise, many different notions of size have been considered, each corresponding to
some real-valued function (either totally or partially defined on the power set ofZ) that,
while retaining essential features of a probability, is better suited than a measure to
certain applications. In the latter case, the focus has definitely been on the asymptotic
density d, the lower asymptotic density d�, and the Schnirelmann density σ , where
we recall that, for a set X ⊆ N,

d(X) := lim
n→∞

|X ∩ �1, n�|
n

, d�(X) := lim inf
n→∞

|X ∩ �1, n�|
n

, and

σ(X) := inf
n≥1

|X ∩ �1, n�|
n

,

with the understanding that the limit in the definition of d(X) has to exist. It is entirely
beyond the scope of this manuscript to provide a survey of the relevant literature, so
we limit ourselves to list a couple of classical results that are somehow related with
our work:

• In [14] (see, in particular, the last paragraph of the section “Added in proof”),
B. Volkmann proved that, for all n ≥ 2 and α1, . . . , αn, β ∈ ]0, 1] with α1 +· · ·+
αn ≤ β, there are A1, . . . , An ⊆ N such that d(Ai ) = αi for each i = 1, . . . , n
and d(A1 + · · · + An) = β.

• In [10, Theorem 1], M.B. Nathanson showed that, for n ≥ 2 and all
α1, . . . , αn, β ∈ [0, 1] with α1 + · · · + αn ≤ β, there exist X1, . . . , Xn ⊆ N
with d�(Xi ) = σ(Xi ) = αi for each i = 1, . . . , n and d�(X1 + · · · + Xn) =
σ(X1 + · · · + Xn) = β.

In a similar vein, A. Faisant et al. have more recently proved the following (see [3,
Theorem 1.3]):

Theorem 1.1 Given n ∈ N+ and α ∈ [0, 1], there is A ⊆ N with d(k A) = kα/n for
each k = 1, . . . , n.
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On the density of sumsets 1597

Their proof combines the equidistribution theorem (i.e., that the sequence n 	→
na mod 1 is uniformly distributed in the interval [0, 1] for every irrational number
a) with the elementary property that, for every α ∈ ]0, 1], the asymptotic density of
the set

{
α−1n� : n ∈ N
}
is equal to α. In the same manuscript, one can also find the

following (see [3, Theorem 1.2]):

Theorem 1.2 Given α ∈ [0, 1] and a non-empty finite B ⊆ N, there is A ⊆ N with
d(A + B) = α.

This is a partial generalization of Theorem 1.1 for the special case where n = 1. A
complete generalization was obtained by P.-Y. Bienvenu and F. Hennecart, shortly
after [3] was posted on arXiv in Sept. 2018: Their proof is based on a “finite version”
of Weyl’s criterion for equidistribution due to P. Erdős and P. Turán (see [1, Theorem
1.8] for details and [1, Theorems 1.1.a and 1.5] for additional results along the same
lines).

Yet another item in the spirit of Theorem 1.1 is the following result by N. Hegyvári
et al. (see [4, Proposition 2.1]):

Proposition 1.3 Given α ∈ [0, 1], there is A ⊆ N with 0 ∈ A and gcd(A) = 1 such
that d(A) = α and 2A = N.

In the present paper, we aim to prove that Theorems 1.1 and 1.2 and Proposition 1.3
hold, much more generally, with the asymptotic density d replaced by an arbitrary
quasi-density μ (see Sect. 2.2 for definitions) and—what is perhaps more interesting
— uniformly in the choice of μ (see Theorems 3.1–3.3 for a precise formulation).
Most notably, this implies that Theorems 1.1 and 1.2 are true with d replaced by the
Banach density [12, Sect. 5.7] or the analytic density [13, Sect. III.1.3], both of which
play a rather important role in number theory and related fields and for which we are
not aware of any similar results in the literature.

We emphasize that the proofs of our generalizations of Theorems 1.1 and 1.2 take a
completely different route than the ones found in [1,3]: The latter critically depend on
special features of the asymptotic density,whereas our approach relies on the properties
of a little known density first considered by R.C. Buck [2] and the “structure” of the
set of all quasi-densities. This is in line with one of our long-term goals, which was
also the motivation for first introducing quasi-densities in [8]: Obtain sharper versions
of various results in additive combinatorics and analytic number theory by shedding
light on the “(minimal) structural properties” they depend on.

2 Preliminaries

In this section, we establish some notations and terminology used throughout the paper
and prepare the ground for the proofs of our main theorems in Sect. 3.

2.1 Generalities

We denote by R the real numbers, by H either the integers Z or the non-negative
integers N, and by N+ the positive integers. Given x ∈ R, we use 
x� for the greatest
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1598 P. Leonetti , S. Tringali

integer ≤ x and set frac(x) := x − 
x�; and given X ⊆ Z and h, k ∈ Z, we define
k · X + h := {kx + h : x ∈ X}. An arithmetic progression of H is then a set of the
form k · H + h with k ∈ N+ and h ∈ H, and we write

• A for the collection of all finite unions of arithmetic progressions of H;
• A∞ for the collection of all subsets of H that can be expressed as the union of a
finite set and countably many arithmetic progressions of H;

• �a, b� := {x ∈ Z : a ≤ x ≤ b} for the discrete interval between two integers a
and b.

If X and Y are sets, then we write P(X) for the power set of X and X ⊆fin Y to mean
that X \ Y is finite. Further terminology and notations, if not explained when first
introduced, are standard, should be clear from context, or are borrowed from [8].

2.2 Densities (and quasi-densities)

We say a function μ� : P(H) → R is an upper density (on H) provided that, for all
X ,Y ∈ P(H), the following conditions are satisfied:

(F1) μ�(X) ≤ μ�(H) = 1;
(F2) μ� is monotone, i.e., if X ⊆ Y then μ�(X) ≤ μ�(Y );
(F3) μ� is subadditive, i.e., μ�(X ∪ Y ) ≤ μ�(X) + μ�(Y );
(F4) μ�(k · X + h) = 1

kμ
�(X) for every k ∈ N+ and h ∈ H.

In addition, we say μ� is an upper quasi-density (on H) if it satisfies (F1), (F3), and
(F4).

It is arguable that non-monotone upper quasi-densities—whose existence is guaran-
teed by [8, Theorem 1]—are not so interesting from the point of view of applications.
Yet, it seems meaningful to understand if monotonicity is “critical” to our conclu-
sions or can be dispensed with: This is basically our motivation for considering upper
quasi-densities in spite of our main interest lying in the study of upper densities (it is
obvious that every upper density is an upper quasi-density).

With the above in mind, we let the conjugate of an upper quasi-density μ� be the
function

μ� : P(H) → R : X 	→ 1 − μ�(H \ X).

Then we refer to the restriction μ of μ� to the set

D := {X ⊆ H : μ�(X) = μ�(X)}

as the quasi-density induced by μ�, or simply as a quasi-density (on H) if explicit
reference to μ� is unnecessary. Accordingly, we call D the domain of μ and denote it
by dom(μ).

Upper densities (and upper quasi-densities) were first introduced in [8] and further
studied in [6,7]. Notable examples include the upper asymptotic, upper Banach, upper
analytic, upper logarithmic, upper Pólya, and upper Buck densities, see [8, Sect. 6 and
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Examples 4, 5, 6, and 8] for details. In particular, we recall that the upper Buck density
(on H) is the function

b� : P(H) → R : X 	→ inf
A∈A , X⊆A

d�(A ∩ N), (1)

where A is the collection of all finite unions of arithmetic progressions of H (as
already mentioned in Sect. 2.1) and d� is the upper asymptotic density on N, that is,
the function

P(N) → R : X 	→ lim sup
n→∞

|X ∩ �1, n�|
n

. (2)

We shall write b� and b, respectively, for the conjugate of and the density induced by
b�; we call b� the lower Buck density and b the Buck density (onH). By [8, Example5],
one has

b�(X) = sup
A∈A , A⊆X

d�(A ∩ N), for every X ⊆ H. (3)

Note that the density induced by and the conjugate of d� are, resp., the asymptotic
density d and the lower asymptotic density d� introduced in Sect. 1: One should
keep this in mind when comparing our main results (that is, Theorems 3.1–3.3) with
Theorems 1.1 and 1.2 and Proposition 1.3.

2.3 Basic properties

Our primary goal in this section is to prove an inequality for the upper and the lower
Buck density of sumsets of a certain special form (Proposition 2.4). We start with a
recollection of basic facts that are either implicit to or already contained in [8].

Proposition 2.1 Let μ� be an upper quasi-density on H. The following hold:

(i) b�(X) ≤ μ�(X) ≤ μ�(X) ≤ b�(X) for every X ⊆ H.
(ii) If h ∈ H and X ⊆ Y ⊆ H, then b�(X + h) = b�(X) ≤ b�(Y ).
(iii) A ⊆ dom(b) ⊆ dom(μ) and μ(X) = b(X) for every X ∈ dom(b).
(iv) If m ∈ N+ and h ⊆ �0,m−1�, then m ·H+h ∈ dom(b) and b(m ·H+h) = |h|

m .
(v) If X ⊆ H is finite, then X ∈ dom(b) and b(X) = 0.
(vi) If X ∈ dom(b), Y ⊆ H, and b�(Y ) = 0, then X ∪Y ∈ dom(b) and b(X ∪Y ) =

b(X).

Proof We have alreadymentioned that b�, as defined in Eq. (1), is an upper density and
hence monotone. With this in mind, (i) follows from [8, Proposition 2(vi), Theorem
3, and Corollary 4], where among other things it is established that b� is the pointwise
maximum of the set of all upper quasi-densities onH; (ii) follows from [8, Proposition
15] (which shows that b� is “shift-invariant”) and the monotonicity of b�; (iii) and
(iv) follow from [8, Corollary 5 and Proposition 7]; and (v) follows from (i) and [8,
Proposition 6]. As for (vi), note that, if X ∈ dom(b), Y ⊆ H, and b�(Y ) = 0, then we
have from (i), (ii), and (F3) that

b�(X) = b�(X) ≤ b�(X ∪ Y ) ≤ b�(X ∪ Y ) ≤ b�(X) + b�(Y ) = b�(X),
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which proves that X ∪ Y ∈ dom(b) and b(X ∪ Y ) = b(X), as wished. �

The next result shows that b� and b� are additive under some circumstances.

Proposition 2.2 Let X ,Y ⊆ H and A, B ∈ A , and assume X ⊆ A, Y ⊆ B, and
A ∩ B = ∅. Then b�(X ∪ Y ) = b�(X) + b�(Y ) and b�(X ∪ Y ) = b�(X) + b�(Y ).

Proof Given E, F,G ∈ A with X ⊆ E , Y ⊆ F , and G ⊆ X ∪ Y , it is clear from our
assumptions that

X ⊆ E ∩ A ∈ A , Y ⊆ F ∩ B ∈ A , and (E ∩ A)∩ (F ∩ B) ⊆ A∩ B = ∅, (4)

and {
A � G ∩ A ⊆ X and A � G ∩ B ⊆ Y ,

G = (G ∩ A) ∪ (G ∩ B) and (G ∩ A) ∩ (G ∩ B) = ∅.
(5)

On the other hand, we have by parts (iii) and (iv) of Proposition 2.1 that

d�(V ∪ W ) = d�(V ) + d�(W ), for all V ,W ∈ A with V ∩ W = ∅;

and it is a basic fact that, for all non-empty subsets S and T of R,

inf S + inf T = inf(S + T ) and sup S + sup T = sup(S + T ).

So, putting it all together, we conclude from Eqs. (1) and (4) that

b�(X) + b�(Y ) = inf{d�(E) + d�(F) : E, F ∈ A , X ⊆ E, and Y ⊆ F}
≤ inf{d�(E ∩ A) + d�(F ∩ B) : E, F ∈ A , X ⊆ E, and Y ⊆ F}
≤ inf{d�((E ∪ F) ∩ (A ∪ B)) : E, F ∈ A , X ⊆ E, and Y ⊆ F}
≤ inf{d�(G) : G ∈ A and X ∪ Y ⊆ G}
= b�(X ∪ Y ),

which, by subadditivity of b�, leads to b�(X ∪Y ) = b�(X)+b�(Y ). Likewise, Eqs. (3)
and (5) yield

b�(X ∪ Y ) = sup{d�(G) : G ∈ A and G ⊆ X ∪ Y }
= sup{d�(E ∪ F) : E, F ∈ A , E ⊆ X , and F ⊆ Y }
= sup{d�(E) + d�(F) : E, F ∈ A , E ⊆ X , and F ⊆ Y }
= b�(X) + b�(Y );

in particular, it is seen from Eq. (5) that, ifG ∈ A andG ⊆ X∪Y , thenA � G∩ A ⊆
X and A � G ∩ B ⊆ Y , which is used in the second equality from the last block.

�
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It is perhaps worth noticing that Proposition 2.2 does not hold with b� replaced by d�.
In fact, set X := E ∩ (2 · H) and Y := F ∩ (2 · H + 1), where

E :=
⋃

n≥1

�(4n)!, (4n + 1)!� and F :=
⋃

n≥1

�(4n + 2)!, (4n + 3)!�.

Then X and Y are both contained in disjoint arithmetic progressions ofH, but it is not
difficult to see that d�(X) = d�(Y ) = d�(X ∪ Y ) = 1

2 , cf. [8, Lemma 1].

Lemma 2.3 Given k, p, q ∈ N+, a ⊆ �0, q − 1�, and r ∈ H with gcd(p, q) = 1, let
A := q ·H+a and B := p ·H+r . Then the sets k(A∩ B) and kA∩kB are both inA
and their symmetric difference is finite; in particular, k(A ∩ B), k A ∩ kB ∈ dom(b).
Moreover, b(k(A ∩ B)) = b(k A ∩ kB) = (pq)−1|ka|.

Proof We can assume a �= ∅, or else the conclusion is trivial. It is also clear that, if
X = m · H + q for some m ∈ N+ and finite q ⊆ H, then kX = m · H + kq ∈ A ;
and it is obvious that k(A ∩ B) ⊆ k A ∩ kB (because x1 + · · · + xk ∈ k A ∩ kB for all
x1, . . . , xk ∈ A ∩ B). Since A ∩ B ∈ A and, by Proposition 2.1(iv), A ⊆ dom(b),
we are thus left to check that

(i) k A ∩ kB ⊆fin k(A ∩ B) and (ii) b(k A ∩ kB) = (pq)−1|ka|.

(i) Pick x ∈ k A∩kB and, in caseH = N, assume x ≥ k(k−1)pq. Then x ≡ kr mod p
and there exist a1, . . . , ak ∈ Awith a1 ≤ · · · ≤ ak such that x = a1+· · ·+ak (observe
that, if H = N, then ak ≥ (k − 1)pq). Since p and q are coprime, we gather from the
Chinese remainder theorem that, for each i ∈ �1, k − 1�, there is a smallest integer
a′
i ≥ ai such that a′

i ≡ ai mod q and a′
i ≡ r mod p (in particular, a′

i ≤ ai + pq).

Accordingly, set a′
k := x−∑k−1

i=1 a
′
i . By construction, a

′
k ≡ x−∑k−1

i=1 a
′
i ≡ ak mod q

and a′
k ≡ kr − (k − 1)r ≡ r mod p. Moreover, if H = N, then

a′
k = ak −

k−1∑

i=1

(a′
i − ai ) ≥ (k − 1)pq − (k − 1)pq ≥ 0.

In consequence, we find that a′
1, . . . , a

′
k ∈ A ∩ B and hence x = a′

1 + · · · + a′
k ∈

k(A ∩ B). This suffices to complete the proof, because x is an arbitrary element of
(k A ∩ kB) \ V , where V := �0, k(k − 1)pq − 1� if H = N and V := ∅ otherwise
(to wit, V is a finite set). (ii) We have k A = q · H + ka and hence k A ∩ kB =
(q · H + ka) ∩ (p · H + kr). Since gcd(p, q) = 1, it follows from the Chinese
remainder theorem that k A ∩ kB is, apart from finitely many elements, the union of
|ka| pairwise disjoint arithmetic progressions modulo pq. Therefore, we conclude
from parts (iv)–(vi) of Proposition 2.1 that b(k A ∩ kB) = (pq)−1|ka|, as wished. �

Proposition 2.4 Fix n, t, p, q ∈ N+ and s ∈ N such that nt < q and gcd(p, q) = 1,
let Y be a non-empty subset of q ·H+t , and define X := q ·H+�0, t−1�, V := p·H+s,
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and S := (X ∪ Y ) ∩ V . Then

kt

pq
+ b�(k(Y ∩ V )) = b�(kS) ≤ b�(kS) = kt

pq
+ b�(k(Y ∩ V ))

≤ kt + 1

pq
, for every k ∈ �1, n�. (6)

In particular, if Y ∈ A , then

kS, k(Y ∩ V ) ∈ dom(b) and b(kS) = kt

pq
+ b(k(Y ∩ V )), for every k ∈ �1, n�.

Proof The “In particular” part of the statement is straightforward from Eq. (6) and
Proposition 2.1(v), by the fact thatmA ∈ A for allm ∈ N+ and A ∈ A . So, we focus
on the rest.

Fix k ∈ �1, n�, and define X ′ := X ∩V ∈ A , Y ′ := Y ∩V , and V ′ := (q ·H+ t)∩
V ∈ A . SinceY is a non-empty subset ofq ·H+t and p is coprime toq (by hypothesis),
we gather from the Chinese remainder theorem that pqx + r ∈ Y ′ ⊆ V ′ = pq ·H+ r
for some x ∈ H and r ∈ q · H + t . Using that X ′ is itself a finite union of arithmetic
progressions modulo pq, it follows that, for all i ∈ N+ and j ∈ N,

i X ′ + jV ′ = i X ′ + jr ⊆fin i X
′ + j(pqx + r) ⊆ i X ′ + jY ′ ⊆ i X ′ + jV ′ ∈ A (7)

and, on the other hand,

i X ′+ jY ′ ⊆ i X+ j(q ·H+t) = q ·H+�0, i t−i�+ j t = q ·H+� j t, (i+ j)t−i�; (8)

in particular, the relation i X ′ + jr ⊆fin i X ′ + j(pqx + r) becomes an equality when
H = Z. Hence,

kY ′ ⊆ kV ′ ⊆ q · H + kt ∈ A (9)

and

Zk :=
k⋃

i=1

(i X ′ + (k − i)Y ′) ⊆
k⋃

i=1

(i X ′ + (k − i)V ′) =: Z ′
k ∈ A . (10)

So taking into account that

kS =
k⋃

i=0

(i X ′ + (k − i)Y ′) = Zk ∪ kY ′

and considering that (k− i)t ≤ kt−(i+1)+1 ≤ nt < q for all i ∈ N (by hypothesis)
and, by Eq. (8),

Z ′
k ⊆

k⋃

i=1

(q · H + �(k − i)t, kt − i�) = q · H + �0, kt − 1�,

123



On the density of sumsets 1603

we gather from Propositions 2.1(ii) and 2.2 and Eq. (9) that

b�(Zk) + b�(kY
′) = b�(kS) ≤ b�(kS) = b�(Zk) + b�(kY ′) ≤ b�(Zk) + b�(kV ′)

= b�(Zk) + 1

pq
.

It remains to see that b�(Zk) = b�(Zk) = (pq)−1kt . For, set

S′ := X ′ ∪ V ′ = (X ∪ (q · H + t)) ∩ V = (q · H + �0, t�) ∩ V . (11)

We have

kS′ =
k⋃

i=0

(i X ′ + (k − i)V ′) = Z ′
k ∪ kV ′ ∈ A .

Recalling that each of kS′, Z ′
k , and kV ′ is a finite union of arithmetic progressions

(and hence, by Proposition 2.1(iv), a set in the domain of b) with kV ′ ⊆ q · H + kt
(see Eq. (9)) and kt < q, it thus follows from Eq. (11), Lemma 2.3, and Propositions
2.1(v) and 2.2 that

kt + 1

pq
= b(kS′) = b(Z ′

k) + b(kV ′) = b(Z ′
k) + 1

pq
.

Moreover, we have from Eqs. (7) and (10) that Z ′
k ⊆fin Zk ⊆ Z ′

k . Therefore,
we conclude from the last display and Proposition 2.1(vi) that Zk ∈ dom(b) and
b(Zk) = b(Z ′

k) = (pq)−1kt (as wished). �

2.4 A positional representation

We introduce a non-standard positional representation of real numbers (Proposition
2.6) that will be of key importance in the proof of Theorem 3.1; cf. [11, Theorem 1.6]
for an “analogous” result attributed by I. Niven to G. Cantor.

Lemma 2.5 Let α be an irrational number in the interval [0, 1], and fix m, t ∈ N+.
There then exist infinitely many n ∈ N+ such that 
(nt + 1)α� ∈ m · N+.

Proof Since tα is irrational, the sequence (frac(Ntα))N≥0 is equidistributed in [0, 1[ .
This implies that there exists a set N ⊆ N+ such that d(N) = (1 − α)/m and
frac(Ntα) ∈ ]0, (1 − α)/m[ for all N ∈ N, see e.g. [5, Exercise 1.15, p. 6]. Since

frac((Ntm + 1)α) = mfrac(Ntα) + α ∈ ]0, 1[ ,

it follows that 
(Ntm + 1)α� = m
Ntα� ∈ m · N+ for all N ∈ N. �
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Proposition 2.6 Let α be an irrational number in the interval [0, 1], and fix n ∈ N+.
There then exist sequences (βi )i≥1 and (qi )i≥0 of positive integers with q0 = 1 and
qi ≥ 2 for i �= 1 such that

α =
∑

i≥1

n! βi

q1 · · · qi (12)

and, for every i ∈ N+,

gcd(qi , nq0 . . . qi−1) = 1, αi−1 ∈ ]0, 1[ , and 
qiαi−1� ∈ n! · N+,

where we have defined

α0 : = α and αi := q1 . . . qi

⎛

⎝α −
i∑

j=1

n! β j

q1 . . . q j

⎞

⎠ . (13)

Proof Given x ∈ [0, 1] and N ∈ N+, let

Q(x, N ) := {
q ∈ N+ : gcd(q, N ) = 1 and 
qx� ∈ n! · N+} ;

it follows by Lemma 2.5 that, if x is irrational, then the set Q(x, N ) is infinite. Thus,
since α0, α1, . . . are all irrational numbers by their definition in Eq. (13) and the
irrationality of α, we can recursively define sequences (qi )i≥0 and (βi )i≥1 of positive
integers by taking q0 := 1 and, for each i ∈ N+,

qi := minQ(αi−1, nq0 . . . qi−1) and βi :=
⌊qiαi−1

n!
⌋

; (14)

in particular, βi is a positive integer because 
qiαi−1� = n! ki for some ki ∈ N+ (by
definition of the set Q(αi−1, nq0 . . . qi−1)), so that ki ≤ qiαi−1/n! < ki + 1/n! and
hence βi = ki . It is clear that

qiαi−1 − 1 < n! βi < qiαi−1, for every i ∈ N+. (15)

On the other hand, α0 = α ∈ ]0, 1[ ; and if αi−1 ∈ ]0, 1[ for some i ∈ N+, then it
follows by Eqs. (13) and (15) that αi = qiαi−1 − n! βi ∈ ]0, 1[ . Thus, we see by
induction that

αi ∈ ]0, 1[ , for all i ∈ N.

We may note, thanks to Eq. (14), that qi > qiαi−1 > n! ≥ 1, hence qi ≥ 2 for all
i ∈ N+. To conclude, identity (12) follows from the fact that

∣∣∣∣∣∣
α −

i∑

j=1

n! β j

q1 . . . q j

∣∣∣∣∣∣
= αi

q1 . . . qi
<

1

2i
, for all i ∈ N+.

�
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3 Main results

This section is devoted to the main results of the paper. We start with a generalization
of Theorem 1.1. Recall from Sect. 2.1 that A∞ denotes the family of all subsets of
H that can be expressed as the union of a finite set and countably many arithmetic
progressions of H.

Theorem 3.1 Given n ∈ N+ and α ∈ [0, 1], there exists A ∈ A∞ such that k A ∈
dom(μ) and μ(k A) = kα/n for each k ∈ �1, n� and every quasi-density μ on H.

Proof Thanks to Proposition 2.1(iii), it will be enough to prove that there exists A ∈
A∞ such that k A ∈ dom(b) and b(k A) = αk/n for each k ∈ �1, n�. To this end, we
distinguish two cases.

Case 1: α is rational. Write α = a/b, where a ∈ N and b ∈ N+. Then set

A := {0} ∪ (nb · H + �1, a�) ∈ A∞.

Since 0 ≤ a ≤ b, it is immediate (by induction) that

k A = {0} ∪ (nb · H + �1, ka�), for every k ∈ �1, n�.

So, by Proposition 2.1(iii)–(vi), we find that

k A ∈ dom(b) and b(k A) = ka

nb
= αk

n
, for every k ∈ �1, n�.

Case 2:α is irrational.ByProposition 2.6, there exist sequences (βi )i≥1 and (qi )i≥0
of positive integers with q0 = 1 and qi ≥ 2 for i �= 0 such that gcd(qi , nq0 . . . qi−1) =
1 for every i ∈ N+ and

α =
∑

i≥1

n! βi

q1 . . . qi
. (16)

Accordingly, we can recursively define sequences (Xi )i≥1 and (Yi )i≥0 of subsets of
H by taking Y0 := H and, for each i ∈ N+,

Xi := Yi−1∩ (qi ·H+�0, (n−1)! βi −1�) and Yi := Yi−1∩ (qi ·H+ (n−1)! βi ).
(17)

Because q1, q2, . . . are pairwise coprime integers, it is immediate from Eq. (17) and
the Chinese remainder theorem that, for every i ∈ N+, there exists ri ∈ N such that

Yi =
i⋂

j=1

(q j · H + (n − 1)!β j ) = q1 . . . qi · H + ri . (18)

Consequently, we obtain from Proposition 2.1(iv) that

kYi ∈ dom(b) and b(kYi ) = 1

q0 . . . qi
≤ 1

2i
, for all i, k ∈ N+. (19)
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Note that the sets X1, X2, . . . are pairwise disjoint; moreover,

Xi ,Yi ∈ A \ {∅} and Xi ∪ Yi ⊆ Yi−1, for every i ∈ N+. (20)

Then, for each i ∈ N+, define Ai := X1 ∪ . . . ∪ Xi and Bi := Ai ∪ Yi . We set

A :=
⋃

i≥1

Ai =
⋃

i≥1

Xi .

It is obvious from Eq. (20) and our definitions that A ∈ A∞. So, to finish the proof,
it only remains to show that k A ∈ dom(b) and b(k A) = kα/n for all k ∈ �1, n�.

For, fix k ∈ �1, n� and i ∈ N+. Since b is monotone, it is clear from Eqs. (19) and
(20) that

b(kXi ) ≤ b(k(Xi ∪ Yi )) ≤ 1

2i−1 . (21)

On the other hand, it follows from Eq. (20) and the above that

Ai ⊆ A ⊆ Bi and Ai , Bi ∈ A \ {∅},

which in turn implies that

k Ai ⊆ k A ⊆ kBi , k Ai , kBi ∈ dom(b), and b(k Ai )≤b�(k A)≤b�(k A)≤b(kBi ).
(22)

We claim that

b(k Ai ) = k

n

i−1∑

j=1

n! β j

q1 . . . q j
+ b(kXi ). (23)

For, let j ∈ �0, i − 1� and define Zi, j := Ai \ A j = X j+1 ∪ . . . ∪ Xi . We have from
Eqs. (17) and (18) that X j+1 ⊆ Y j and Zi, j+1 ⊆ Zi, j ⊆ Y j . In consequence, we see
that

Zi, j = X j+1 ∪ Zi, j+1 = (X j+1 ∩ Y j ) ∪ (Zi, j+1 ∩ Y j ) = (X j+1 ∪ Zi, j+1) ∩ Y j .

Since each of X j+1, Zi, j+1, and Y j is a non-empty element ofA , it thus follows from
Proposition 2.4 (applied with q = q j+1, t = (n−1)! β j+1, p = q1 . . . q j , X = X j+1,
Y = Zi, j+1, and V = Y j ) that

b(kZi, j ) = k

n
· n! β j+1

q1 . . . q j+1
+ b(kZi, j+1).

(Note that Zi, j+1 ∩ Y j = Zi, j+1.) So considering that Ai = Zi,0, we obtain by
induction that

b(k Ai ) = k

n
· n!β1

q1
+ b(kZi,1) = . . . = k

n

i−1∑

j=1

n! β j

q1 . . . q j
+ b(kZi,i−1).
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This suffices to prove the claim (because Xi = Zi,i−1), and in a similar way we find
that

b(kBi ) = k

n

i−1∑

j=1

n! β j

q1 . . . q j
+ b(k(Xi ∪ Yi )). (24)

The proof is essentially the same as the proof of Eq. (23), with the sets Ai \A j replaced
by Bi \ A j (0 ≤ j < i); we omit further details. Therefore, we gather from Eqs. (16),
(21), (23), and (24) that

max

{∣∣∣∣ b(k Ai ) − kα

n

∣∣∣∣ ,
∣∣∣∣ b(kBi ) − kα

n

∣∣∣∣

}
≤

∑

j≥i

n! β j

q1 . . . q j
+ 1

2i−1 .

Consequently, we see that

lim
i→∞ b(k Ai ) = lim

i→∞ b(kBi ) = kα

n
,

and we conclude, by Eq. (22), that k A ∈ dom(b) and b(k A) = kα/n (as wished). �

Theorem 3.2 Given α ∈ [0, 1] and a non-empty finite set B ⊆ H, there exists A ∈ A∞
such that A + B ∈ dom(μ) and μ(A + B) = α for every quasi-density μ on H.

Proof Similarly as in the proof of Theorem 3.1, it suffices to prove that there exists
A ∈ A∞ such that A + B ∈ dom(b) and b(A + B) = α. To this end, set x := min B
and y := max B.

We may assume without loss of generality that x = 0, because A+ B = (A+ x)+
(B − x) and both A + x and B − x are subsets of H, with |B − x | = |B|. Therefore,
B is a subset of N; and we can suppose that y �= 0, or else the conclusion follows by
Theorem 3.1.

Now, the statement to be proved is trivial for α = 0 or α = 1 (just take A := ∅
in the former case and A := H in the latter). Consequently, let α ∈ ]0, 1[ and pick
h, k ∈ N+ such that

h

k
< α <

h + 1

k
and h ≥ 2y + 1.

Then kα − h ∈ ]0, 1[ and h − y − 1 ≥ y, and we derive from Theorem 3.1 that there
exists a set C ∈ A∞ ∩ dom(b) such that b(C) = kα − h. So, we define

A := (k · H + �0, h − y − 1�) ∪ (k · C + h − y).

Then it is straightforward that

A ∈ A∞ and A + B = (k · H + �0, h − 1�) ∪ (k · C + h),
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and it follows by Propositions 2.1(iv) and 2.2 that

b�(A + B) = b�(k · H + �0, h − 1�) + b�(k · C + h) = h + b(C)

k
= α.

Likewise, we calculate that b�(A+B) = α. Thus, A+B ∈ dom(b) and b(A+B) = α.
�

Theorem 3.3 Given α ∈ [0, 1], there exists a set A ⊆ H with 0 ∈ A and gcd(A) = 1
such that 2A = H, A ∈ dom(μ), and μ(A) = α for every quasi-density μ on H.

Proof Once again, it suffices to prove that there exists A ∈ dom(b) such that b(A) = α,
cf. the proofs of Theorems 3.1 and 3.2. To this end, set

Q := {x2 + y2 : x, y ∈ N} and X := (Q ∪ (−Q)) ∩ H.

We know from Lagrange’s four square theorem that 2Q = N, and from [6, Theorem
4.2] that b(Q) = 0. It follows that 2X = H. Moreover, it is clear from the definition
of b� that

b�((−Q) ∩ H) = b�(Q ∩ (−H)) ≤ b�(Q) = 0.

Therefore, we find that

X ∈ dom(b) and b(X) = 0.

On the other hand, Theorem 3.1 guarantees that b(Y ) = α for some Y ∈ dom(b). So,
letting A := X ∪ Y and putting all pieces together, we get from Proposition 2.1(vi)
that

2A = H, A ∈ dom(b), and b(A) = α.

This finishes the proof, when considering that 0 ∈ Q ⊆ A and 1 ≤ gcd(A) ≤
gcd(Q) = 1. �

4 Closing remarks

Looking at the statement of Theorem 3.1, it is natural to ask whether assuming A ∈
dom(μ), for some fixed quasi-density μ on H, is sufficient to guarantee that 2A ∈
dom(μ).

By [4, Proposition 2.2], the answer is negative for the asymptotic density d on N.
But it follows by [8, Remark 3] that, in the classical framework of Zermelo-Fraenkel
set theory with the axiom of choice, there is a density μ onH such that dom(μ) = H;
hence, in this case, the answer is positive.
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One can still wonder what happens with the Buck density b, especially in light of
the role played by b in the proofs of Sect. 3. Again, the answer turns out to be in the
negative. In fact, set

V := {n! + n : n ∈ N} and A := {x2 + y2 : x, y ∈ V }.

Since b� is monotone, we gather from [6, Theorem 4.2], similarly as in the proof of
Theorem 3.3, that A ∈ dom(b) and b(A) = 0. However, we will show that 2A /∈
dom(b). To begin, we have

2A =
{
x21 + x22 + x23 + x24 : x1, x2, x3, x4 ∈ V

}
.

Fix k ∈ N+ and h ∈ N. By Lagrange’s four square theorem, there exist y1, y2, y3, y4 ∈
N such that h = y21 + y22 + y23 + y24 . Set, for each i ∈ �1, 4�, ni := (h + 1)k + yi and
xi := ni !+ni , and note that xi ∈ V , xi ≥ h, and ni ≥ k. It is then easily checked that

4∑

i=1

x2i ≡
4∑

i=1

(ni ! (ni ! + 2ni ) + n2i ) ≡
4∑

i=1

n2i ≡
4∑

i=1

y2i ≡ h mod k.

Therefore (k ·H+h)∩2A is non-empty and, since k and h were arbitrary, we conclude
that the only arithmetic progression ofH containing 2A isH itself, with the result that
b�(2A) = 1.

Now suppose for a contradiction that b�(2A) �= 0. By Eq. (3), this is only possible if
2A contains an arithmetic progression ofH, implying that there is a constant C ∈ R+
such that |2A ∩ [1,m]| ≥ Cm for all large m. The latter is, however, a contradiction,
because it is clear that

|2A ∩ �1,m�| ≤ |V ∩ �1,
√
m �|4

≤ sup{n4 : n ∈ N and n! ≤ √
m} = o(m), as m → ∞.

It follows that b�(2A) = 0 �= b�(2A), and hence 2A /∈ dom(b).
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