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Abstract
We consider the family

̂Hμ := ̂Δ̂Δ − μ̂V , μ ∈ R,

of discrete Schrödinger-type operators in d-dimensional lattice Z
d , where ̂Δ is the

discrete Laplacian and ̂V is of rank-one. We prove that there exist coupling constant
thresholds μo, μ

o ≥ 0 such that for any μ ∈ [−μo, μo] the discrete spectrum of ̂Hμ

is empty and for any μ ∈ R \ [−μo, μo] the discrete spectrum of ̂Hμ is a singleton
{e(μ)}, and e(μ) < 0 for μ > μo and e(μ) > 4d2 for μ < −μo. Moreover, we
study the asymptotics of e(μ) as μ ↘ μo and μ ↗ −μo as well as μ → ±∞. The
asymptotics highly depends on d and ̂V .
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1 Introduction

In this paper we investigate the spectral properties of the perturbed discrete biharmonic
operator

̂Hμ := ̂Δ̂Δ − μ̂V , μ ∈ R, (1.1)

in the d-dimensional cubical lattice Zd , where ̂Δ is the discrete Laplacian and ̂V is
a is rank-one potential with a generating potential v̂. This model is associated to a
one-particle system in Zd with a potential field v̂, in which the particle freely “jumps”
from a node X of the lattice not only to one of its nearest neighbors Y (similar to the
discrete Laplacian case), but also to the nearest neighbors of the node Y . From the
mathematical point of view, the discrete bilaplacian represents a discrete Schrödinger
operator with a degenerate bottom, i.e., ̂Δ̂Δ is unitarily equivalent to a multiplication
operator by a function e which behaves as o(|p − p0|2) close to its minimum point
p0.

The spectral properties of discrete Schrödinger operators with non-degenerate bot-
tom (i.e., e behaves as O(|p − p0|2) close to its minimum point p0), in particular
with discrete Laplacian, have been extensively studied in recent years (see e.g. [1, 2,
7, 8, 10, 11, 20, 21, 23, 26, 28] and references therein) because of their applications
in the theory of ultracold atoms in optical lattices [16, 24, 35, 36]. In particular, it is
well-known that the existence of the discrete spectrum is strongly connected to the
threshold phenomenon [18, 20–22], which plays an role in the existence the Efimov
effect in three-body systems [31, 32, 34]: if any two-body subsystem in a three-body
system has no bound state below its essential spectrum and at least two two-body
subsystem has a zero-energy resonance, then the corresponding three-body system
has infinitely many bound states whose energies accumulate at the lower edge of the
three-body essential spectrum.

Recall that the Efimov effect may appear only for certain attractive systems of
particles [29]. However, recent experimental results in the theory of ultracold atoms
in an optical lattice have shown that two-particle systems can have repulsive bound
states and resonances (see e.g. [36]), thus, one expects the Efimov effect to hold also
for some repulsive three-particle systems in Z3.

The strict mathematical justification of the Effect effect including the asymptotics
for the number of negative eigenvalues of the three-body Hamiltonian has been suc-
cessfully established in 3-space dimensions (for both R

3 and Z
3) see e.g., [1, 4, 13,

19, 29, 31, 32, 34] and the references therein. In particular, the non-degeneracy of the
bottom of the (reduced) one-particle Schrödinger operator played an important role
in the study of resonance states of the associated two-body system [1, 31]. Another
keypoint in the proof of the Efimov effect in Z

3 was the asymptotics of the (unique)
smallest eigenvalue of the (reduced) one-particle discrete Schrödinger operator which
creates a singularity in the kernel of a Birman-Schwinger-type operator which used to
obtain an asymptotics to the number of three-body bound states.

To the best of our knowledge, there are no published results related to the Efi-
mov effect in lattice three-body systems in which associated (reduced) one-body
Schrödinger operator has degenerate bottom.
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Expansion of eigenvalues of the perturbed discrete bilaplacian 609

We also recall that fourth order elliptic operators inRd in particular, the biharmonic
operator, play also a central role in a wide class of physical models such as linear
elasticity theory, rigidity problems (for instance, construction of suspension bridges)
and in streamfunction formulation of Stokes flows (see e.g. [9, 25, 27] and references
therein). Moreover, recent investigations have shown that the Laplace and biharmonic
operators have high potential in image compressionwith the optimized and sufficiently
sparse stored data [15]. The need for corresponding numerical simulations has led to a
vast literature devoted to a variety of discrete approximations to the solutions of fourth
order equations [5, 12, 33]. The question of stability of suchmodels is basically related
to their spectral properties and therefore, numerous studies have been dedicated to the
numerical evaluation of the eigenvalues [3, 6, 30].

The aim of the present paper is the study of the existence and asymptotics of
eigenvalues as well as threshold resonance and bound states of ̂Hμ defined in (1.1),
which corresponds to the one-body Schrödinger operator with degenerate bottom.
Namely, we study the discrete spectrum of̂Hμ depending onμ and on v̂. For simplicity
we assume the generator v̂ of ̂V to decay exponentially at infinity, however, we urge
that our methods can also be adjusted to less regular cases (see Remark 2.6). Since the
spectrum of ̂Δ consists of [0, 2d] (see e.g., [1]), by the compactness of ̂V and Weyl’s
Theorem, the essential spectrum of ̂Hμ fills the segment [0, 4d2] independently of
μ. Moreover, the essential spectrum does not give birth to a new eigenvalue while μ

runs in some real interval [−μo, μo], and it turns out as soon as μ leaves this interval
through μo resp. through −μo, a unique negative resp. a unique positive eigenvalue
e(μ) releases from the essential spectrum (Theorem 2.2).

Now we are interested in the absorption rate of e(μ) as μ → μo and μ → −μo.

The associated asymptotics are highly dependent not only on the dimension d of the
lattice (as in the discrete Laplacian case [20, 21]), but also values on the multiplicity
2no and 2no of 0 ∈ {v = 0} (if v(0) = 0) and �π ∈ {v = 0} (if v(�π) = 0), respectively.
More precisely, depending on d and no, e(μ) has a convergent expansion

– in (μ − μo)
1/3 for 2no + d = 1, 7;

– in μ − μo for 2no + d = 3, 5;
– in (μ − μo)

1/4 for 2no + d ≥ 9 with d odd;
– in μ − μo and −(μ − μo) ln(μ − μo) for 2no + d = 2, 6;
– in μ − μo and e−1/(μ−μo) for 2no + d = 4;
– in (μ − μo)

1/2, −(μ − μo) ln(μ − μo), (− 1
ln(μ−μo)

)1/2 and − ln ln(μ−μo)
−1

ln(μ−μo)
for

2no + d = 8;
– in (μ − μo)

1/2 and −(μ − μo)
1/2 ln(μ − μo) for 2no + d ≥ 10 with d even

(see Theorem 2.4). Moreover, resonance states of 0-energy, i.e. non-zero solutions f
of ̂Hμo f = 0 not belonging to �2(Zd) appear if and only if 2no + d ∈ {5, 6, 7, 8}.
Recall that the emergence of 0-energy resonances in more lattice dimensions could
allow the Efimov effect to be observed in other dimensions than d = 3.

Furthermore, observing that the top e(�π) = 4d2 of the essential spectrum is non-
degenerate, one expects the asymptotics of e(μ) as μ → −μo to be similar as in the
discrete Laplacian case [20, 21]; more precisely, depending on d and no, e(μ) has a
convergent expansion

– in μ + μo for 2no + d = 1, 3;
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610 S. Yu. Kholmatov et al.

– in (μ + μo)1/2 for 2no + d ≥ 5 with d odd;
– in μ + μo and e−1/(μ+μo) for 2no + d = 2;
– in μ + μo, − 1

ln(μ+μo)
and − ln ln(μ+μo)−1

ln(μ+μo)
for 2no + d = 4;

– in μ + μo and −(μ + μo) ln(μ + μo) for 2no + d ≥ 6 with d even

(see Theorem 2.5). Moreover, the resonance states of energy 4d2, i.e. non-zero solu-
tions f of̂H−μo f = 4d2 f not belonging to �2(Zd) appear if and only if 2no+d = 3, 4.

The threshold analysis for more general class of nonlocal discrete Schrödinger
operators with δ-potential of type

̂Hμ = �(−̂Δ) + μδx0,

can be found in [14], where � is some strictly increasing C1-function and δx0 is the
Dirac’s delta-function supported at 0. Besides the existence of eigenvalues, authors of
[14] classify (embedded) threshold resonances and threshold eigenvalues depending
on the behaviour of � at the edges of the essential spectrum of −̂Δ and on the
lattice dimension d. The eigenvalue expansions for the discrete bilaplacian with δ-
perturbation have been established in [17] for d = 1 using the complex analytic
methods.

The paper is organized as follows. In Sect. 2 after introducing some preliminaries
we state the main results of the paper. In Theorem 2.2 we establish necessary and
sufficient conditions for non-emptiness of the discrete spectrum of ̂Hμ, and in case
of existence, we study the location and the uniqueness, analiticity, monotonicity and
convexity properties of eigenvalues e(μ) as a function ofμ. In particular, we study the
asymptotics of e(μ) as μ → μo and μ → −μo as well as μ → ±∞. As discussed
above in Theorems 2.4 and 2.5 we obtain expansions of e(μ) for small and positive
μ − μo and μ + μo. In Sect. 3 we prove the main results. The main idea of the proof
is to obtain a nonlinear equation �(μ; z) = 0 with respect to the eigenvalue z = e(μ)

of ̂Hμ and then study properties of �(μ; z). Finally, in appendix Section A we obtain
the asymptotics of certain integrals related to�(μ; z)which will be used in the proofs
of main results.

Data availability statement

We confirm that the current manuscript has no associated data.

2 Preliminary andmain results

Let Zd be the d-dimensional lattice and �2(Zd) be the Hilbert space of square-
summable functions on Z

d . Consider the family

̂Hμ := ̂H0 − μ̂V , μ ≥ 0,
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Expansion of eigenvalues of the perturbed discrete bilaplacian 611

of self-adjoint bounded discrete Schrödinger operators in �2(Zd). Here ̂H0 := ̂Δ̂Δ is
discrete bilaplacian, where

̂Δ f (x) = 1

2

∑

|s|=1

[ f (x) − f (x + s)], f ∈ �2(Zd),

is the discrete Laplacian, and ̂V is a rank-one operator

̂V ̂f (x) = v̂(x)
∑

y∈Zd

v̂(y)̂f (y),

where v̂ ∈ �2(Zd) \ {0} is a given real-valued function.
Let Td be the d-dimensional torus equipped with the Haar measure and L2(Td)

be the Hilbert space of square-integrable functions on T
d . By F we denote the the

standard Fourier transform

F : �2(Zd) → L2(Td), F ̂f (p) = 1

(2π)d/2

∑

x∈Zd

̂f (x)eixp.

Further we always assume that v̂ and its Fourier image

v(p) := F v̂(p) = 1

(2π)d/2

∑

x∈Zd

v̂(x)eix ·p

satisfy the following assumptions:

There exist reals C, a > 0 and nonnegative integersno, n
o ≥ 0 such that

|̂v(x)| ≤ Ce−a|x | for all x ∈ Z
d , (H1)

|v(0)|2 = D2|v(0)|2 = . . . = D2no−2|v(0)|2 = 0, D2no |v(0)|2 
= 0, (H2)

|v(�π)|2 = D2|v(�π)|2 = . . . = D2no−2|v(�π)|2 = 0, D2no |v(�π)|2 
= 0, (H3)

here D j f (p) is the j-th order differential of f at p, i.e. the j-th order symmetric
tensor

D j f (p)[w, . . . , w
︸ ︷︷ ︸

j−times

] =
∑

i1+...+id= j,ik≥0

∂ j f (p)

∂ i1 p1 . . . ∂ id pd
w
i1
1 . . . w

id
d ,

w = (w1, . . . , wd) ∈ R
d ,

and �π = (π, . . . , π) ∈ T
d . Notice that under assumption (H1), v is analytic on T

d .

Recall that σ(̂Δ) = σess(̂Δ) = [0, 2d] (see e.g. [1]). Hence, σ(̂H0) = σess(̂H0) =
[0, 4d2], and by the compactness of ̂V and Weyl’s Theorem,

σess(̂Hμ) = σess(̂H0) = [0, 4d2]
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612 S. Yu. Kholmatov et al.

for any μ ∈ R.

Before stating the main results let us introduce the constants

μo :=
(

∫

Td

|v(q)|2dq
e(q)

)−1
, μo :=

(

∫

Td

|v(q)|2dq
4d2 − e(q)

)−1
, (2.2)

ĉv :=
∫

Td

|v(q)|2dq
e(q)2

, ̂Cv :=
∫

Td

|v(q)|2dq
(4d2 − e(q))2

, (2.3)

and

cv :=22no+d

(2no)!
∫

Sd−1
D2no |v(0)|2[w, . . . , w] dHd−1(w), (2.4)

Cv := 22n
o+d−1

(8d)n
o+d/2 (2no)!

∫

Sd−1
D2no |v(�π)|2[w, . . . , w] dHd−1(w), (2.5)

where Sd−1 is the unit sphere in Rd and

e(q) :=
(

d
∑

i=1

(1 − cos qi )

)2

.

Remark 2.1 Under assumptions (H1)–(H3), μo, μ
o ≥ 0, cv,Cv > 0, and ĉv, ̂Cv ∈

(0,+∞]. Moreover, by Propositions A.1 and A.2:

– μo = 0 (resp. μo = 0) if and only if 2no + d ≤ 4 (resp. 2no + d ≤ 2);
– ĉv < ∞ (resp. ̂Cv < ∞) if 2no + d ≥ 9 (resp. 2no + d ≥ 5).

2.1 Main results

First we concern with the existence of the discrete spectrum of ̂Hμ.

Theorem 2.2 Let μo, μ
o ≥ 0 be given by (2.2). Then σdisc(̂Hμ) = ∅ for any μ ∈

[−μo, μo] and σdisc(̂Hμ) is a singleton {e(μ)} for any μ ∈ R \ [−μo, μo]. Moreover,
the associated eigenfunction ̂fμ to e(μ) is given by ̂fμ := F∗ fμ, where

fμ(p) = v(p)

e(p) − e(μ)
.

Furthermore, if μ < −μo (resp. μ > μo), then e(μ) > 4d2 (resp. e(μ) < 0).
Moreover, the functionμ ∈ R\[−μo, μo] 
→ e(μ) is real-analytic strictly decreasing,
convex in (−∞,−μo) and concave in (μo,+∞), and satisfies

lim
μ↘μo

e(μ) = 0 and lim
μ↗−μo

e(μ) = 4d2 (2.6)
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Expansion of eigenvalues of the perturbed discrete bilaplacian 613

and

lim
μ→±∞

e(μ)

μ
= −

∫

Td
|v(q)|2dq. (2.7)

Next we study the threshold resonances of ̂Hμ.

Theorem 2.3 Let no, no ≥ 0 be given by (H2)–(H3).

(a) Let 2no + d ≥ 5. Then ̂f := F∗ f ∈ c0(Zd), i.e., ̂f (x) → 0 as |x | → +∞,

where

f (p) = v(p)

e(p)
∈ L1(Td).

Moreover, ̂f ∈ c0(Zd) \ �2(Zd) for 2no + d ∈ {5, 6, 7, 8}, ̂f ∈ �2(Zd) for
2no + d ≥ 9, and ̂f solves the equation ̂Hμo f = 0.

(b) Let 2no + d ≥ 3. Then ĝ := F∗g ∈ �0(Zd), where

g(p) = v(p)

4d2 − e(p)
.

Moreover, ĝ ∈ �0(Zd)\�2(Zd) for 2no +d ∈ {3, 4}, ĝ ∈ �2(Zd) for 2no +d ≥ 5,
and ĝ solves the equation ̂H−μo f = 4d2 f .

We recall that in the literature the non-zero solutions of equations ̂Hμ
̂f = 0 and

̂Hμĝ = 4d2 ĝ not belonging to �2(Zd) are called the resonance states [1, 2].
Now we study the rate of the convergences in (2.6).

Theorem 2.4 (Expansions of e(μ) at μ = μo) For μ > μo let e(μ) < 0 be the
eigenvalue of ̂Hμ.

(a) Suppose that d is odd:

(a1) if 2no + d = 1, 3, then μo = 0 and for sufficiently small and positive μ,

(−e(μ))1/4 =

⎧

⎪

⎨

⎪

⎩

(

πcv
4

)1/3
μ1/3 + ∑

n≥1
c1,nμ

n+1
3 , 2no + d = 1,

πcv
8 μ + ∑

n≥1
c3,nμn+1, 2no + d = 3,

where {c1,n} and {c3,n} are some real coefficients;
(a2) if 2no +d = 5, 7, then μo > 0 and for sufficiently small and positive μ−μo,

(−e(μ))1/4

=

⎧

⎪

⎨

⎪

⎩

8
πcvμ2

o
(μ − μo) + ∑

n≥1
c5,n(μ − μo)

n+1, 2no + d = 5,

(

8
πcvμ2

o

)1/3
(μ − μo)

1/3 + ∑

n≥1
c7,n(μ − μo)

n+1
3 , 2no + d = 7,

where {c5,n} and {c7,n} are some real coefficients;
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614 S. Yu. Kholmatov et al.

(a3) if 2no + d ≥ 9, then μo > 0 and for sufficiently small and positive μ − μo,

(−e(μ))1/4 = (μ2
oĉv)

−1/4 (μ − μo)
1/4 +

∑

n≥1

c9,n(μ − μo)
n/4,

where {c9,n} are some real coefficients.
(b) Suppose that d is even:

(b1) if 2no + d = 2, 4, then μo = 0 and for sufficiently small and positive μ,

(−e(μ))1/2

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

πcv
8 μ + ∑

n+m≥1,n,m≥0
c2,nmμn+1(−μ lnμ)m, 2no + d = 2,

ce− 8
cvμ + ∑

n+m≥1,n,m≥0
c4,nmμn+1

(

1
μ
e− 8

cvμ

)m+1
, 2no + d = 4,

where {c2,nm} and {c4,nm} are some real coefficients and c > 0;
(b2) if 2no +d = 6, 8, then μo > 0 and for sufficiently small and positive μ−μo,

(−e(μ))1/2

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

8
πcvμ2

o
τ 2 + ∑

n+m≥1,n,m≥0
c6,nmτ 2n+2θm, 2no + d = 6,

(

8
cvμ2

o

)1/2
τσ + ∑

n+m+k≥1,n,m,k≥0
c8,nmkτ

n+1σm+1ηk, 2no + d = 8,

where {c4,nm} and {c8,nmk} are some real coefficients and

τ := (μ − μo)
1/2, θ := −τ 2 ln τ, σ :=

(

− 1

ln τ

)1/2
, η := − ln ln τ−1

ln τ
,

(2.8)

(b3) if 2no + d ≥ 10, then μo > 0 and for sufficiently small and positive μ − μo,

(−e(μ))1/2 = (μ2
oĉv)

−1/2 τ +
∑

n+m≥1,n,m≥0

c10,nmτ n+1θm,

where {c10,nm} are some real coefficients.
Here cv > 0 and ĉv > 0 are given by (2.4) and (2.3), respectively.

Theorem 2.5 (Expansions of e(μ) at μ = −μo) For let μ < −μo let e(μ) > 4d2

be the eigenvalue of ̂Hμ.

(a) Suppose that d is odd:
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Expansion of eigenvalues of the perturbed discrete bilaplacian 615

(a1) if 2no + d = 1, then μo = 0 and for sufficiently small and negative μ,

(e(μ) − 4d2)1/2 = −πCv μ +
∑

n≥1

C1,nμ
n+1,

where {C1,n} are some real coefficients;
(a2) if 2no + d = 3, then μo > 0 and for sufficiently small and positive μ + μo,

(e(μ) − 4d2)1/2 = (πCvμ
o2)−1 (μ + μo) +

∑

n≥1

C3,n(μ + μo)n+1,

where {C3,n} and {C7,n} are some real coefficients;
(a3) if 2no + d ≥ 5, then μo > 0 and for sufficiently small and positive μ + μo,

(e(μ) − 4d2)1/2 = (̂Cvμ
o2)−1/2 (μ + μo)1/2 +

∑

n≥1

C5,n(μ + μo)(n+1)/2,

where {C5,n} are some real coefficients.
(b) Suppose that d is even:

(b1) if 2no + d = 2, then μo = 0 and for sufficiently small and negative μ,

e(μ) − 4d2 = C e
1

Cvμ +
∑

n+m≥1,n,m≥0

C2,nmμn+1
(

− 1

μ
e

1
Cvμ

)m+1

,

where {C2,nm} are some real coefficients and C > 0;
(b2) if 2no + d = 4, then μo > 0 and for sufficiently small and positive μ + μo,

e(μ) − 4d2 = (Cvμ
o2)−1 μσ +

∑

n+m+k≥1,n,m,k≥0

C4,nmkτ
n+1σm+1ηk,

where {C4,nm} are some real coefficients and

τ := μ + μo, σ := − 1

ln τ
, η := − ln ln τ−1

ln τ
;

(b3) if 2no + d ≥ 6, then μo > 0 and for sufficiently small and positive μ + μo,

e(μ) − 4d2 = (̂Cvμ
o2)−1 (μ + μo)

+
∑

n+m≥1,n,m≥0

C6,nm(μ + μo)n+1[−(μ + μo) ln(μ + μo)]m,

where {C6,nm} are some real coefficients.
Here Cv and ̂Cv are given by (2.5) and (2.3), respectively.
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Remark 2.6 Few comments on the main results are in order.

1. The assertions of Theorem 2.2 hold in fact for any v̂ ∈ �2(Zd) (see Remark 3.2);
2. Similar expansions of e(μ) in Theorems 2.4 and 2.5 at μ = μo and μ = −μo,

respectively, still hold for any exponentially decaying v̂ : Z
d → C (see

Remark 3.3);
3. If v̂ decays at most polynomially at infinity, i.e. v̂(x) = O(|x |−α) for some α > 0,

then instead of the expansions in Theorem 2.4 and 2.5 we obtain only asymptotics
of e(μ) (see Remark 3.4).

3 Proof of main results

In this section we prove the main results. By the Birman-Schwinger principle and the
Fredholm Theorem we have

Lemma 3.1 A complex number z ∈ C \ [0, 4d2] is an eigenvalue of ̂Hμ if and only if

�(μ; z) := 1 − μ

∫

Td

|v(q)|2dq
e(q) − z

= 0.

Proof of Theorem 2.2 By the definition of μo, for any μ < −μo :

lim
z↗−μo

�(μ; z) = 1 + μ

μo
< 0, lim

z→+∞ �(μ; z) = 1.

Since �(μ; z) > 1 for z < 0 and μ > −μo, in view of the strict monotonicity
�(μ; ·) in (4d2,∞), for any μ < −μo there exists a unique e(μ) ∈ (4d2,+∞) such
that �(μ; e(μ)) = 0. Analogously, for any μ > μo there exists a unique e(μ) ∈
(−∞, 0) such that �(μ; e(μ)) = 0. By the Implicit Function Theorem the function
μ ∈ R \ [−μo, μo] 
→ e(μ) is real-analytic. Moreover, computing the derivatives of
the implicit function e(μ) we find:

e′(μ) = − 1

μ

∫

Td

|v(q)|2dq
e(q) − e(μ)

(

∫

Td

|v(q)|2dq
(e(q) − e(μ))2

)−1
, μ 
= 0, (3.1)

thus, using μ(e(q) − e(μ)) > 0 we get e′(μ) < 0, i.e. e(·) is strictly decreasing in
R \ {0}. Differentiating (3.1) one more time we get

e′′(μ) = 2e′(μ)

μ

(

1 − μe′(μ)

∫

Td

|v(q)|2dq
(e(q) − e(μ))3

(∫

Td

|v(q)|2dq
(e(q) − e(μ))2

)−1
)

.

Therefore, e′′(μ) > 0 (i.e. e(·) is strictly convex) for μ < 0 and e′′(μ) < 0 (i.e. e(·)
is strictly concave) for μ > 0.

To prove (2.7), first we let μ → ±∞ in

1 = μ

∫

Td

|v(q)|2dq
e(q) − e(μ)

(3.2)
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Expansion of eigenvalues of the perturbed discrete bilaplacian 617

and find lim
μ→±∞ e(μ) = ∓∞. In particular, if |μ| is sufficiently large, | e(q)

e(μ)
| < 1

2 and

hence, by (3.2) and the Dominated Convergence Theorem,

lim
μ→±∞

e(μ)

μ
= − lim

μ→±∞

∫

Td

|v(q)|2dq
1 − e(q)

e(μ)

= −
∫

Td
|v(q)|2dq.

To prove that ̂fμ solves ̂Hμ
̂fμ = e(μ)̂fμ we consider the equivalent equality

F̂HμF∗ fμ = e(μ) fμ, which is easily reduced to the equality �(μ; e(μ)) = 0.
��

Remark 3.2 In view of Lemma 3.1 and the proof of Theorem 2.2, their assertions still
hold for any v ∈ �2(Zd).

Proof of Theorem 2.3 We prove only (a), the proof of (b) being similar. Repeating the
proof of the continuity (resp. differentiability) of l f at z = 0 in Proposition A.1 one
can show that f ∈ L1(Td) \ L2(Td) for 2no + d ∈ {5, 6, 7, 8} and f ∈ L2(Td) for
2no + d ≥ 9. Thus, by the Riemann-Lebesgue Lemma, ̂f ∈ �0(Zd). To show that
̂Hμo

̂f = 0 it suffices to observe that F̂Hμ0F∗ f = 0. ��
Proof of Theorem 2.4 Since

|v(p)|2 = (2π)−d

⎛

⎝

∑

x∈Zd

v̂(x) cos p · x
⎞

⎠

2

+ (2π)−d

⎛

⎝

∑

x∈Zd

v̂(x) sin p · x
⎞

⎠

2

,

(3.3)

the function p ∈ T
d 
→ |v(p)|2 is nonnegative even real-analytic function. Notice

also that if no ≥ 1, then by the nonnegativity of |v|2, p = 0 is a global minimum for
|v|2. Therefore, the tensor D2no |v(0)|2 is positively definite and

cv := 22no+d

(2no)!
∫

Sd−1
D2no |v(0)|2[w, . . . , w]dHd−1 > 0.

Note that

ĉv = l′|v|2(0) =
∫

Td

|v(q)|2dq
e(q)2

,

where l f is defined in (A.1). By Proposition A.1, f (p) = v(p)
e(p) ∈ L2(Td) if and only

if 2no + d ≥ 9. Moreover, by definition, μo > 0 and �(μo; 0) = 0 for 2no + d ≥ 5,
and hence, as in the proof of Lemma 3.1 for such d one can show that Hμo f = 0.

In view of the strict monotonicity and (2.6) there exists a unique μ1 > 0 such that
e(μ) ∈ (− 1

128 , 0) for any μ ∈ (0, μ1). Since

μ = (l|v|2(e(μ)))−1, (3.4)
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618 S. Yu. Kholmatov et al.

we can use Proposition A.1 with f = |v|2 and e := e(μ), to find the expansions of
the inverse functionμ := μ(e). Then applying the appropriate versions of the Implicit
Function Theorem in analytical case we get the expansions of e = e(μ). Notice that
from (A.3) and (A.4) as well as (3.5) it follows that μo = 0 for 2no + d ≤ 4 and

μo =
(

∫

Td
|v(q)|2dq

e(q)

)−1
> 0 for 2no + d ≥ 5.

(a) Suppose that d is odd. In view of the expansions (A.3) of l f , in this case, (3.4)
is reduced to the inverting the equation

μ = g(α), (3.5)

where α := (−e)1/4 and g is an analytic function around α = 0.
Case 2no + d = 1. In this case by (A.3),

g(α) := α3

c31 +∑

n≥1 anα
n
,

where {an} ⊂ R and c1 := (πcv/4)1/3 and (3.5) is equivalently represented as

α = μ

⎛

⎝c31 +
∑

n≥1

anα
n

⎞

⎠

1/3

, (3.6)

where μ = μ1/3. Now setting

α = μ(c1 + u), (3.7)

and using the Taylor series of (c31 + x)1/3, for μ and u sufficiently small we rewrite
(3.6) as

F(u, μ) := u −
∑

n≥1

ãnμ
n(c1 + u)n = 0, (3.8)

where F(·, ·) is analytic at (u, μ) = (0, 0), F(0, 0) = 0 and Fu(0, 0) = 1. Hence, by
the Implicit Function Theorem, there exists γ1 > 0 such that for |μ| < γ1, (3.8) has
a unique real-analytic solution u = u(μ) which can be represented as an absolutely
convergent series u = ∑

n≥1 bnμ
n . Putting this in (3.7) and recalling the definitions

of α and μ we get the expansion of (−e(μ))1/4 for μ > 0 small.
Case 2no + d = 3. By (A.3),

g(α) = α

⎛

⎝c3 +
∑

n≥1

anα
n

⎞

⎠

−1

, (3.9)

123



Expansion of eigenvalues of the perturbed discrete bilaplacian 619

where {an} ⊂ R and c3 := πcv/8, and hence, (3.5) is represented as

α = μ

⎛

⎝c3 +
∑

n≥1

anα
n

⎞

⎠ .

Then setting α = μ(c3 + u) we rewrite (3.9) in the form (3.8), and as in the case of
2no + d = 1, we get the expansion of (−e(μ))1/4.

Case 2no + d = 5. In this case by (A.3)

g(α) =
⎛

⎝

1

μo
− πcvα

8

⎛

⎝1 +
∑

n≥1

anα
n

⎞

⎠

⎞

⎠

−1

,

where {an} ⊂ R, and hence, by (3.5),

μ − μo

μμo
= πcvα

8

⎛

⎝1 +
∑

n≥1

anα
n

⎞

⎠ . (3.10)

Note that if |μ − μo| < μo, then

μ − μo

μμo
= μ − μo

μo
2 + μo(μ − μo)

= μ − μo

μo
2

∑

n≥0

(

μ − μo

μo

)n

, (3.11)

thus from (3.10) we get

α = (μ − μo)

⎛

⎝c5 + c5
∑

n≥1

μ−n
o (μ − μo)

n

⎞

⎠

⎛

⎝1 +
∑

n≥1

anα
n

⎞

⎠

−1

.

and c5 := 8/(πcvμ
2
o). Now setting α = (μ − μo) (c5 + u) for sufficiently small and

positive μ − μo we get

u =
∑

n,m≥1

c̃n,m(μ − μo)
n(c5 + u)m,

where c̃n,m ⊂ R.By the Implicit Function Theorem, for sufficiently smallμ−μo there
exists a unique real-analytic function u = u(μ) given by the absolutely convergent
series u(μ) = ∑

n≥1
bn(μ − μo)

n . By the definition of α, this implies the expansion of

(−e(μ))1/4.
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620 S. Yu. Kholmatov et al.

Case 2no + d = 7. As the previous case, by (A.3) and (3.11), the equation (3.5) is
represented as

(μ − μo)

⎛

⎝c37 + c37
∑

n≥1

μ−n
o (μ − μo)

n

⎞

⎠ = α3

⎛

⎝1 +
∑

n≥1

anα
n

⎞

⎠ , (3.12)

where {an} ⊂ R and c7 := [8/(πcvμ
2
o)]1/3. When μ − μo > 0 is small enough, by

the Taylor series of (1 + x)±1/3 at x = 0, (3.12) is equivalently rewritten as

α = (μ − μo)
1/3

⎛

⎝c7 +
∑

n≥1

c̃n(μ − μo)
n

⎞

⎠

⎛

⎝1 +
∑

n≥1

ãnα
n

⎞

⎠ , (3.13)

Thus, for ρ = (μ − μo)
1/3, setting α = ρ (c7 + u) in (3.13), for sufficiently small

and positive ρ we get

u =
∑

n,m≥1

c̃n,mρn(c7 + u)m .

By the Implicit Function Theorem, this equation has a unique real-analytic solution
u = u(ρ) given by the absolutely convergent series u = ∑

n≥1
bnρn . This, definitions

of α and ρ imply the expansion of (−e(μ))1/4.

Case 2no + d = 9. In this case by (A.3) and (3.11)

(μ − μo)

⎛

⎝c49 + c49
∑

n≥1

μ−n
o (μ − μo)

n

⎞

⎠ = α4

⎛

⎝1 +
∑

n≥1

anα
n

⎞

⎠ , (3.14)

where {an} ⊂ R and c9 := (μ2
oĉv)

−1/4.Thus, for sufficiently small and positiveμ−μo

using the Taylor series of (1+ x)±1/4 at x = 0, this equation can also be represented
as

α = ρ

⎛

⎝c9 +
∑

n≥1

b̃nρ
4n

⎞

⎠

⎛

⎝1 +
∑

n≥1

ãnα
n

⎞

⎠ ,

where ρ := (μ − μo)
1/4. Now setting α = ρ(c9 + u) in (3.14) we get

u =
∑

n,m≥1

c̃n,mρn(c9 + u)m,

and the expansion of (−e(μ))1/4 follows as in the case of 2no + d = 7.
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Expansion of eigenvalues of the perturbed discrete bilaplacian 621

(b) Suppose that d is even. In view of the expansion (A.3) of l f , in this case, (3.4)
is reduced to the inverting the equation

μ = αl

g(α) + h(α) ln α
, (3.15)

where α := (−e)1/2, l ∈ N0, and g and h are analytic around α = 0. Presence of
ln α implies that unlike the case of odd dimensions, α is not necessarily analytic with
respect to μs . Therefore, we need to introduce new variables dependent on lnμ to
reduce the problem to the Implicit Function Theorem.

Case 2no + d = 2. By (A.4), in this case for c2 := πcv/8

l = 1, g(α) = c2 +
∑

n≥1

anα
n, h(α) =

∑

n≥1

bnα
2n .

Hence, setting

α = μ(c2 + u) (3.16)

and τ = −μ lnμ we represent (3.15) as

F(u, μ, τ) := u −
∑

n≥1

anμn(c2 + u)n + ln(c2 + u)
∑

n≥1

bnμn(c2 + u)n

− τ
∑

n≥1

bnμn−1(c2 + u)n = 0,

where F is analytic around (0, 0, 0), F(0, 0, 0) = 0, Fu(0, 0, 0) = 1. Hence, by the
Implicit Function Theorem, there exists a unique real-analytic function u = u(μ, τ)

given by the convergent series u(μ, τ) = ∑

n+m≥1,n,m≥0 c̃n,mμnτm for sufficiently
small |μ| and |τ |, which satisfies F(u(μ, τ), μ, τ) ≡ 0. Inserting u in (3.16) we get
the expansion of α = (−e)1/2.

Case 2no + d = 4. In this case, by (A.4) for c4 := 8/cv

l = 0, g(α) =
∑

n≥0

anαn, h(α) = −c4 +
∑

n≥1

bnα
2n .

Letting α = e
− 1

c4μ (c + u), where c = ea0/c4 > 0, we represent (3.15) as

ln(c + u) − b0 = 1

μ
e
− 1

c4μ
∑

n≥1

ane
− n−1

c4μ (c + u)n

+ ln(c + u)
∑

n≥1

bne
− n

c4μ (c + u)n −
∑

n≥1

ane
− n

c4μ (c + u)n = 0.

(3.17)
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622 S. Yu. Kholmatov et al.

Writing τ := 1
μ
e
− 1

c4μ so that e
− 1

c4μ = μτ, (3.17) is represented as

F(u, μ, τ) := ln(c + u) − b0 − μ
∑

n≥1

anμn−1τ n−1(c + u)n

− ln(c + u)
∑

n≥1

bnμnτ n(c + u)n +
∑

n≥1

anμnτ n(c + u)n = 0,

where F is analytic around (0, 0, 0), F(0, 0, 0) = 0, and Fu(0, 0, 0) = 1
c > 0.

Thus, by the Implicit Function Theorem, for |μ|, |τ | and |u| small there exists a
unique real analytic function u = u(μ, τ) given by the convergent series u =

∑

n+m≥1,n,m≥0
c̃n,mμnτm such that F(u(μ, τ), μ, τ) ≡ 0. Since τ = 1

μ
e
− 1

c4μ , this

implies

α = e
− 1

c4μ (c + u) = ce
− 1

c4μ +
∑

n+m≥1,n,m≥0

c̃n,mμn+1
(

1

μ
e
− 1

c4μ

)m+1

.

Case 2no + d = 6. In this case, by (A.4), for c6 := 8/(πcvμ
2
o)

l = 0, g(α) = 1

μo
− 1

c6μ2
o

⎛

⎝α +
∑

n≥2

anα
n

⎞

⎠ , h(α) = 1

c6μ2
o

∑

n≥1

bnα
2n,

and hence, (3.15) is represented as

1

μ
− 1

μo
= 1

c6μ2
o

⎛

⎝α +
∑

n≥2

anα
n + ln α

∑

n≥1

bnα
2n

⎞

⎠ ,

or equivalently, by (3.11),

α = c6(μ − μo)
∑

n≥0

(

μ − μo

μo

)n

−
∑

n≥2

anα
n − ln α

∑

n≥1

bnα
2n . (3.18)

Recalling the definitions of τ and θ in (2.8), setting α = τ 2 (c6 + u), we represent
(3.18) as

F(u, τ, θ) := u − c6
∑

n≥1

τ 2n

μn
o

−
∑

n≥2

anτ
2n−2(c6 + u)n

− ln(c6 + u)
∑

n≥1

bnτ
4n(c6 + u)2n − θ

∑

n≥1

bnτ
4n−4(c6 + u)2n = 0,

123



Expansion of eigenvalues of the perturbed discrete bilaplacian 623

where F is real-analytic around (0, 0, 0), F(0, 0, 0) = 0 and Fu(0, 0, 0) = 1, and F
is even in τ. Thus, by the Implicit Function Theorem, for |u|, |τ | and |θ | small there
exists a unique real analytic function u = u(τ, θ), even in τ, given by the convergent
series u = ∑

n+m≥1,n,m≥0
c̃n,mτ 2nθm such that F(u(τ, θ), τ, θ) ≡ 0. Thus,

α = τ 2 (c6 + u) = c6σ +
∑

n+m≥1,n,m≥0

c̃n,mτ 2n+2θm .

Case 2no + d = 8. By (A.4), for c8 := [8/cvμ
2
o]−1/2,

l = 0, g(α) = 1

μ2
oc

2
8

∑

n≥2

anα
n, h(α) = 1

μ2
oc

2
8

⎛

⎝α2 +
∑

n≥2

bnα
2n

⎞

⎠ ,

thus, as in the case of 2no + d = 6, (3.15) is represented as

c28(μ − μo)
∑

n≥0

(

μ − μo

μo

)n

= α2 ln α + ln α
∑

n≥2

bnα
2n +

∑

n≥2

anα
n . (3.19)

For τ, σ and η given in (2.8) set α = τσ (c8 + u) and represent (3.19) as

2c8u + u2 =c28
∑

n≥1

τ 2n

μn
o

+
∑

n≥2

anτ
n−1σ n+1(c8 + u)n+2

−
∑

n≥2

bn(τσ )2n−2(c8 + u)2n+2

+
(

σ 2 ln(c8 + u) − η

2

)

⎛

⎝(c8 + u)2 +
∑

n≥2

bn(τσ )2n−2(c8 + u)2n+2

⎞

⎠ .

This equation is represented as F(u, τ, σ, η) = 0, where F is real-analytic in a
neighborhood of (0, 0, 0, 0), F(0, 0, 0, 0) = 0 and Fu(0, 0, 0, 0) = 2c8 > 0.
Hence, for |u|, |τ |, |σ | and |η| small, by the Implicit Function Theorem, there
exists a unique real-analytic function u = u(τ, σ, η) given by the convergent series
u = ∑

n+m+k≥1,n,m,k≥0
c̃n,m,kτ

nσmμk such that F(u(τ, σ, η), τ, σ, η) ≡ 0. Thus,

α = τσ (c8 + u) = c8τσ +
∑

n+m+k≥1,n,m,k≥0

c̃n,m,kτ
n+1σm+1ηk .

Case 2no + d ≥ 10. By (A.4) for c10 := (μ2
oĉv)

−1/2,

l = 0, g(α) = 1

μo
+ ĉvα

2 +
∑

n≥2

anα
n+2, h(α) =

∑

n≥2

bnα
2n,
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and as in the case of 2no + d = 6, (3.15) is represented as

μ − μo

μ2
o

∑

n≥0

(

μ − μo

μo

)n

= ĉvα
2 +

∑

n≥2

anα
n+2 + ln α

∑

n≥2

bnα
2n . (3.20)

Recalling the definitions of τ and θ in (2.8), we set α = τ(c10 + u). Then (3.20) is
represented as

F(u, τ, θ) :=2c10u + u2 − c210
∑

n≥1

τ 2n

μn
o

+
∑

n≥2

anτ
n(c10 + u)n+2

− θ
∑

n≥2

bnτ
2n−4(c8 + u)2n + ln(c10 + u)

∑

n≥2

bnτ
2n−2(c8 + u)2n = 0,

where F is analytic at (0, 0, 0), F(0, 0, 0) = 0 and Fu(0, 0, 0) = 2c10 > 0.
Thus, by the Implicit Function Theorem, for |u|, |τ | and |θ | small there exists
a unique real-analytic function u = u(τ, θ) given by the convergent series u =

∑

n+m≥1,n,m≥0
c̃n,mτ nθn such that F(u(τ, θ), τ, θ) ≡ 0. Then

α = μ(c10 + u) = c10μ +
∑

n+m≥1,n,m≥0

c̃n,mμn+1θn .

Theorem is proved. ��

Proof of Theorem 2.5 From (3.3) it follows that the map p ∈ T
d 
→ |v|2(�π + p) is

even. Now the expansions of e(μ) at μ = −μo can be proven along the same lines of
Theorem 2.4 using Proposition A.2 with f = |v|2. ��

Remark 3.3 Let v̂ : Zd → C satisfy (H1). Since e(·) is even,
∫

Td

|v(p)|2dp
e(p) − z

= 1

(2π)d

∫

Td

f (p)dp

e(p) − z
,

where

f (p) :=
⎛

⎝

∑

x∈Zd

v̂1(x) cos p · x
⎞

⎠

2

+
⎛

⎝

∑

x∈Zd

v̂2(x) cos p · x
⎞

⎠

2

+
⎛

⎝

∑

x∈Zd

v̂1(x) sin p · x
⎞

⎠

2

+
⎛

⎝

∑

x∈Zd

v̂2(x) sin p · x
⎞

⎠

2
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and v̂ = v̂1 + i v̂2 for some v̂1, v̂2 : Zd → R. By Lemma 3.1, the unique eigenvalue
e(μ) of Hμ solves

1 − μ

∫

Td

f (p)dp

e(p) − e(μ)
= 0.

Since both p ∈ T
d 
→ f (p) and p ∈ T

d 
→ f (�π + p) are even analytic functions,
we can still apply Propositions A.1 and A.2 to find the expansions of z 
→ ∫

Td
f (p)dp
e(p)−z

and thus, repeating the same arguments of the proofs of Theorems 2.4 and 2.5 one can
obtain the corresponding expansions of e(μ).

Remark 3.4 When

|̂v(x)| = O(|x |2n0+d+1) as |x | → ∞

for some n0 ≥ 1, in view of Remark A.3, we need to solve equation (3.4) with respect
toμ using only that left-hand side is an asymptotic sum (not a convergent series). This
still can be done using appropriate modification of the Implicit Function Theorem for
differentiable functions. As a result, we obtain only (Taylor-type) asymptotics of e(μ).
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Appendix A. Asymptotics of some integrals

In this section we study the behaviour of the integral

l f (z) :=
∫

Td

f (q)dq

e(q) − z
, z ∈ C \ [0, 4d2], (A.1)

as z → 0 and z → 4d2, where f : Td → R is a real-analytic even function on T
d .

Further we denote byWr (ξ) ⊂ C the complex disc of radius r > 0 centered at ξ ∈ C.

Proposition A.1 Let f : Td → R be a real-analytic even function such that

f (0) = D2 f (0) = . . . = D2no−2 f (0) = 0, D2no(0) 
= 0 (A.2)
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for some no ≥ 0. Then:

– l f is continuous at 0 if and only if 2no + d ≥ 5;
– l f is continuously differentiable at 0 if and only if 2n + d ≥ 9, in this case,

l′f (0) :=
∫

Td

f (q)dq

(e(q))2
= lim

z↘0

∫

Td

f (q)dq

(e(q) − z)2
.

Moreover, for any z ∈ (− 1
64 , 0) :

(a) if d is odd, then

l f (z) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

π
4(−z)3/4

(

c f + ∑

n≥1
adn (−z)n/4

)

, 2no + d = 1,

π
8(−z)1/4

(

c f + ∑

n≥1
adn (−z)n/4

)

, 2no + d = 3,

l f (0) − π(−z)1/4

8

(

c f + ∑

n≥1
adn (−z)n/4

)

, 2no + d = 5,

l f (0) − π(−z)3/4

8

(

c f + ∑

n≥1
adn (−z)n/4

)

, 2no + d = 7,

l f (0) + z

(

l′f (0) + ∑

n≥1
adn (−z)n/4

)

, 2no + d ≥ 9,

(A.3)

(b) if d is even, then

l f (z) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

π
8(−z)1/2

(

c f + ∑

n≥1
bdn (−z)n/2

)

− 1
16 ln(−z)

∑

n≥0
cdn z

n, 2no + d = 2,

− 1
16 ln(−z)

(

c f + ∑

n≥1
cdn z

n

)

+ ∑

n≥0
bdn (−z)n/2, 2no + d = 4,

l f (0) − π(−z)1/2

8

(

c f + ∑

n≥1
bdn (−z)n/2

)

+ z ln(−z)
∑

n≥0
cdn z

n, 2no + d = 6,

l f (0) − z
16 ln(−z)

(

c f + ∑

n≥1
cdn z

n

)

+ ∑

n≥2
bdn (−z)n/2, 2no + d = 8,

l f (0) + z

(

l′f (0) + ∑

n≥1
bdn (−z)n/2

)

+ z2 ln(−z)
∑

n≥0
cdn z

n, 2no + d ≥ 10,

(A.4)

where {adn }, {bdn } and {cdn } are some real coefficients,

c f := 22no+d

(2no)!
∫

Sd−1
D2no f (0)[w, . . . , w]dHd−1; (A.5)

and all series in (A.3) and (A.4) converge absolutely for z ∈ W1/64(0) ⊂ C.
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Proof Given γ ∈ (0, 1√
2
], let ϕ : Bγ (0) ⊂ R

d → ϕ(Bγ (0)) ⊂ R
d be the smooth

diffeomorphism

ϕi (y) = 2 arcsin yi , i = 1, . . . , d.

Note that

e(ϕ(y)) =
(

d
∑

i=1

(1 − cos(2 arcsin(yi )))

)2

= 4

(

d
∑

i=1

y2i

)2

= 4y4, (A.6)

therefore,

e(q) ≥ 4γ 4 for any q ∈ T
d \ ϕ(Bγ ). (A.7)

We rewrite l f (z) as

l f (z) :=
∫

ϕ(Bγ (0))

f (q)dq

e(q) − z
+
∫

Td\ϕ(Bγ (0))

f (q)dq

e(q) − z
:= l∗(z) + l∗∗(z).

By virtue of (A.7),

l∗∗(z) =
∫

Td\ϕ(Bγ (0))

f (q)

e(q)

(

1 − z

e(q)

)−1

dq =
∑

n≥0

zn
∫

Td\ϕ(Bγ (0))

f (q)dq

(e(q))n+1 ,

(A.8)

i.e. l∗∗(·) is analytic in W2γ 4(0). In l∗ making the change of variables q = ϕ(y) and
using (A.6) we get

l∗(z) =
∫

Bγ (0)

f (ϕ(y)) J (ϕ(y)) dy

4y4 − z
, (A.9)

where y4 := (y2)2 with y2 := ∑d
i=1 y

2
i , and

J (ϕ(y)) =
d
∏

i=1

2
√

1 − y2i

(A.10)

is the Jacobian of ϕ. Since f is an even analytic function satisfying (A.2), even each
coordinate, from the Taylor series for f it follows that

f (p) =
∑

n≥no

1

(2n)! D
2n f (0)[p, . . . , p

︸ ︷︷ ︸

2n-times

], (A.11)
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and by the analyticity of f in Bπ (0) ⊂ R
d , the series converges absolutely in

p ∈ Bπ (0). By the definition of ϕ, ϕ(rw) ⊂ Bπ (0) for any r ∈ (0, γ ) and
w = (w1, . . . , wd) ∈ S

d−1, where S
d−1 is the unit sphere in R

d . Then letting
p = ϕ(rw) and using the Taylor series

ϕi (rw) = 2rwi + r3w3
i

3
+
∑

n≥3

c̃nr
2n−1w2n−1

i

of 2 arcsin(·), which is absolutely convergent for |rwi | < 1, from (A.11) we obtain

f (ϕ(rw)) =
∑

n≥no

C̃n(w) r2n, (A.12)

where C̃n : Sd−1 → R is a homogeneous polynomial of w ∈ S
d−1 of degree 2n, and

C̃no(w) = 22no

(2no)! D
2no f (0)

⎡

⎢

⎣
w, . . . , w
︸ ︷︷ ︸

2no - times

⎤

⎥

⎦

Next consider J (ϕ(y)). Inserting the Taylor series of (1 − t)−1/2 into (A.10) we
obtain

J (ϕ(rw)) = 2d

⎛

⎝1 +
∑

n≥1

̂Cn(w)r2n

⎞

⎠ , (A.13)

where ̂Cn : Sd−1 → R is a homogeneous symmetric polynomial of w ∈ S
d−1 of

degree 2n, and the series converges absolutely.
Now passing to polar coordinates by y = rw in (A.9) and using (A.12) and (A.13)

as well as the absolute convergence of the series we get

l∗(z) =2d
∫ γ

0

rd−1

4r4 − z

(

∑

n≥no

∫

Sd−1
Cn(w) r2n

)

dHd−1dr =
∑

n≥no

ĉn

∫ γ

0

r2n+d−1dr

4r4 − z
,

(A.14)

where Cn : Sd−1 → R is a homogeneous polynomial of w ∈ S
d−1 of degree 2n and

ĉn := 2d
∫

Sd−1
Cn(w)dHd−1.

Note that ĉno = c f , where c f is given by (A.5) and the last series in (A.14) uniformly
converges in any compact subset of C \ [0, 4] since l∗ and

z ∈ C \ [0, 4] 
→ j2n+d−1(z) :=
∫ γ

0

r2n+d−1dr

4r4 − z
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are analytic functions in C \ [0, 4] and all series in (A.14) converge pointwise1. Note
that for any m ≥ 0, there exist cm ∈ R and an analytic function fm in the ball
Wγ 4(0) ⊂ C such that for any z ∈ (−γ 4, 0),

jm(z) = zn jol (z) + cm + zν fm((−z)1/2), (A.15)

where n := [m4 ], l := m − 4n ∈ {0, 1, 2, 3}, ν = 1
2 for m = 0, 2 and ν = 1 for

m = 1, 3 or m ≥ 4, and

jol (z) :=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

π
4 (−z)−3/4 if l = 0,
π
8 (−z)−1/2 if l = 1,
π
8 (−z)−1/4 if l = 2,

− 1
16 ln(−z) if l = 3.

Inserting (A.15) into (A.14) we obtain

l∗(z) =
∑

n≥no

ĉn

(

z[
2n+d−1

4 ] jo
2n+d−1−4[ 2n+d−1

4 ](z)

+c2n+d−1 + ĉn(−z)νn f2n+d−1((−z)1/2)
)

,

where {c2n+d−1} ⊂ R and { f2n+d−1} is a sequence of analytic functions in Wγ 4(0)
and

νn :=
{

1
2 , 2n + d = 1, 3,

1, otherwise.

Since (A.14) converges locally uniformly in C \ [0, 4], C := ∑

n≥no
ĉnc2n+d−1 is finite

and

∑

n≥no

ĉn(−z)νn f2n+d−1((−z)1/2) = (−z)νg((−z)1/2),

where g is analytic in Wγ 2(0) and ν = 1
2 for 2no + d = 1, 3 and ν = 1 otherwise.

Hence,

l∗(z) = C + (−z)νg((−z)1/2) +
∑

n≥no

ĉn z
[ 2n+d−1

4 ] jo
2n+d−1−4[ 2n+d−1

4 ](z), (A.16)

1 If {hn} is an equi-bounded sequence of analytic functions in a connected open set � ⊂ C converging
pointwise to a function h : � → C, then h is analytic and hn converges uniformly to h in compact subsets
of �.
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If 0 ≤ 2no + d − 1 ≤ 3, then by (A.16),

l∗(z) = C + (−z)νg((−z)1/2) + ĉno j
o
2no+d−1(z)

+
∑

n≥no+1

ĉnz
[ 2n+d−1

4 ] jo
2n+d−1−4[ 2n+d−1

4 ](z). (A.17)

In view of (A.8) and the definition of jol , from (A.17) we obtain the expansions (A.3)
and (A.4) of l f for 2no + d ≤ 4. In particular, since [ 2n+d−1

4 ] ≥ 1 for n ≥ no + 1,
letting z → 0 in (A.17) we get

lim
z→0

l∗(z) = +∞. (A.18)

If 2no + d − 1 ≥ 4, then [ 2n+d−1
4 ] ≥ 1 for any n ≥ no. Therefore, by (A.16),

l∗(0) := lim
z→0

l∗(z) exists and equals to C . In particular, for 2no + d − 1 ≤ 7, one has

l∗(z) = l∗(0) − zg((−z)1/2) + ĉno zj
o
2no+d−1(z)

+
∑

n≥no+1

ĉnz
[ 2n+d−1

4 ] jo
2n+d−1−4[ 2n+d−1

4 ](z), (A.19)

fromwhich and (A.8)wededuce the expansions (A.3) and (A.4) of l f for 5 ≤ 2no+d ≤
8. In particular, by virtue of (A.18) and analyticity of l∗∗ at z = 0, l f is continous at
0 if and only if 2no + d ≥ 5. Notice also by (A.19)

lim
z→0

l∗(z) − l∗(0)
z

= +∞, (A.20)

i.e. l∗ (and hence l f ) is not differentiable at z = 0.
Finally, if 2no + d − 1 ≥ 8, then [ 2n+d−1

4 ] ≥ 2 for any n ≥ no. Therefore, by
(A.16) there exists

l∗′
(0) := lim

z→0

l∗(z) − l∗(0)
z

= −g(0).

Now using the Taylor series of g at 0 we get

zg((−z)1/2) = l∗′
(0)z + z

∑

n≥1

g(n)(0)

n! (−z)n/2.

Inserting this in (A.16), using the definition of jol and the analyticity of l
∗∗ we get the

expansions (A.3) and (A.4) of l f for 2no + d ≥ 9.
By (A.18) and (A.20), l f is continously differentiable at 0 if and only if 2no+d ≥ 9.
Now the choice γ = 1√

2
completes the proof. ��
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Proposition A.2 Let f : Td → R be a real-analytic function such that q ∈ T
d 
→

f (�π + q) is even and

f (�π) = D2 f (�π) = . . . = D2no−2 f (�π) = 0, D2no(�π) 
= 0

for some no ∈ N0. Then:

– l f is continuous at z = 4d2 if and only if for 2no + d ≥ 3,
– l f is continuously differentiable at z = 4d2 if and only if for 2no + d ≥ 5, in this
case

l′f (4d2) :=
∫

Td

f (q)dq

(e(q) − 4d2)2
= lim

z↘4d2

∫

Td

f (q)dq

(e(q) − z)2

exists.

Moreover, if z − 4d2 ∈ (0, 1
16 ), l f (z) is represented as:

(a) if d is odd, then

l f (z) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

− πC f√
z−4d2

+ ∑

k≥0
adk (z − 4d2)k/2, 2no + d = 1,

l f (4d2) + πC f
√
z − 4d2 + ∑

k≥2
adk (z − 4d2)k/2, 2no + d = 3,

l f (4d2) + l′f (4d2) (z − 4d2) + ∑

k≥3
adk (z − 4d2)k/2, 2no + d ≥ 5;

(A.21)

(b) if d is even, then

l f (z) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

C f ln α + ln α
∑

k≥1
bdkα

k + ∑

k≥0
cdkα

k, 2no + d = 2,

l f (4d2) − C f α ln α + ln α
∑

k≥2
bdkα

k + ∑

k≥1
cdkα

k, 2no + d = 4,

l f (4d2) + l′f (4d2) α + ln α
∑

k≥2
bdkα

k + ∑

k≥2
cdkα

k, 2no + d ≥ 6,

(A.22)

where α := z − 4d2, {adk }, {bdk }, {cdk } ⊂ R and

C f := 22no+d−1

(8d)no+d/2 (2no)!
∫

Sd−1
D2no f (�π)[w, . . . , w]dHd−1.

Proof Since 4d2 − e(·) has a unique non-degenerate minimum at �π, the asymptotics
of l f (z) as z ↘ 4d2 can be done along the lines of, for instance, [22,Lemma 4.1],
hence, we skip the proof. ��
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Remark A.3 When

|̂v(x)| = O(|x |2n0+d+1) as |x | → ∞

for some n0 ≥ 1, one has v ∈ C2n0(Td). In this case the Taylor series of f becomes
only asymptotics of order 2n0 − 1 and thus, instead of expansions (A.3)-(A.4) and
(A.21)-(A.22) of l f one has only asymptotics up to order 2n0 − 1.
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