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Abstract
For N ∈ N≥2 and α ∈ R such that 0 < α ≤ √

N − 1, we define Iα := [α, α + 1] and
I−
α := [α, α + 1) and investigate the continued fraction map Tα : Iα → I−

α , which is
defined as Tα(x) := N

x − d(x), where d : Iα → N is defined by d(x) := ⌊ N
x − α

⌋
.

For N ∈ N≥7, for certain values of α, open intervals (a, b) ⊂ Iα exist such that for
almost every x ∈ Iα there is an n0 ∈ N for which T n

α (x) /∈ (a, b) for all n ≥ n0.
These gaps (a, b) are investigated using the square Υα := Iα × I−

α , where the orbits
T k

α (x), k = 0, 1, 2, . . . of numbers x ∈ Iα are represented as cobwebs. The squares
Υα are the union of fundamental regions, which are related to the cylinder sets of the
map Tα , according to the finitely many values of d in Tα . In this paper some clear
conditions are found under which Iα is gapless. If Iα consists of at least five cylinder
sets, it is always gapless. In the case of four cylinder sets there are usually no gaps,
except for the rare cases that there is one, very wide gap. Gaplessness in the case of
two or three cylinder sets depends on the position of the endpoints of Iα with regard
to the fixed points of Iα under Tα .
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80 J. de Jonge et al.

1 Introduction

In 2008, Edward Burger and his co-authors introduced in [2] new continued frac-
tion expansions, the so-called N -expansions, which are nice variations of the regular
continued fraction (RCF) expansion. These N -expansions have been studied in vari-
ous papers since; see [1,3,7]. In [8], a subclass of these N -expansions is introduced,
for which the digit set is always finite. These particular N -expanions are defined as
follows:

For N ∈ N≥2 and α ∈ R such that 0 < α ≤ √
N − 1, let Iα := [α, α + 1] and

I−
α := [α, α+1). Hereafter we denote byN≥k the set of positive integers n ≥ k, while
we write N if k = 1. We define the N -expansion map Tα : Iα → I−

α (or Iα) as

Tα(x) := N

x
− d(x), (1)

where d : Iα → N is defined by

d(x) :=
⌊
N

x
− α

⌋
, if either x ∈ (α, α + 1] or both x = α and

N

α
− α /∈ Z

and

d(α) =
⌊
N

α
− α

⌋
− 1, if

N

α
− α ∈ Z.

Note that if N
α

− α ∈ Z, we have that Tα(α) = α + 1. This is the only case in which
the range of Tα is Iα and not I−

α .
For a fixed α ∈ (0,

√
N − 1] and x ∈ Iα we define for n ∈ N

dn = dn(x) := d(T n−1
α (x)).

Note that for α ∈ (0,
√
N −1] fixed, there are only finitelymany possibilities for each

dn .
Applying (1), we obtain for every x ∈ Iα a continued fraction expansion of the

form

x = T 0
α (x) = N

d1 + Tα(x)
= N

d1 + N

d2 + T 2
α (x)

= · · · = N

d1 + N

d2 + N

d3 + . . .

, (2)

which we will throughout this paper write as x = [d1, d2, d3, . . .]N ,α (note that this
expansion is infinite for every x ∈ Iα , since 0 /∈ Iα);wewill call the numbersdi , i ∈ N,
the partial quotients or digits of this N-continued fraction expansion of x ; see [3,8],
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Orbits of N-expansions with a finite set of digits 81

Δ1Δ2

α α + 1p2 f1f2r2 r1 �1 �2

Fig. 1 N = 51, α = 6

where these continued fractions (also with a finite set of digits) were introduced and
elementary properties were studied (such as the convergence in reference [3]).

In each cylinder set Δi := {x ∈ Iα; d(x) = i} of rank 1, with dmin ≤ i ≤ dmax,
where dmax := d(α) is the largest partial quotient, and dmin := d(α + 1) the smallest
one given N and α, the map Tα obviously has one fixed point fi . As of now we will
write simply ‘cylinder set’ for ‘cylinder set of rank 1’.

It is easy to see that1

fi = fi (N ) =
√
4N + i2 − i

2
, for dmin ≤ i ≤ dmax. (3)

Note that N
α

− α ∈ Z if and only if for some d ∈ N≥2 we have that α = fd+1, while
for any α0 ∈ [ fd+2, fd+1) we have that Δd+1 �= ∅.

Given N ∈ N≥2, we let αmax = √
N − 1 be the largest value of α we consider.

The reason for this is that for larger values of α we would have 0 as a partial quotient
as well. Since T ′

α(x) = −N/x2 and because 0 < α ≤ √
N − 1, we have |T ′

α(x)| > 1
on I−

α . From this it follows that the fixed points act as repellers and that the maps
Tα are expanding if 0 < α ≤ √

N − 1. This is equivalent to the convergence of the
N -expansion of all x ∈ Iα .

Each pair of consecutive cylinders sets (Δi ,Δi−1) is divided by a discontinuity
point pi (N , α) of Tα , satisfying N

pi
− i = α, so pi = N

α+i . A cylinder set Δi is called

full if Tα(Δi ) = I−
α (or Iα). If a cylinder set is not full, it contains either α (in which

case Tα(α) < α+1) or α+1 (in which case Tα(α+1) > α), and is called incomplete.
On account of our definition of Tα , cylinder sets will always be an interval, never
consist of one single point.

The main object of this paper is the sequence T n
α (x), n = 0, 1, 2, . . ., for x ∈ Iα ,

which is called the orbit of x under Tα . More specifically, we are interested in subsets
of Iα that we will call gaps for such orbits. Before we will give a proper definition of
‘gap’, we will give an example of orbits of points in Iα for a pair {N , α}. Note that,
since the fixed points are repellent, orbits cannot remain in one cylinder set indefinitely
if x ∈ Iα is not a fixed point of Tα , so any orbit will show an infinite migration between
cylinder sets. A naive approach is to compute the orbits ofmany points of Iα and obtain
a plot of the asymptotic behaviour of these orbits by omitting the first, say hundred,
iterations. Figure 1 shows such a plot for N = 51 and α = 6. It appears that there are
parts of Iα (illustrated by dashed line segments) that are not visited by any orbit after
many iterations of Tα .

In fact, setting �i = T i
α(α) and ri = T i

α(α + 1), the orbit of any point—apart
from the fixed points f1 and f2—after once having left the interval (r2, r1) ⊂ Δ2 or
(�1, �2) ⊂ Δ1 of Fig. 1, will never return to it.

1 For reasons of legibility we will usually omit suffices such as ‘(N )’, ‘(N , α)’ or ‘(N , d)’.
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82 J. de Jonge et al.

Fig. 2 N = 51, α = 6, x = 6.5

F1

F2

�2 �1

6 7

7

51
8 x

In order to get a better understanding of the orbits of N -expansions, it is useful to
consider the graphs of Tα , which are drawn in the squareΥα(= ΥN ,α) := Iα× I−

α . This
square is divided in rectangular sets of points �i := {(x, y) ∈ Υα : d(x) = i}, which
are the two-dimensional fundamental regions associated with the one-dimensional
cylinder setswe already use.Wewill call these regions in short cylinders. Nowconsider
(x, Tα(x)) ∈ Υα . Then (x, Tα(x)) goes to (Tα(x), T 2

α (x)) under Tα . Regarding this, Tα

has one fixed point Fi := ( fi , fi ) in each�i . We will denote the dividing line between
�i and �i−1 by li , which is the set {pi } × [α, α + 1), with pi the discontinuity point
between Δi and Δi−1. In case Tα(Δi ) = I−

α , we will call the cylinder �i full and
the branch of the graph of Tα in �i complete; if a cylinder is not full, we will call it
and its associated branch of Tα incomplete. We will call the collection of Υα and its
associated branches, fixed points and dividing lines an arrangement of Υα . If Υα is a
union of full cylinders, we will call the associated arrangement also full.

Figure 2 is an example of such an arrangement, in which a part of the cobweb is
drawn associated with the orbit we investigated previously. The discontinuity point
p2 = 51

8 is now visible as a dividing line between Δ1 and Δ2.
In [3,8] the arrangement for N = 4 and α = 1 is studied, consisting of two full

cylinders �1 and �2 and not showing any gaps. On the other hand, the demonstration
of the interval ( 52 ,

13
5 ) being a gap of the interval [2, 3] in the case (N , α) = (9, 2)

in [8] is done without referring to such an arrangement. In this paper, and even more
so in the next paper, we will show that arrangements may considerably support the
insight in the occurrence of gaps.

We will now give a formal definition of gaps, which is slightly delicate, since
Tα(Iα) = I−

α (or Iα if N
α

− α ∈ Z).

Definition 1 A maximal open interval (a, b) ⊂ Iα is called a gap of Iα if for almost
every x ∈ Iα there is an n0 ∈ N for which T n

α (x) /∈ (a, b) for all n ≥ n0.
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Orbits of N-expansions with a finite set of digits 83

There are several papers where ‘gaps’ appear in number theoretic expansions.
One of the first important examples is given by the so-called negative β-expansion,
introduced and studied by Shunji Ito and Taizo Sadahiro [5]. For β > 1, let

Iβ :=
[
− β

β+1 ,
1

β+1

)
, and let the (−β)-transformation T−β : Iβ → Iβ be defined by

Tβ(x) = −βx −
⌊

β

β + 1
− βx

⌋
.

Ito and Sadahiro characterise the admissible sequences of (−β)-expansions, give a
necessary and sufficient condition for the (−β)-shift to be sofic, and explicitly deter-
mine the invariant measure of the (−β)-transformations. In their Example 18, Ito
and Sadahiro also noticed the existence of gaps, as intervals where the density of the
invariant measure is zero. In [11], Lingmin Liao and Wolfgang Steiner studied nega-
tive β-expansions defined on [0, 1], which are conjugate to the negative β-expansions
defined by Ito and Sadahiro. In [11] a complete classification of the gaps and of the
mixing properties of these negative β-expansions is given. For maps slightly more
general than the negative β-maps the reader is referred to Franz Hofbauer’s paper [4].

In Theorem 2 we show that there is a unique absolutely continuous invariant prob-
ability measure μα such that Tα is ergodic with respect to μα . As in [11] (for negative
β-expansions), one also could define a gap as any interval in Iα where the density of
μα is zero.

Remark 1 In the example of Fig. 1 the intervals (r2, r1) and (�1, �2) are gaps and
for x ∈ (r2, r1) ∪ (�1, �2)\{ f1, f2} there exists an n0 = n0(x) such that T n

α (x) /∈
(r2, r1)∪ (�1, �2) for n ∈ N≥2. The ‘for almost’2 formulation in the definition of ‘gap’
is necessary so as to exclude fixed points and pre-images of fixed points, i.e. points
that are mapped under Tα to a fixed point, which may never leave an gap. In Sect. 5
we even find a class of gaps (a, b) such that for uncountably many x ∈ Iα and all
n ∈ N ∪ {0} we have T n

α (x) ∈ (a, b).

Remark 2 Whenever we use the word ‘gap’ in relation to arrangements, we mean the
gap of the associated interval Iα .

In [8] computer simulations were used to get a more general impression of orbits
of N -expansions. For a lot of values of α, plots such as Fig. 1 were stacked, for
0 < α ≤ αmax, so as to obtain graphs such as Fig. 3, with the values of α on the
vertical axis and at each height the corresponding interval Iα drawn. In the same
paper, similar graphs are given for N = 9, 20, 36 and 100. In all cases it appears that
‘gaps’ such as in Fig. 1 appear for values of α equal to or not much smaller than αmax.
Since the plots in [8] are based on computer simulations, they do not actually show
very small gaps (smaller than pixel size) nor clarify much the connection between the
gaps for each N . Still, the suggestion is strong that for α sufficiently small there are no
gaps. It also seems that for α large enough several disjoint gaps may occur. In Fig. 3
we see this for α near αmax = √

50 − 1.

2 All ‘for all’ statements in this paper are with respect to Lebesgue measure.
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84 J. de Jonge et al.

Fig. 3 A simulation of intervals Iα with gaps if existent, for 0 < α ≤ √
50 − 1 and N = 50

In this paper we will not only investigate conditions for gaplessness, we will also
show that simulations such as Fig. 3 fail to reveal the existence, for certain N and
α, of one extremely large gap in plots such as Fig. 3 below the last visible gap. In
a subsequent paper we will go into another very interesting property of orbits of N -
expansions that is hardly revealed by simulations such as Fig. 3: the existence of large
numbers of gaps for large N and α close to αmax. But now we will concentrate on
gaplessness.

Remark 3 If no gaps exist with non-empty intersection with a cylinder set, we call the
cylinder set gapless.

In Sect. 2 we will consider two classes of arrangements that have no gaps: full
arrangements and specific arrangements with more than three cylinders. The gapless-
ness of the latter class, involving the proof of Theorem 4, for which some preliminary
results will be presented shortly, is largely given in Sect. 2, but involve some intri-
cacies for small values of N so as to finish it at the end of this paper. In Sect. 3 we
will consider arrangements with two cylinders and in Sect. 4 we will concentrate on
arrangements with three cylinders, but will prove a sufficient condition for gaplessness
that is valid for arrangements with any number of cylinders larger than 2. Finally, in
Sect. 5 we will prove a result on gaps in certain arrangements with four cylinders and
we will finish the proof of Theorem 4. After that, it is merely a matter of checking that
for N ∈ {2, 3, 4, 5, 6} all arrangements are gapless.

Although most results in this paper seem intuitively clear and obvious, our experi-
encewith these continued fractionmaps is they are surprisingly unruly.The simulations
from Fig. 3 may serve as an example that things are not what they always seem to be.
From these simulations one might draw the (erroneous) conclusion that the number
of gaps is at most 3. In a forthcoming paper we show however that the number of
gaps is a function of N and α, and is growing larger and larger as N tends to infinity.
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Orbits of N-expansions with a finite set of digits 85

Although the proofs in this paper are often elementary, they require case distinctions
and cumbersome calculations.

2 Full arrangements and arrangements withmore than four cylinders

If Iα consists of full cylinder sets only, we obviously have no gaps. In this situation
the mutual relations between N , α and d(α) show a great coherence, as expressed in
the following theorem:

Theorem 1 The interval Iα consists of m full cylinder sets, with m ∈ N≥2, if and only
if there is a positive integer k such that

⎧
⎪⎨

⎪⎩

α = k,

N = mk(k + 1),

d(α) = (m − 1)(k + 1).

(4)

Proof of Theorem 1 Writing d := d(α), the interval Iα is the union of m full cylinder
sets if and only if {

N
α

− d = α + 1,
N

α+1 − (d − m + 1) = α.
(5)

Note that the first equation in (5) can be written as

N = α2 + (d + 1)α,

while the second equation in (5) equals

N = α2 + (d + 2 − m)α + d + 1 − m.

Subtracting the first of these equations from the last we find

α = d + 1 − m

m − 1
. (6)

From (5), we have

α = −(d + 1) + √
(d + 1)2 + 4N

2
, (7)

which yields that α is either a quadratic irrational or a rational number. Since (6)
implies that α is a rational number we find that the integer (d + 1)2 + 4N must be a
square, i.e. there exists a positive integer s such that s2 = (d + 1)2 + 4N . Note that d
is an even integer if and only if s2 is an odd integer if and only if s is an odd integer.
Consequently we find that the numerator of α in (7) is always even, and (7) yields that
α is a positive integer, say k. From the equations in (5) it follows that not only α = k
but also α + 1 = k + 1 is a divisor of N .
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86 J. de Jonge et al.

From the definition of Tα in (1) (especially the case N
α

− α ∈ Z) we see that

d = d(α) = N

k
− (k + 1). (8)

On the other hand (6) yields that, since α = k,

d = (m − 1)(k + 1),

and from this and (8) we see that

N

k
− (k + 1) = (m − 1)(k + 1),

i.e.N = mk(k + 1).
Conversely, let k be a positive integer such that the relations of (4) hold. Then both

N/α and N/(α + 1) are positive integers, implying that all cylinder sets are full.
Moreover, since d = d(α) = dmax is given by

d = N

α
− α − 1 = mk(k + 1)

k
− k − 1 = (m − 1)(k + 1),

and dmin = d(α + 1) is given by

d(α + 1) =
⌊

N

α + 1
− α

⌋
= mk − k = (m − 1)k,

it follows that there are

dmax − (dmin − 1) = (m − 1)(k + 1) − (m − 1)k + 1 = (m − 1) + 1 = m

full cylinder sets. �
Theorem 1 serves as a starting point for our investigation of orbits of N -expansions.
The first thing we will do is give some preliminary results (in Sect. 2.1) that we need
for proving (in Sect. 2.2) Theorem 3 and Theorem 4 on gaplessness of arrangements
with at least five cylinders.

2.1 Preliminary results

The first thing to pay attention to is the way N and α and d(α), the value of the largest
partial quotient, are interdependent, which is illustrated by the following lemmas:

Lemma 1 Given N and α, let d := d(α) be the largest possible digit. Then

d ≥ N − 1 if and only if α < 1.
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Orbits of N-expansions with a finite set of digits 87

The proof of this lemma is left to the reader.
If α = αmax = √

N − 1, we have

d(α) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⌊
2√
2−1

− (
√
2 − 1)

⌋
= 4 for N = 2;

⌊
3√
3−1

− (
√
3 − 1)

⌋
= 3 for N = 3;

⌊
4√
4−1

− (
√
4 − 1)

⌋
− 1 = 2 for N = 4;

⌊
N√
N−1

− (
√
N − 1)

⌋
=

⌊
2 +

√
N+1
N−1

⌋
= 2 for N ∈ N≥5.

(9)

On the other hand we have, for N ∈ N, N ≥ 2 fixed:

lim
α↓0 d(α) = lim

α↓0

⌊
N

α
− α

⌋
= ∞.

The following lemma provides for a lower bound for the rate of increase of d(α)

compared with the rate of decrease of α.

Lemma 2 Let N ∈ N≥2 be fixed and d := d(α). Then d is constant for α ∈ [ fd+1, fd),
and d increases overall more than twice as fast as α decreases.

Proof of Lemma 2 Starting from αmax, d increases by 1 each time α decreases beyond
a fixed point, i.e. if N

α
−α ∈ N. For the difference between two successive fixed points

fd−1 and fd we have

fd−1 − fd =
√
4N + (d − 1)2 − (d − 1)

2
−

√
4N + d2 − d

2

=
√
4N + (d − 1)2 − √

4N + d2 + 1

2
<

1

2
.

This finishes the proof. �
Closely related to the previous lemma is the following one, the proof of which is

left to the reader.

Lemma 3 Let d ∈ N≥2 and N ∈ N≥2 be fixed and let fd(N ) be defined by the equation
N/ fd(N ) − d = fd(N ) (so fd(N ) is the fixed point of the map x �→ N/x − d for
x ∈ (0, N/d)). Then

fd−1(N + 1) − fd(N + 1) > fd−1(N ) − fd(N ).

So, for d fixed, the distance between two consecutive fixed points increases if N
increases. We have, in fact, for d fixed:

lim
N→∞ ( fd−1(N ) − fd(N )) = 1

2 ;
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88 J. de Jonge et al.

cf. the proof of Lemma 2. For N fixed, on the other hand, we have:

lim
d→∞ fd(N ) = 0.

While d(α) is a monotonously non-increasing function of α, the number of cylinder
sets is not. The reason is obvious: starting from α = αmax, the number of cylinder
sets changes every time either α or α + 1 decreases beyond the value of a fixed point;
in the first case, the number increases by 1, and in the second case, it decreases by 1.
Since T ′

α(x) = −N/x2 < 0 and T ′′
α (x) = 2N/x3 > 0 on Iα , Tα(x) is decreasing and

convex on Iα , implying that a net increase of the number of cylinder sets. Still, for
N and α large enough, it may take a long time of α decreasing from αmax before the
number of cylinder sets stops alternating between two successive numbers k ∈ N≥2
and k+1, and starts to alternate between the numbers k+1 and k+2. As an example,
we take N = 100. If α decreases from αmax, the interval Iα consists of two cylinder
sets until α decreases beyond f3 and cylinder set Δ3 emerges; then, if α +1 decreases
beyond f1, cylinder set Δ1 disappears and so on, until α decreases beyond f8 and Δ9
emerges while Δ6 has not yet disappeared.

In order to get a grip on counting the number of cylinder sets, the following arith-
metic will be useful: a full cylinder set counts for 1, an incomplete left one counts for
N
α

− dmax − α, and an incomplete right one for α + 1 − ( N
α+1 − dmin), giving rise to

the following definition:

Definition 2 Let N ∈ N≥2 and α ∈ R such that 0 < α ≤ √
N − 1 and Tα the

N -continued fraction map. The branch number3 b(N , α) is defined as

b(N , α) := dmax − dmin − 1 (the number of full cylinder sets save for the outermost ones)

+ N

α
− dmax − α (the length of the image of the leftmost cylinder set)

+ α + 1 −
(

N

α + 1
− dmin

)
(the length of the image of the rightmost cylinder set).

From this the next lemma follows immediately:

Lemma 4 For N ∈ N≥2 and 0 < α ≤ √
N − 1 we have

b(N , α) = N

α
− N

α + 1
= N

α(α + 1)
.

It follows that for fixed N the branch number b(N , α) is a strictly decreasing function
of α.

Remark 4 Applying Lemma 4, we find

b(N , αmax) = N

(
√
N − 1)

√
N

= 1 + 1√
N − 1

. (10)

3 The word ‘branch’ refers to the part of the graph of Tα on the concerning cylinder set.
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Orbits of N-expansions with a finite set of digits 89

It follows that b(N , α) > 1 for all N ∈ N≥2, so the number of cylinder sets is always
at least 2. On the other hand, from Lemma 4 it follows that the number of cylinder
sets increases to infinity as α decreases from αmax to 0. Actually, we have infinitely
many digits only if α = 0. In this case the corresponding N -expansion is the greedy
N -expansion, studied in [1,3].

The relation N/(α(α + 1)) = b yields

α =
√

4N
b + 1 − 1

2
, (11)

from which we derive that d(α) = d (or d(α) = d − 1 in case N
α

− α ∈ Z), where d
is given by

d =
⎢⎢⎢
⎣

(b − 1)
√

4N
b + 1 + b + 1

2

⎥⎥⎥
⎦ . (12)

2.2 Gaplessness if the branch number is large enough

So far, we merely discussed the way Iα is divided in cylinder sets, depending on the
values of N , α, d(α) and the branch number b. In order to present some first results
on sufficient conditions for gaplessness, we will zoom in on some ergodic properties
of Tα .

Lemma 5 If μ is an absolutely continuous invariant probability measure for Tα , then
there exists a function h of bounded variation such that

μ(A) =
∫

A
h dλ, λ − a.e., with λ the Lebesgue measure,

i.e. any absolutely continuous invariant probabilitymeasure has a version of its density
function of bounded variation.

Proof of Lemma 5 Since inf |T ′
α| > 1, applyingTheorem1 from [9] immediately yields

the assertion. �
Theorem 2 Let N ∈ N≥2. Then there is a unique absolutely continuous invariant
probability measure μα such that Tα is ergodic with respect to μα .

Proof 4 of Theorem 2 Let μα be a unique absolutely continuous invariant probability
measure forTα and choose its density functionh of boundedvariation.Then there exists
an open interval J such that h(x) > 0 for any x ∈ J , since h has at most countably
many discontinuity points. Consider {T n J : n ≥ 0}. Since inf |T ′| > 1, there exists
an n0 such that T n0(J ) includes a discontinuity point. (If necessary we may choose
endpoints of J not in the preimages of discontinuity points of Tα .) We note that for

4 see also page 185, Theorem 1 in [10].
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90 J. de Jonge et al.

any measurable subset A ⊂ J with μα(A) > 0 equivalently λ(A) > 0, μ(T n A) > 0
for any n ≥ 1. Now T n0+1(J ) includes two intervals J� and Jr attached to α and α+1
respectively. For any measurable subset B0 ⊂ J� ∪ Jr of positive λ-measure,μ(B0) >

0, since otherwise we have a contradiction; μ(B0) = 0 and μ(T−(n0+1)(B0)) > 0
(since there is a B1 ⊂ J such that T n0+1(B1) = B0, μ(B1) > 0). This shows that
any two absolutely continuous invariant probability measures μ1 and μ2 cannot have
disjoint supports (i.e. they cannot be singular to each other), which is equivalent to
the uniqueness of the absolutely continuous invariant probability measure and hence
its ergodicity. �

The next result follows directly from Theorem 2:

Corollary 1 If iteration of Tα maps all open subintervals of Iα to the interval I−
α , then

Iα contains no gaps.

Proof of Corollary 1 The assumption implies that the absolutely continuous invariant
probability measure μα is equivalent to the Lebesgue measure, which implies that for
any measurable subset A ⊂ Iα , μ(A) = 0 if and only if λ(A) = 0. Suppose that
there is a gap J . Since J is an open interval, we have λ(J ) > 0, thus μ(J ) > 0.
Since μ(Iα) < ∞ implies a.e. x ∈ J , there exists infinitely many positive integers
n such that T n(x) ∈ J (by the Poincaré recurrence theorem), which contradicts the
assumption that there is a gap. �

Before we present the first of two theorems on gaplessness, we note that in the case
N = 2, the condition |T ′

α(x)| > 2 for all x ∈ Iα is not satisfied for anyα ∈ (0,
√
2−1].

Theorem 3 Let N ∈ N≥3, and let 0 < α ≤ √
N − 1. Let |T ′

α(x)| > 2 for all x ∈ Iα .
Then Iα contains no gaps.

Proof of Theorem 3 The condition implies N/(α + 1)2 > 2, yielding α <
√
N/2− 1.

From Lemma 4 it follows that

b(N , α) >
2
√
2N√

2N − 2
,

which is larger than 2 for all N ∈ N≥3. So Iα consists of at least three cylinder sets.
Since |T ′

α(x)| > 2 for all x ∈ Iα , there exists an ε > 0 such that for any open interval
J0 that is contained in a cylinder set of Tα we have

|Tα(J0)| ≥ (2 + ε)|J0|,

where |J | denotes the length (i.e. Lebesgue measure) of an interval J .
If Tα(J0) contains two consecutive discontinuity points pi+1, pi of Tα , then

(pi+1, pi ) ⊂ Tα(J0),

and we immediately have that

I Oα := (α, α + 1) = Tα(pi+1, pi ) ⊂ T 2
α (J0).
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Orbits of N-expansions with a finite set of digits 91

If Tα(J0) contains only one discontinuity point p of Tα , then Tα(J0) is the disjoint
union of two subintervals located in two adjacent cylinder sets:

Tα(J0) = J ′
1 ∪ J ′

2.

Obviously,

|Tα(J0)| = |J ′
1| + |J ′

2|.

Now select the larger of these two intervals J ′
1, J

′
2, and call this interval J1. Then

|J1| ≥ (1 + ε
2 )|J0|.

In case Tα(J0) does not contain any discontinuity point of Tα , we set J1 = Tα(J0).
Induction yields that there exists an � ∈ N such that

|J�| ≥
(
1 + ε

2

)� |J0| ,

whenever Tα(J�−1) includes nomore than one discontinuity point of Tα . But then there
must exist a k ∈ N such that Tα(Jk) contains two (or more) consecutive discontinuity
points of Tα , and we find that T 2

α (Jk) = I Oα . Applying Corollary 1, we conclude that
there is no gap in Iα . �
Remark 5 Asoneof our referees remarked, the result fromTheorem3 is rather folklore.
As to one of its first appearances we refer to Keith Wilkinson’s paper [13]; it might be
interesting also to consult Gerhard Keller’s paper [6].

The next theorem, which is partly a corollary of the previous one, gives an even
more explicit condition for gaplessness.

Theorem 4 Let Iα consist of five cylinder sets or more. Then Iα has no gaps.

Proof of Theorem 4, part I: Let Iα consist of five cylinder sets or more. Then
b(N , α) > 3, implying

α <
1

2

√
4N
3 + 1 − 1

2
(cf. (11)), in which case |T ′

α(α + 1)| > 3 − 3
√
12N + 9 − 9

2N
.

The second inequality yields that for N ∈ N≥18 we have |T ′
α(α + 1)| > 2 and,

applyingTheorem3, Iα is gapless. Now suppose N ∈ {12, . . . , 17}. Then b(N , α) = 3
involves arrangements with four cylinders. In each of these cases, the smallest α such
that Iα has not yet (i.e. decreasing from αmax) consisted of five cylinder sets is f7.
In all six cases (two of which are illustrated in Fig. 4) we have |T ′

α( f7 + 1)| > 2,
yielding the gaplessness of Iα for arrangements with five or more cylinders in case
N ∈ {12, . . . , 17}. This finishes the proof of Theorem 4 for N ∈ N≥12. For N ∈
{2, . . . , 11} a similar approach does not work. We will use some ideas that we will
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�6 �5 �4 �3

N = 17, α = f7; |T ′(α + 1)| = 2.0098 · · ·

�6 �5 �4 �3

N = 12, α = f7; |T ′(α + 1)| = 2.0415 · · ·

Fig. 4 Two arrangements illustrating the gaplessness of arrangementswith five cylinders ormore on account
of Theorem 3

introduce and develop in the next sections and will finish the proof of Theorem 4 at
the end of Sect. 5.

In the following we will go into conditions for gaplessness of arrangements con-
sisting of less than five cylinders. We will start with two cylinders and will use the
results for arrangements with three and four cylinders.

Remark 6 Since b(N , α) is a strictly decreasing function of α (cf. Lemma 4) and
b(N , αmax) = 1 + 1/(

√
N − 1), the condition Iα = Δd ∪ Δd−1 is never satisfied in

case N ∈ {2, 3}.

3 Gaplessness if I˛ consists of two cylinder sets

In general, if the branch number is not much larger than 1 (which is if α is not much
smaller than αmax), the overall expanding power of Tα , determined by T ′

α (or |T ′
α|,

which we will often use), is not enough to exclude the existence of gaps; we shall
elaborate on this in a subsequent article. However, in the case of two cylinder sets
Iα = Δd ∪ Δd−1, there is a very clear condition under which this power suffices:

Theorem 5 Let Iα = Δd ∪ Δd−1. If Tα(α) ≥ fd−1 and Tα(α + 1) ≤ fd , then Iα is
gapless.

Although the statement of 5 is intuitively clear, for the proof of Theorem 5 we
need several results and lemmas that we will prove first. Then, immediately following
Remark 11, we will prove Theorem 5 itself.

Remark 7 In case Iα = Δd ∪ Δd−1 and either Tα(α) < fd−1 or Tα(α + 1) > fd , it is
easy to see that (Tα(α), T 2

α (α)) or (T 2
α (α + 1), Tα(α + 1)) is a gap, respectively.

Since arrangements under the condition of Theorem 5 play an important role in this
section, we introduce the following notations:
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Orbits of N-expansions with a finite set of digits 93

�1�2

F1

F2

N = 9, σ ≈ 1.01

�1�2

F1

F2

N = 17, σ ≈ 1.06

�2�3

F2

F3

N = 18, σ ≈ 1.27

�2�3

F2

F3

N = 24, σ ≈ 1.23

�2�3

F2

F3

N = 25, σ ≈ 1.22

�2�3

F2

F3

N = 49, σ ≈ 1.20

�3�4

F3

F4

N = 50, σ ≈ 1.33

�3�4

F3

F4

N = 99, σ ≈ 1.26

�4�5

F4

F5

N = 100, σ ≈ 1.36

�4�5

F4

F5

N = 165, σ ≈ 1.29

Fig. 5 Arrangements in F(d), d ∈ {2, 3, 4, 5}, where α is maximal

Definition 3 Let N ∈ N≥4 be fixed. For d ∈ N≥2, we define F(d) as the family of all
arrangements ΥN ,α such that Iα = Δd ∪ Δd−1, Tα(α) ≥ fd−1 and Tα(α + 1) ≤ fd .
We will write F∗(d) in case α satisfies the equation Tα(α) = fd−1, the root of which
we will henceforth denote by α(N , d).

Remark 8 Note that for each N ∈ N≥4 and d ∈ N≥2 we have that α(N , d), if it exists,
is the only value of α such that F∗(d) is not void.

If the expanding power of Tα is large enough to exclude the existence of gaps for
the largest α for which an arrangement in F(d) exists, there will not be gaps in any
arrangement in F(d). We will now first show how to find these largest α, which takes
some effort. If we have finished that, we will go into the expanding power of |T ′

α| in
these arrangements with largest α.

For 4 ≤ N ≤ 8, with d = 2, we have Tαmax(αmax) > f1, while Tαmax(αmax + 1) =
αmax < f2. Hence we see ΥN ,αmax ∈ F(2) and F(2) �= ∅. For N ∈ N≥9 we have
Tαmax(αmax) < f1. If d = 2 we can find α such that ΥN ,α in F∗(2) for each 9 ≤ N ≤
17; see Fig. 5, where ten arrangements in various F(d) are drawn. Underneath each
arrangement we have mentioned an approximation of σ(α) := |T ′

α(α + 1)|, which
we will later return to. This σ is important, because it is the expanding power on the
rightmost cylinder set that may be too weak to exclude gaps.

If d = 2 and N ∈ N≥18, the condition Tα(α) = fd−1 yields Tα(α +1) > fd , and d
has to increase by 1 so as to find an arrangement in F(3). If d = 3, for 18 ≤ N ≤ 24
we find that the largest α is fd−2 − 1, in which case Tα(α + 1) = α < fd and
Tα(α) > fd−1 (so in this case the arrangement with the largest α is in F(3) but not
in F∗(3)); for 25 ≤ N ≤ 49, the largest α is such that Tα(α) = f2. If N ∈ N≥50, the
family F(3) is empty and d has to increase further; see Fig. 5 once more. In the proof
of Lemma 8 this approach (of exhausting F(d) for successive values of N and going
to F(d + 1) for larger values of N ) will be formalised into a proof by induction. Due
to (12) such an increase is always possible, no matter how large d and N become.

Note that this inductive approach works since for each d only finitelymany N exist
such that there are α with ΥN ,α ∈ F(d). To see why this claim holds, note that for
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fixed N and d, the smallest α for which d = d(α) = dmax is αd , given by

αd = fd+1 =
√
4N + (d + 1)2 − (d + 1)

2
;

cf. (3). For this α it is not necessarily so that Iαd = Δd ∪ Δd−1, i.e. that Iαd consists
of two cylinder sets (e.g. if N = 2 and d = 5, there are five cylinder sets). However,
if b(N , αd) ≤ 2, we know that Iαd exists of two cylinder sets, the left one of which is
full. According to Lemma 4, the branch number b(N , αd) satisfies

b(N , αd) = N

fd+1( fd+1 + 1)
= 4N

4N + (d + 1)2 − 2d
√
4N + (d + 1)2 + d2 − 1

.

Keeping d fixed and letting N → ∞, we find

lim
N→∞ b(N , αd) = 1.

In view of this and Lemma 3 (and the results mentioned directly thereafter), we choose
N sufficiently large, such that for α ≥ αd we have b(N , α) < 5/4 and fd−1 − fd >

1/4.
Now suppose that for such a sufficiently large value of N there exists an α ≥ αd ,

such that α ∈ F(d). Then by Definition 2 of branch number and the assumption that
α ∈ F(d), we have that

b(N , α) ≥ 1 + fd−1 − fd > 5
4 ,

which is impossible since for N sufficiently large, d fixed and α ≥ αd we have

b(N , α) ≤ b(N , αd) < 5
4 .

It follows that for d fixed and N sufficiently large, F(d) is void.
We will prove (in Lemma 8) that if N ∈ N≥25 there exists a minimal d ∈ N≥3 such

that the arrangement inF(d)with α maximal lies inF∗(d). Before we will prove this,
we will explain the relation between d and N for arrangements in F∗(d).

In Fig. 5 we see that for N ∈ {49, 99, 165} the arrangements inF∗ are very similar,
and that the arrangement for N = 100 is more similar to these than the arrangement
for N = 50. Moreover, the last three arrangements look hardly curved. This is easy to
understand, considering the following equations, where b(N , α) = b is fixed:

|T ′
α(α)| = b(

√
4bN + b2 + 2N + b)

2N
and |T ′

α(α)| − |T ′
α(α + 1)| = b

√
4bN + b2

N
.

Since (b
√
4bN + b2)/N is a decreasing function of N , approaching 0 from above

as N → ∞, the second equation implies that for a fixed branch number b the branches
become less curved as N increases; i.e., the curves approach linearity as N → ∞ and b
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Orbits of N-expansions with a finite set of digits 95

(a, a)

(1, − 1
a
+ a + 1)

a

(a2, 1)

0 1

1

Fig. 6 The ‘limit graph’ of Tα , translated over (−α,−α), under the conditions Iα = Δd ∪ Δd−1 and
N/α − d = fd−1 for N → ∞ (and α, d → ∞ accordingly)

is fixed.Although inF∗(d) the branchnumber is not somuchfixed as boundedbetween
1 and 2, we have a similar decrease of curviness as N increases. The arrangements for
N ∈ {49, 99, 165} in Fig. 5 suggest that (assuming Tα(α) = fd−1, i.e. α = α(N , d)))
if N → ∞ (and d → ∞ and α → ∞ accordingly), the difference fd − Tα(α + 1)
tends to 0, yielding a ‘limit graph’ of Tα that consists of two parallel line segments
(the straightened branch curves of Tα); see Fig. 6, obtained by translating the graph
over (−α,−α). In this situation we have both a := Tα(α) (mod α) = fd−1 (mod α)

and Tα(α + 1) = fd (also (mod α) in Fig. 6). Because in the limit both parts of the
graph are linear with the same slope, we also have that (0, a+1) lies on the prolonged
right line segment, from which we derive that the line segments have slope −1/a. The
line with equation y = − x

a +a+1 intersects the line y = 1 at (a2, 1) (so the dividing
line is x = a2) and intersects the line x = 1 in

(
1,− 1

a + a + 1
)
, yielding the point(− 1

a + a + 1,− 1
a + a + 1

)
on the line through (0, a) with equation y = − x

a + a
(since Tα(α + 1) = fd). From this we derive 2a2 = 1, so a = √

1/2.
From Fig. 6 we almost immediately find that the branch number for the limit case

is
√
2 and that the dividing line is at 1/2. We use this heuristic to find a formula

describing the relation between N and d for arrangements in F∗(d) very precisely.
Note that for arrangements similar to the limit graph we have

1 + fd−1 − fd =
√
4N + (d − 1)2 − √

4N + d2 + 1

2
+ 1 ≈ b(N , α) ≈ √

2,

from which we derive

N ≈ (4+ 3
√
2)(d2 − d) + 2 or d ≈ 1

2

(
1 +

√
(6

√
2 − 8)(N − 2) + 1

)
. (13)
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96 J. de Jonge et al.

If, for d fixed, we determine arrangements in F∗(d) such that the difference
fd − Tα(α + 1) is positive and as small as possible according to our heuristic, the
best function seems to be N = (4+ 3

√
2)(d2 − d), yielding the right N (after round-

ing off to the nearest integer) for d ∈ {3, . . . , 500}\{9, 50, 52, 68, 69, 80, 97, 129,
167, 185, 210, 231, 289, 330, 416, 440, 444, 479, 485}, in all of which cases the
rounding off should have been up instead of down. For d = 2 we find N =
�2(4 + 3

√
2)� = 17, for d = 3 we find N = �6(4 + 3

√
2)� = 49, for d = 4

we find N = �12(4+ 3
√
2)� = 99 and or d = 5 we find N = �20(4+ 3

√
2)� = 165;

see Fig. 5 once more.
Although we do not know generally if rounding off to the nearest integer yields the

right N , with (13) we can find a very good overall indication of the relation between
d and N for arrangements in F∗(d) by looking at the difference between the image
of α(N , d) + 1 and fd ; see Definition 3. With some straightforward calculations we
find that

α(N , d) =
N

(√
4N + (d − 1)2 − (d + 1)

)

2(N − d)
. (14)

Applying (14), we write fd(N ) − (N/(α(N , d) + 1) − (d − 1)) as

jd (N ) := (N 2 + dN + d)
√
4N + d2 − N 2

√
4N + (d − 1)2 − (N 2 − d(d − 4)N − d(d − 2))

2(N 2 + dN + d)

and, more generally, define

jd (x) := (x2 + dx + d)
√
4x + d2 − x2

√
4x + (d − 1)2 − (x2 − d(d − 4)x − d(d − 2))

2(x2 + dx + d)
(15)

for x ∈ [25,∞).
We note that Iα = Δd ∪ Δd−1 is equivalent to N/(α + 1) − (d − 1) ≥ α. In case

α = α(N , d), we have

N

α(N , d) + 1
− (d −1) = N 2

√
4N + (d − 1)2 − (

(d − 1)N 2 + 2d(d − 2)N + 2d(d − 1)
)

2(N 2 + dN + d)
.

(16)
Applying (16), for the difference hd(N ) := N/(α(N , d) + 1) − (d − 1) − α(N , d)

we write

hd (N ) := 2N 3 + 4dN 2 + (2d3 − 5d2 + 3d)N + 2d2(d − 1) − dN (2N + 1)
√
4N + (d − 1)2

2(N − d)(N 2 + dN + d)
,

(17)
and, more generally, define

hd (x) := 2x3 + 4dx2 + (2d3 − 5d2 + 3d)x + 2d2(d − 1) − dx(2x + 1)
√
4x + (d − 1)2

2(x − d)(x2 + dx + d)
,

(18)
for x ∈ [25,∞).
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Orbits of N-expansions with a finite set of digits 97

Now we can prove the lemma that is illustrated by the arrangements for N ∈
{17, 49, 99, 165} in Fig. 5. In order to so, we define for fixed d ∈ N≥2

S(d) := {N ∈ N≥4 : Iα = Δd ∪ Δd−1, Tα(α) = fd−1(N ) and Tα(α + 1) ≤ fd(N )}

and

Md := max S(d).

Lemma 6 Let d ∈ N≥2. Then Md ∈ {�(4 + 3
√
2)(d2 − d)�, �(4 + 3

√
2)(d2 − d)�}.

Proof of Lemma 6 First we note that for d = 2, we have that �(4 + 3
√
2)(d2 − d)�

equals 17, which corresponds with what we had already calculated and drawn in
Fig. 5. Now let d ∈ N≥3. First we have to show that hd(Md) > 0 for Md ∈ {�(4 +
3
√
2)(d2 − d)�, �(4+ 3

√
2)(d2 − d)�}, for this assures us that Iα = Δd ∪ Δd−1. We

will leave this to the reader; it is merely very cumbersome to show, while technically
straightforward.5

The only thing left to do is showing that

{
jd((4 + 3

√
2)(d2 − d)) > 0;

jd((4 + 3
√
2)(d2 − d) + 1) < 0,

(19)

since the first equation implies that jd(�(4 + 3
√
2)(d2 − d)�) > 0, while the second

implies that jd(�(4+3
√
2)(d2−d)�+1) < 0. The work to be done is as cumbersome

and straightforward as the previous work to be done for this proof and is left to the
reader as well. �

Before we will show that for N ∈ N≥25 there are a d ∈ N≥3 and an α such that
ΥN ,α ∈ F∗(d), we will prove the following lemma:

Lemma 7 Let d ∈ N≥3. Let N ∈ N≥25 be such that Iα(Md ,d) = Δd ∪ Δd−1 and
Tα(Md ,d)(α(Md , d)) = fd−1 for Md ∈ {N , N + 1}. Then

Tα(N+1,d)(α(N + 1, d) + 1) − α(N + 1, d) > Tα(N ,d)(α(N , d) + 1) − α(N , d),

i.e. hd(N + 1) > hd(N ).

Proof of Lemma 7 We want to show that hd(N ) from (17) is an increasing sequence,
and do so by calculating the derivative of with x ∈ [25,∞), and then showing that
h′
d(x) > 0 on [25,∞). Although a little bit intricate, the work is straightforward and

is left to the reader. �
Now we can prove the following lemma:

5 We have throughout this paper frequently used (Wolfram) Mathematica for making intricate calculations,
all of which are nonetheless algebraically basic. In relevant cases we think it will be evident if we did.
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Lemma 8 Let N ∈ {9, . . . , 17, 25, 26, . . .}. Then there are d ∈ N≥2 and α ∈
(0,

√
N − 1) such that Iα = Δd ∪ Δd−1, Tα(α) = fd−1 and Tα(α + 1) ≤ fd

(i.e. α = α(N , d)).

Proof of Lemma 8 We will use induction on d. For N ∈ {9, . . . , 17, 25, 26, . . . , 99}
and d ∈ {2, 3, 4}we refer to Fig. 5 and leave the calculations to the reader. Specifically,
we have for 50 ≤ N ≤ 99 that ΥN ,α(N ,4) ∈ F∗(4). It is easily seen that Υ99,α(99,5) ∈
F∗(5) as well. Due to Lemma 6, there is an N5 > 99 such that ΥN5,α(N5,5) ∈ F∗(5).
Applying Lemma 7, we see that for all N ∈ {99, . . . , N5}we haveΥN ,α(N ,5) ∈ F∗(5).
For the induction step, let d ∈ N≥5 be such that there is an α for whichΥNd ,α ∈ F∗(d),
where Nd is the largest such N possible, cf. Lemma 6. If we can show that for this
Nd there is an α′ such that ΥNd ,α′ ∈ F∗(d + 1), we are finished. This can be done by
showing that

hd+1((4 + 3
√
2)(d2 − d) − 1) > 0, (20)

for this implies hd+1(Nd) > 0, in which case α′ is such that Nd
α′ − (d + 1) = fd ,

i.e. α′ = α(N , d + 1). Although intricate, the calculations are straightforward and are
left to the reader. �
Remark 9 Although Lemma 8 is about N in the first place, our approach is actually
based on increasing d and then determining all N such that arrangements ΥN ,α ∈
F∗(d) exist. The proof of Lemma 8 yields the arrangements with the smallest d
(and therefore the largest α) for which ΥN ,α ∈ F∗(d), as illustrated by the last five
arrangements of Fig. 5.

Example 1 For d = 4 we have Md − 1 = �(4 + 3
√
2)(d2 − d)� = 98. Then

ΥMd−1,α(Md−1,4) ∈ F∗(4) and ΥMd ,α(Md ,4) ∈ F∗(4), while ΥMd+1,α(Md+1,5) ∈
F∗(5); see Fig. 5. It follows immediately from our construction of α(Md + 1, 5)
that this is the largest α such that ΥMd+1,α ∈ F(5).

With manual calculations we can quickly calculate the expanding power of Tα in
α + 1 for arrangements in F and F∗ and N not too large, say N ∈ N≤49, where the
smallest values are found where α is as large as possible. The next proposition gives
a lower bound for |T ′

α(α + 1)| for such arrangements for most N .

Proposition 1 Let N ∈ {18} ∪ {50, 51, . . .}\{95, . . . , 99} and α ∈ (0,
√
N − 1] such

that Iα = Δd ∪ Δd−1 for some d ∈ N, d ∈ N≥2. Furthermore, suppose that Tα(α) ≥
fd−1 and Tα(α + 1) ≤ fd . Then |T ′

α(α + 1)| >
3
√
2 = 1.259921 . . ..

Proof of Proposition 1 Considering Lemma 8, we can confine ourselves to arrange-
ments in F∗ with α as large as possible. For α = α(N , d) (cf. (14)) we can write
|T ′

α(α + 1)| = N/(α + 1)2 as

kd (N )

= 2N 4 + (d − 1)2N 3 + 2d(d − 1)N 2 + 2d2N + ((d − 1)N 3 + 2dN 2)
√
4N + (d − 1)2

2(N 4 + 2dN 3 + d(d + 2)N 2 + 2d2N + d2)
.

(21)
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Orbits of N-expansions with a finite set of digits 99

It is not hard to find that, for d fixed, kd is a decreasing sequence, with
limN→∞ kd(N ) = 1. However, from (13) it follows that if N → ∞ we have
that also d → ∞ in a precise manner. Due to the previous lemmas, for each
d we can confine ourselves to considering only N/(α + 1)2 for the largest N
and α such that ΥN ,α ∈ F∗(d). Applying Lemma 6, an easy way to check if
indeed |T ′

α(N ,d)(α(N , d) + 1)| >
3
√
2 is considering kd(x), with x ∈ [100,∞),

and then calculating kd((4 + 3
√
2)(d2 − d) + 1) for d ∈ N≥5, which is amply

larger than 3
√
2 = 1.2599 · · · . For the remaining cases d = 3 and N = 18 and

for d = 4 and N ∈ {50, 51, . . . , 94} it is easily checked manually that indeed
|T ′

α(N ,d)(α(N , d) + 1)| >
3
√
2. �

Remark 10 Considering our previous remarks concerning arrangements inF∗, it may
be clear that limN→∞ N/(α(N , d) + 1)2 = √

2.

Remark 11 The value 3
√
2 in the proof of Proposition 1 relates to the proof of Theorem5

and also to the proofs of Proposition 9 and Theorem 3, where the numbers
√
2 and 2

have a similar importance. Considering the proof of Proposition 1, we could actually
replace 3

√
2 by the smallest possible value, given by

94

(α(94) + 1)2
= 20480015 + 320305

√
385

21233664
= 1.2604 . . . .

Finally we are ready to prove Theorem 5, stating that Iα = Δd ∪ Δd−1, with
d := d(α), is gapless if Tα(α) ≥ fd−1 and Tα(α + 1) ≤ fd . Considering Remark 11
the value 3

√
2 in Proposition 1 can be replaced by 1.26, the third power of which is

2.000376. We will use this to stress that the gaplessness of Theorem 5 is actually
relatively ample and does not require infinitesimal estimations.

Proof of Theorem 5 First we note that the conditions imply N ∈ N≥4. Now let ΥN ,α ∈
F(d) and let K ⊂ Iα be any open interval. Since K expands under Tα , there is an
n ∈ N∪{0} such that T n

α (K ) contains for the first time a fixed point or the discontinuity
point pd , in the former case ofwhichwe are finished. Sowe assume that T n

α (K )∩Δd =
(b, pd ] =: L , with fd < b < pd . Note that Tα(L) = [α, Tα(b)) ⊂ [α, fd). For
T 2

α (L) = (T 2
α (b), Tα(α)], we similarly may assume that fd−1 < T 2

α (b) < α + 1
(since otherwise fd−1 ∈ T 2

α (L), and again we are done).
Now suppose that T 3

α (L) contains pd , excluding fd ∈ T 3
α (L). Then T 3

α (L) = L1 ∪
M1, with L1 = [T 2

α (α), pd ] and M1 = (pd , T 3
α (b)). First we confine ourselves to N ∈

{18} ∪ {50, . . .}\{95, . . . , 99}. Since then |T 3
α (L)| > 2.000376|L| (cf. Remark 11),

we have certainly |L1| > 1.001|L| or |M1| > 1.001|L|. If we consider the images of
L1 and M1 under Tα , T 2

α and T 3
α similarly as we did with the images of L , we find

that due to expansiveness (see the proof of Theorem 3) there must be an m such that
fd ∈ T 3m

α (L1) or fd−1 ∈ T 3m
α (M1) and we are finished. If T 3

α (L) does not contain
pd , the expansion of L will only go on longer, yielding even larger L ′

1 and M ′
1 and

the reasoning would only be stronger that no gaps can exist.
For N ∈ {4, . . . , 17, 19, 20, . . . , 49, 95, 96, . . . , 99} a similar approach can be

taken, but there is no useful general lower bound for |T ′
α(x)| on Iα . For these cases,
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however, the moderate expanding power in Δd−1 is easily made up for by a rela-
tively strong expanding power inΔd , and the gaplessness is easily, although tediously,
checked by hand (cf. Examples 2 and 3 below). This finishes the proof of Theorem 5.

�

Example 2 In case N = 7, there exist α ∈ (0,
√
7 − 1] for which Iα = Δ2 ∪ Δ1. The

largest α for which Υ7,α ∈ F(2) is αmax = √
7 − 1, in which case |T ′

α(α + 1)| = 1.
However, |T ′

α( f2)| = 2.0938 · · · > 2, and the approach taken above even works due
to the expanding power of Tα on [α, f2) alone.

Example 3 In case N = 99, we have Iα = Δ4 ∪ Δ3, and Υ99,α ∈ F∗ for
α = 99(

√
405 − 5)/190 = 7.8807 · · · . Then |T ′

α(α + 1)| = 1.2552 · · · , |T ′
α( f3)| =

1.3503 · · · and |T ′
α( f4)| = 1.4908 · · · . So for an interval (p4, x), with x ∈ (pd , f3),

assuming that f4 /∈ T 3
α (p4, x), we have |T 3

α (p4, x)| > 1.3503 · · · × 1.2552 · · · ×
1.4908 · · · × |(p4, x)| � 2|(p4, x)|, implying enough expanding power for T 3

α to
exclude the existence of gaps.

Remark 12 We can also prove that |T ′
α(x)| >

√
2 on Δd for all arrangements under

the assumptions of Theorem 5, but we cannot do without knowledge about the slope
on Δd−1.

Next we will make preparations for formulating a sufficient condition for gapless-
ness in case Iα consists of three cylinder sets. Proving it involvesmore subtleties on the
one hand, but will have a lot of similarities with the two-cylinder set case on the other
hand. Once we have finished that, not much work remains to be done for gaplessness
in case Iα consists of four or five cylinder sets.

4 A sufficient condition for gaplessness if I˛ consists of three or four
cylinder sets

If Iα = Δd∪. . .∪Δd−m , withm ∈ {2, 3}, there is a sufficient condition for gaplessness
that resembles the condition for gaplessness in case Iα consists of two cylinder sets a
lot:

Theorem 6 Let Iα = Δd ∪ . . . ∪ Δd−m, with m ∈ {2, 3}. Then Iα is gapless if

Tα(α) ≥ fd−1 or Tα(α + 1) ≤ fd−m+1.

Wewill prove this theorem in parts. In Sect. 4.1wewill prove Theorem 6 form = 2;
in Sect. 4.2 we will extend the result of Sect. 4.1 to m = 3; considering Theorem 4,
extension to larger m is not useful.

Remark 13 The difference between the ‘and’ of Theorem 5 and the ‘or’ of Theorem 6
has to do with the existence, in the latter case, of at least one full cylinder set.

123



Orbits of N-expansions with a finite set of digits 101

�1�2�3

N = 3, σ = 1
|T ′

α(f1)| ≈ 1.77
|T ′

α(f2)| ≈ 3

�1�2�3

N = 4, σ ≈ 1.06
|T ′

α(f1)| ≈ 1.64
|T ′

α(f2)| ≈ 2.62

�2�3�4

N = 7, σ ≈ 1.46
|T ′

α(f2)| ≈ 2.09
|T ′

α(f3)| ≈ 2.95

�2�3�4

N = 9, σ ≈ 1.40
|T ′

α(f2)| ≈ 1.92
|T ′

α(f3)| ≈ 2.62

�5 �4 �3

N = 16, σ ≈ 1.64
|T ′

α(f3)| ≈ 2.08
|T ′

α(f4)| ≈ 2.62

Fig. 7 Arrangements with largest α such that there is a d with Iα = Δd ∪Δd−1∪Δd−2 under the condition
Tα(α) ≥ fd−1 and Tα(α + 1) ≤ fd−1

4.1 Gaplessness if I˛ consists of three cylinder sets

Since we have m = 2, the condition Tα(α) ≥ fd−1 can be split in

⎧
⎪⎨

⎪⎩

1. Tα(α + 1) ≤ fd−1 ≤ Tα(α);
2. fd−1 ≤ Tα(α) ≤ Tα(α + 1);
3. fd−1 ≤ Tα(α + 1) ≤ Tα(α);

(22)

of course the condition Tα(α + 1) ≤ fd−1 can be split in a similar way. We will
prove Theorem 6 by proving gaplessness according to this distinction in three cases,
associated with Lemmas 9, 10 and 11 respectively. The first of these is not very hard
to prove:

Lemma 9 Let Iα = Δd ∪ Δd−1 ∪ Δd−2. If Tα(α) ≥ fd−1 and Tα(α + 1) ≤ fd−1,
then Iα is gapless.

Proof of Lemma 9 The assumptions imply that b(N , α) > 2, yielding σ(α) = |T ′
α(α+

1)| >
√
2 for N ∈ N≥17. If N ∈ N≥17, we let K ⊂ Iα be any open interval. Since K

expands under Tα , there is an n ∈ N∪{0}) such that T n
α (K ) contains a fixed point or a

discontinuity point pd−i (with i ∈ {0, 1}) , in the former case of which we are finished.
So we assume that T n

α (K ) ⊃ L , where L = (b, pd−i ], with fd−i < b < pd−i ,
with i ∈ {0, 1}. If Tα(L) contains a fixed point, we are finished. If Tα(L) does not
contain a fixed point, then it cannot contain a discontinuity point, and we have that
|T 2

α (L)| > 2|L|, implying enough expanding power of Tα to ensure gaplessness of
at least one cylinder set (which might be non-full). Since both Tα(α) ≥ fd−1 and
Tα(α +1) ≤ fd−1, it follows that Iα is gapless. For 2 ≤ N ≤ 16 the slopes on Iα may
differ considerably: for some N , such as N = 7 and N = 16 we also have σ >

√
2,

but if this is not he case, the steepness left of fd−2 is amply larger then
√
2; see Fig. 7

for some examples where α is as large as possible. This finishes the proof of Lemma 9
[cf. case 1 in (22)]. �

If Iα = Δd∪Δd−1∪Δd−2 under the condition Tα(α) ≥ fd−1 and Tα(α+1) > fd−1
or under the condition Tα(α) < fd−1 and Tα(α + 1) ≤ fd−1, Iα is gapless as well,
but this is much harder to prove. The following definition will be convenient:
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�3�4�5

N = 23, α = 2.898

|T ′
α(α + 1)| ≈ 1.51

|T ′
α(α)| ≈ 2.74

�1�2�3

N = 11, α = 1.873 · · ·
|T ′

α(α + 1)| ≈ 1.33

|T ′
α(α)| ≈ 3.14

�1�2�3

N = 7, α = 1.54

|T ′
α(α + 1)| ≈ 1.09

|T ′
α(α)| ≈ 2.95

Fig. 8 Arrangements with one very small cylinder

Definition 4 Let Iα = Δd ∪ . . . ∪ Δd−m , and 1 ≤ m ≤ d − 1. If Tα(α) ≤ fd−1 or
Tα(α + 1) ≥ fd−m+1, the cylinder set Δd respectively Δd−m is called small.

Taking a similar approach as in the proof of Theorem 5, one can show that the map
Tα has enough expansive power to ensure that for any open interval K ⊂ Iα there exists
a non-negative integer n such that T n

α (K ) contains a fixed point. If this fixed point is
in a non-small or even full cylinder set, we are done (as in the proofs of Theorem 5
and Lemma 9). However, if this fixed point is from the small cylinder set, then it only
follows that every point of the small cylinder set is in the orbit under Tα of some point
in K . Note this implies that the small cylinder set is gapless. So we may assume that
the small cylinder set is gapless. Let us assume that the left cylinder set is small. We
define L := Tα(Δd)\Δd . SinceΔd is gapless, we have L = (pd , T (α)] ⊂ (pd , fd−1),
so Tα(L) = [T 2

α (α), α + 1). If T 2
α (α) ≤ fd−2, we are finished, so we assume that

T 2
α (α) > fd−2. We then have T 2

α (L) = (Tα(α + 1), T 3
α (α)]. If T 3

α (α) ≥ fd−1 we are
finished, since then fd−1 ∈ T 2

α (L).
The question arises whether it is possible to keep avoiding fixed points if we go

on with letting Tα work on L and its images (or similarly, if the right cylinder set is
small, some interval R := Tα(Δ1)\Δ1). We will argue that this is not possible in the
two most plausible cases for gaps to exist, involving the least expansion.

The first case is illustrated with two arrangements in Fig. 8, one where N = 23
and one where N = 11. In both arrangements one outer cylinder is very small while
the other one is full or almost full. In the arrangement where N = 23, we see that L
is a very narrow strip between p5 and Tα(α), T 2

α (L) is not so narrow anymore, and
T 3

α (L) is definitely wide enough to make clear that avoiding fixed points f4 and f3
is not possible. The middle arrangement, where N = 11, is an example of the case
where Δd−2 is small and Δd is actually full. Here we have that R := Tα(Δ1)\Δ1 is
a very narrow strip between Tα(α + 1) and p2 and that T 2

α (R) is only slightly larger
than Tα(Δ1), whence eventually there will be an n ∈ N such that f3 ∈ T n

α (R) or
f2 ∈ T n

α (R).
The rightmost arrangement in Fig. 8 is an illustration of the second plausible case

for the existence of gaps: here Δ3 is small, while Δ1 is incomplete but not small. This
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�2�3�4

N = 30, α = 3.6

|T ′
α(α + 1)| ≈ 1.42

V2V1 RTα(R) T 2
α(R)

|T ′
α(α)| ≈ 2.31

Fig. 9 Arrangement illustrating Lemma 10

�1�2�3

N = 17, α = 2.6576

|T ′
α(α + 1)| ≈ 1.27

|T ′
α(α)| ≈ 2.41

�2�3�4

N = 35, α = 4.00167

|T ′
α(α + 1)| ≈ 1.40

|T ′
α(α)| ≈ 2.19

Fig. 10 Two arrangements in which almost T 2
α (α) < pd < T 4

α (α +1) (in fact, in both cases pd = T 2
α (α))

arrangement illustrates the role pd might play in avoiding fixed points: in this case,
taking L := Tα(Δ3)\Δ3, we have T 3

α (L) = M1 ∪ M2, with M1 = [T 4
α (α), p2] and

M2 = (p2, T 2
α (α + 1)]. Since T 3

α (L) contains a discontinuity point, the expansion
under Tα is interrupted. If Tα(M1) would be a subset of Tα(Δ3) and Tα(M2) would
be a subset of Tα(L), the expansion would be finished and we would have three gaps:
(Tα(α), Tα(α +1)), (T 3

α (α), T 4
α (α)) and (T 2

α (α +1), T 2
α (α))—but this is not the case,

as we will shortly prove.
Of course arrangements exist such that one of the outer cylinders is small, fixed

points are avoided (in the sense we used above) for a long time and it takes more of
Tα working on L or R before one of the discontinuity points is captured. But in these
cases the interruption of the expansion is even weaker than in the cases above. We will
first show that arrangements such as the rightmost one of Fig. 8 exclude the existence
of gaps (cf. Lemma 10) and will then consider cases such as the first two arrangements
of Fig. 8 (cf. Lemma 11).

Lemma 10 Let Iα = Δd ∪ Δd−1 ∪ Δd−2.Then Iα is gapless if

fd−1 ≤ Tα(α) ≤ Tα(α + 1) or Tα(α) ≤ Tα(α + 1) ≤ fd−1.
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(a, a)

(a, 1 − a2)

y = −(a + 1)x + a + 1

y = −(a + 1)x + a

a

( a
a+1 , 1)

0 1

Fig. 11 The ‘limit graph’ of Tα , translated over (−α, −α), under the conditions Iα = Δd ∪ Δd−1 and
N/(N/α − d) − (d − 1) = pd for N → ∞ (and α, d → ∞ accordingly). This ‘arrangement’ can be
seen as one with three cylinders, where Δd−2 (mod α), the one on the right, is infinitely small; see also the
arrangements in Fig. 10

�1�2

b(4, α) = 2

�1�2�3

b(5, α) = 2

�1�2�3

b(6, α) = 2

�1�2�3

b(11, α) = 2

�2�3

b(12, α) = 2

Fig. 12 Arrangements of ΥN ,α with b = 2; in each case α =
√
2N+1−1

2

Proof of Lemma 10 We will confine ourselves to the first case of this lemma, that
is if fd−1 ≤ Tα(α) ≤ Tα(α + 1), since the second one is proved similarly (in
fact, this case is slightly harder due to the smaller size of the absolute value of the
derivatives). Regarding our observations above, we may assume that the small cylin-
der set (which in this case is Δd−2) is gapless (cf. the remarks after Definition 4).
We will show that this implies the gaplessness of the other cylinder sets as well.
We define R := Tα(Δd−2)\Δd−2 and try to determine α such that pd ∈ T 3

α (R)

(see the remark immediately preceding this lemma). Necessary conditions for this
are T 2

α (α) < pd < T 4
α (α + 1) (assuming that fd /∈ Tα(R) and fd−1 /∈ T 2

α (R),
since in either case we would be done). If these conditions are satisfied, we write
T 3

α (R) = V1 ∪ V2, with V1 = [T 2
α (α), pd ] and V2 = (pd , T 4

α (α + 1)]. We will show
that we cannot have both Tα(V1) ⊂ Tα(R) and Tα(V2) ⊂ Tα(Δd−2), which is neces-
sary for limiting the expansion of R under Tα and so not eventually capturing fd and
fd−1; see Fig. 9.
We take an approach that is similar to the proof of Theorem 5, for which several

lemmas and a proposition where used, partially concerning a relation between N and
d in the arrangements involved, partially concerning the slope in α + 1. In this proof
we will not explicitly formulate similar statements as lemmas or propositions, nor do
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we prove them, since they require similar basic but very intricate calculations that we
prefer to omit.

In order to find the relationship between N and d for arrangements with the con-
ditions T 2

α (α) < pd and T 4
α (α + 1) > pd mentioned above, we refer to some more

relevant arrangements, as shown in Fig. 10. In both cases in Fig. 10, α is such that
T 2

α (α) = pd , which is a value of α that is only a little larger than the values for which
T 2

α (α) < pd and T 4
α (α + 1) > pd . A ‘limit arrangement’ (where the third, rightmost

cylinder is infinitely small), similar to the ‘limit arrangement’ used in the proof of
Theorem 5, is shown in Fig. 11. The assumptions yield a3 + a2 − 1 = 0, with real
root a = 0.75487 · · · =: γ .

Similar to the proof of Theorem 5 we then find that for arrangements as in Fig. 10
we have

N ≈ (d − 1)(d − 1 + γ )(1 + γ )

γ 2 .

Using this relationship, we can take a similar approach as in the proof of Proposi-
tion 1. We leave out the tedious steps and confine ourselves to observing that the
slope of the line segments in Fig. 11 is −(γ + 1) = −1.75487 · · · and that in
arrangements where T 2

α (α) < pd and T 4
α (α + 1) > pd , we will see that the slope

T ′
α(α + 1) approaches −(γ + 1) as N tends to infinity. However, for our proof the

inequality |T ′
α(α + 1)| > 1

2 (
√
5 + 1) = 1.61803 · · · =: G suffices, which turns

out to hold for N ∈ N≥273. We will use this to show that for N ∈ N≥273 we have
|T 3

α (R)| > |Tα(Δd−2)| + |Tα(R)|. From this it immediately follows that we cannot
have that both Tα(V1) ⊂ Tα(R) and Tα(V2) ⊂ Tα(Δd−2), and we are done with the
proof of Lemma 11.

Since |T ′
α(x)| is a decreasing function on Iα , and writing β := |Δd−2|, we have

|Tα(Δd−2)| > |T ′
α(α + 1)| · β, so |R| > (|T ′

α(α + 1)| − 1)β.

It follows that

|Tα(R)| > (|T ′
α(α + 1)| − 1) · |T ′

α(pd−1)|β,

that

|T 2
α (R)| > (|T ′

α(α + 1)| − 1) · |T ′
α(pd−1)| · |T ′

α( fd)|β,

and finally that

|T 3
α (R)| > (|T ′

α(α + 1)| − 1) · |T ′
α(pd−1)|2 · |T ′

α( fd)|β.

We also have |Tα(Δd−2)| < |T ′
α(pd−1)|β, so

|R| < (|T ′
α(pd−1)| − 1)β and |Tα(R)| < |T ′

α( fd−1)| · (|T ′
α(pd−1)| − 1)β.
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It follows that

|Tα(Δd−2)| + |Tα(R)| < (|T ′
α(pd−1)| + |T ′

α( fd−1)| · (|T ′
α(pd−1)| − 1))β

= (|T ′
α(pd−1)| − |T ′

α( fd−1)| + |T ′
α( fd−1)| · |T ′

α(pd−1)|)β
< |T ′

α( fd−1)| · |T ′
α(pd−1)|β.

So, although crudely, we certainly have that |T 3
α (R)| > |Tα(Δd−2)| + |Tα(R)| if

|T ′
α( fd−1)| · |T ′

α(pd−1)| < (|T ′
α(α + 1)| − 1) · |T ′

α(pd−1)|2 · |T ′
α( fd)|,

that is, if

1 < (|T ′
α(α + 1)| − 1) · |T ′

α(pd−1)| · |T ′
α( fd)|

|T ′
α( fd−1)| . (23)

Since

(|T ′
α(α + 1)| − 1) · |T ′

α(pd−1)| · |T ′
α( fd)|

|T ′
α( fd−1)| > (|T ′

α(α + 1)| − 1) · |T ′
α(pd−1)|

> (|T ′
α(α + 1)| − 1) · |T ′

α(α + 1)|,

weknow that (23) holds for |T ′
α(α+1)| > G, which in turn holds for all N ∈ N≥273.We

remark that this value is quite awide upper bound, sincewe did a rough approximation.
Still, checking that we cannot have both Tα(V1) ⊂ Tα(R) and Tα(V2) ⊂ Tα(Δd−2) for
smaller N is not that hard and is left to the reader. This finishes the proof of Lemma 10
[cf. case 2 in (22)]. �

Lemma 10 implies that in case Iα = Δd ∪ Δd−1 ∪ Δd−2 and fd−1 ≤ Tα(α) ≤
Tα(α + 1) or Tα(α) ≤ Tα(α + 1) ≤ fd−1 the division of an interval containing pd
in two smaller ones cannot prevent an overall expansion that excludes any gaps. The
other plausible case with three cylinder sets in which gaps might exist is if one outer
cylinder set is very small, while the other one is full or nearly full, such that either
T 3

α (α + 1) ≥ Tα(α + 1) (if Δd−2 is the small cylinder set) or T 3
α (α) ≤ Tα(α) (if Δd

is the small cylinder set). We will show that this is not possible either:

Lemma 11 Let Iα = Δd ∪ Δd−1 ∪ Δd−2. Then Iα is gapless if

fd−1 ≤ Tα(α + 1) ≤ Tα(α) or Tα(α + 1) ≤ Tα(α) ≤ fd−1.

Proof of Lemma 11 Taking into account our observations immediately following Defi-
nition 4 and the arrangements of Fig. 8 for N = 23 and N = 11, we only have to prove
that there are no α such that T 3

α (α) < Tα(α) is possible if Tα(α +1) ≤ Tα(α) ≤ fd−1
(in case Δd is small) or such that T 3

α (α + 1) > Tα(α + 1) is possible if fd−1 ≤
Tα(α + 1) ≤ Tα(α) (in case Δd−2 is small). Note that the conditions T 3

α (α) < Tα(α)

and T 3
α (α+1) > Tα(α+1) imply that the branch number is slightly larger than 2. Now

remember that Iα consists ofm full cylinder sets if and only if α = k, N = mk(k +1)
and d = (m−1)(k+1) for some k ∈ N, cf. Theorem 1. Figure 12 shows for increasing
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values of N a sequence of arrangements where the branch number b is 2, from one full
arrangement (here for N = 4) with two cylinders to the next one (here for N = 12).
Since |T ′

α(α)| > |T ′
α(α + 1)|, the arrangements suggest that in case b is slightly larger

than 2, the most favourable arrangement for T 3
α (α +1) = Tα(α +1) to have real roots

is if N = 2k2 +2k−1, where k ∈ N≥2, while for T 3
α (α) = Tα(α) to have real roots is

if N = 2k2 +2k+1, where k ∈ N. We will confine ourselves to investigating only the
possibility of T 3

α (α + 1) = Tα(α + 1); the calculations for the other case are similar.
So we will try and find out if for N = 2k2 + 2k − 1, d = k + 1, with k ∈ N≥2, the

positive root of T 3
α (α + 1) = Tα(α + 1) lies in Iα . To do this, we solve

2k2 + 2k − 1

2k2 + 2k − 1

2k2 + 2k − 1

α + 1
− (k − 1)

− k

− (k + 1) = 2k2 + 2k − 1

α + 1
− (k − 1),

which is reducible to

(2k3 + 6k2 − k − 1)α2 + (2k4 + 5k2 + k − 2)α − (4k5 + 6k4 + 2k3 − 3k2 − k + 1) = 0,

yielding

α =
√
36k8 + 144k7 + 164k6 − 12k5 − 95k4 − 2k3 + 21k2 − 4k − (2k4 + 5k2 + k − 2)

2(2k3 + 6k2 − k − 1)
.

(24)
A straightforward computation shows that this last expression is smaller than fk+2,
meaning that the root (24) lies outside Iα if Iα = Δk+1 ∪ Δk ∪ Δk−1. Since N =
2k2 + 2k − 1 was the most favourable option for investigation, this finishes our proof
[cf. case 3 in (22)]. �
Remark 14 The arrangement for N = 11 in Fig. 8 illustrates that the difference
between T 3

α (α + 1) and Tα(α + 1) may be very small.

4.2 A sufficient condition for gaplessness in case I˛ consists of four cylinder sets

In the previous subsection we proved Theorem 6 form = 2, by proving Lemmas 9, 10
and 11. In this subsection we will consider m = 3 and go into the analogons of
Lemmas 9, 10 and 11.

If Iα consists of four cylinder sets, the analogon of Lemma 9 is that arrangements
Iα are gapless if Iα = Δd ∪ Δd−1 ∪ Δd−2 ∪ Δd−3 while Tα(α) ≥ fd−1 and Tα(α +
1) ≤ fd−2. The analogon of Lemma 11 is that arrangements Iα are gapless if Iα =
Δd ∪ Δd−1 ∪ Δd−2 ∪ Δd−3 while fd−2 ≤ Tα(α + 1) ≤ Tα(α) or Tα(α + 1) ≤
Tα(α) ≤ fd−1. In both cases branch numbers larger than 3 are involved, in which
case |T ′

α(α + 1)| > 2 if N ∈ N≥18 (and Theorem 3 yields the desired result). The
cases 2 ≤ N ≤ 17 can be checked manually and are left to the reader; in Fig. 13 the
arrangement for N = 11, associated with Lemma 11, illustrates that gaps are out of
the question.
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�2�3�4�5

N = 11, α = f6

�3�4�5

N = 15, α = f6
and Tα(α + 1) = p5

�4�5�6

N = 24, α = f3 − 1
and Tα(α) = p5

�5�6�7

N = 35, α = f4 − 1
and Tα(α) = p6

Fig. 13 Four arrangements with two full cylinders

The analogon of Lemma 10 is that arrangements Iα are gapless if Iα = Δd∪Δd−1∪
Δd−2∪Δd−3 while fd−1 ≤ Tα(α) ≤ Tα(α+1) or Tα(α) ≤ Tα(α+1) ≤ fd−2. The
arrangements for N = 15, N = 24 and N = 35 in Fig. 13 are interesting illustrations
of the analogon of Lemma 10 in the case of two full cylinder sets instead of one. We
will confine ourselves to the arrangement for N = 15; the other ones have similar
properties.

The arrangement for N = 15 is the boundary case for the situation where we
have four cylinders, the left one of which (that would be Δ6 in this example) is
extremely small and the right one is such that almost p5 ∈ T 2

α (Tα(Δ6)\Δ6). The
interesting thing is that this optionwould imply a quick interruption of the expansion of
Tα(Δ6)\Δ6, involving two large gaps. But it is not really an option: the arrangement for
N = 15 in Fig. 13 is exceptional among relatively small N (aswell as the arrangements
for N = 24 and N = 35 are), while for N > 36 we have |T ′

α(α + 1)| > 2 if
Iα = Δd ∪Δd−1Δd−2 and N/(α + 1)− (d − 2) = pd or N/α − d = pd . We derived
this in a similar way as in the proof of Lemma 10 (see Fig. 11) or the preparations for
Theorem 5 (see Fig. 6). Figure 14 shows the associated ‘limit graph’, from which it is
easily found that a = 1

2 (3 − √
5), yielding branch number 2 + g, with g = 1/G the

small golden section.
With this, we conclude the proof of Theorem 6. �
In the next section we will prove that if Iα = Δd ∪Δd−1 ∪Δd−2 ∪Δd−3 gaps exist

only in very rare cases and if they do, that they are very large. After that, we will finish
the proof of Theorem 4, stating that all arrangements with five cylinders are gapless.

5 Gaplessness in case I˛ contains two full cylinder sets

If an arrangement contains three cylinders, and two of them are full, the arrangement
is gapless according to Theorem 6. In this section we will proof that arrangements of
four cylinders generally do not contain a gap either, save for special values of N . The
core of this proof rests on values of α satisfying one of the equations

Tα(α) = T 3
α (α) (with rootα�) and Tα(α + 1) = T 3

α (α + 1) (with rootαu).

We will show that for N such that α� < αu very large gaps exist for α ∈ [α�, αu].
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Fig. 14 The ‘limit graph’ of Tα ,
translated over (−α,−α), under
the conditions
Iα = Δd ∪ Δd−1Δd−2 and
N/(α + 1) − (d − 2) = pd for
N → ∞ (and α, d → ∞
accordingly)

(1, a)

y = − 1
a
x + 3

y = − 1
a
x + 2

y = − 1
a
x + 1

(a, 1)

0 1

The central theorem of this section is the following:

Theorem 7 Let N ∈ N≥2 and Iα = Δd ∪ Δd−1 ∪ Δd−2 ∪ Δd−3. Then there is a gap
in Iα if and only if N = 2k2 + 2k − i , with k > 1 and i ∈ {1, 2, 3}. Moreover, if there
is a gap in Iα , the gap contains fd−1 and fd−2, while Δd and Δd−3 are gapless.

Proof of Theorem 7 Suppose that there is a gap containing fd−1 and fd−2 in Iα and that
Δd andΔd−3 are gapless. Then, as a sub-interval of a gap, the interval ( fd−1, fd−2) is
a gap. Since fd−1 < fd−2, N/( fd−1+d−1) = fd−1 and N/( fd−2+d−2) = fd−2,
we know that

( fd−1, fd−2) �

(
N

fd−2 + d − 1
,

N

fd−1 + d − 2

)
,

where the larger open interval is a gap as well. What is more, the infinite sequence of
intervals

( fd−1, fd−2) �

(
N

fd−2 + d − 1
,

N

fd−1 + d − 2

)

�

(
N

N
fd−1+d−2 + d − 1

,
N

N
fd−2+d−1 + d − 2

)

� · · ·

consists of the union of ( fd−1, fd−2) with pre-images of ( fd−1, fd−2) in Δd−1 and
Δd−2 respectively and therefore of gaps containing fd−1 and fd−2. It is contained in
the closed interval [q, r ], with

q = [d − 1, d − 2]N ,α ∈ Δd−1 and r = [d − 2, d − 1]N ,α ∈ Δd−2,

yielding
T 2

α (q) = q, Tα(q) = r , Tα(r) = q and T 2
α (r) = r . (25)
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SinceΔd andΔd−3 are gapless, Tα(α) and Tα(α +1) lie outside the interval (q, r),
which is to say

pd < Tα(α) ≤ q and r ≤ Tα(α + 1) < pd−2.

For the images of α under Tα this means that either T 2
α (α) ∈ Δd−3 or T 2

α (α) ∈
Δd−2, in the latter case of which we have, due to the expansiveness of Tα and the
equalities of (25),

|Tα(α) − q| ≤ |T 2
α (α) − r | ≤ |T 3

α (α) − q|,

with equalities only in the case Tα(α) = q. From this we derive that

either T 2
α (α) ∈ Δd−3 or T 2

α (α) ∈ Δd−2 ∧ T 3
α (α) ≤ Tα(α) (26)

and, similarly, that

either T 2
α (α + 1) ∈ Δd or T 2

α (α + 1) ∈ Δd−1 ∧ T 3
α (α + 1) ≥ Tα(α + 1). (27)

In the following we will write αu(N ,m) (u for ‘upper’) for the positive root of the
equation T 3

α (α + 1) = Tα(α + 1) (so Tα(α + 1) = r ) and α�(N ,m) (l for ‘lower’) for
the positive root of the equation T 3

α (α) = Tα(α) (so Tα(α) = q), with m the number
of full cylinder sets; in the current case we have m = 2. Recall that Iα consists of m
full cylinder sets if and only if α = k, N = mk(k + 1) and d = (m − 1)(k + 1) for
some k ∈ N, cf. Theorem 1, so if m = 2, we have arrangements consisting of two full
arrangements only for α = k, N = 2k(k + 1) and d = k + 1. If N is 2k(k + 1) − n,
with n ∈ N, and α = k − x , with x ∈ R, we have

b(N , α) = 2k2 + 2k − n

(k − x)(k + 1 − x)
= 2 + 4xk − n + 2x − 2x2

(k − 1)(k + 1 − x)
> 2 + 4xk − n

k2 + x2
,

which is a little bit larger than 2 provided x and n are relatively small. For these
arrangements we have

d(α) =
⌊
2k2 + 2k − n

k − x
− (k − x)

⌋
=

⌊
k + 2 + 3x + 2x2 + 2x − n

k − x

⌋
= k + 2

and

d(α + 1) =
⌊
2k2 + 2k − n

k + 1 − x
− (k + 1 − x)

⌋
=

⌊
k − 1 + 3x + 2x2 + 2x − n

k + 1 − x

⌋

= k − 1.

So, for x and n relatively small, the arrangements consist of four cylinders, while the
branch number is only a little bit larger than 2. We will now use this to finish the
forward implication of Theorem 7.
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Fig. 15 Arrangement with
N = 11, α = 1.8719

N = 11, α = 1.8719 · · · (k = 2, i = 1)

T 3
α(α + 1) = Tα(α + 1)

F4

F3

F2

F1

�1�2�3�4

Since Δd−3 decreases and Δd increases as α decreases, we see that the assumption
that there is a gap containing fd−1 and fd−2 in Iα implies αu(N , 2) ≥ α�(N , 2).
We will shortly show that the only values of N for which αu(N , 2) ≥ α�(N , 2) are
N = 2k2 + 2k − i , with k > 1 and i ∈ {1, 2, 3}; in all cases d = k + 2. Although we
could keep i as a variable in our calculations, we can limit ourselves to the case i = 3,
since i = 3 is the least favourable value of i allowing for a gap, as is suggested6 in
Figs. 12, 15, 16, 17 and 18. We will show that for i = 3 indeed αu(N , 2) ≥ α�(N , 2).
Subsequently we will show that for 4 ≤ i ≤ 4k no gaps exist; the upper bound is 4k,
since 2k2 + 2k − 4k = 2(k − 1)2 + 2(k − 1), so as to confine the calculations to the
group of arrangements where d = k + 2.

So, let N = 2k2 + 2k − 3 and d = k + 2. Then α�(N , 2) = [k + 2, k + 1, k] and
αu(N , 2)+1 = [k−1, k, k + 1].7 Omitting straightforward calculations, we find that

αu(2k
2 + 2k − 3, 2) = (2k2 + 2k − 3)

√
D − (2k4 + 3k2 + 3k − 6)

4k3 + 12k2 − 6k − 6

and

α�(2k
2 + 2k − 3, 2) = (2k2 + 2k − 3)(

√
D − (k2 + 5k + 4))

4k3 − 18k − 8
,

6 Note that in Fig. 12 we have d = k + 1, while there is no small cylinder set Δk+2.
7 We omit the suffix ‘N , α’ behind these expansions not only for eligibility but also because α has yet to
be determined as the root of T 3

α (α) = Tα(α) or T 3
α (α + 1) = Tα(α + 1).
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Fig. 16 Arrangement with
N = 11, α = 1.8687

F4

F3

F2

F1

�1�2�3�4

N = 11, α = 1.8687 · · · (k = 2, i = 1)

T 3
α(α) = Tα(α)

with

D = 9k4 + 18k3 − 3k2 − 12k = (3k2 + 3k − 2)2 − 4.

Since we assume that there is a gap containing fd−1 and fd−2, we have αu ≥ α�.
Omitting the basic calculations, we find that this inequality holds for k ∈ N≥2. In the
case k = 3 (and so N = 21), we have indeed

αu(2k
2 + 2k − 3, 2) =

√
508032 − 192

192
= 2.7123 · · · > 2.7122 · · ·

=
√
508032 − 588

46
= α�(2k

2 + 2k − 3, 2);

see Fig. 19.
Some more basic calculations show that the cases N = 2k2 + 2k − 1 and N =

2k2 + 2k − 2 allow for larger intervals [α�, αu] where large gaps exist; see the next
examples.

αu(11, 2) =
√
9075 − 26

37
= 1.8719 · · · and α�(11, 2) = 99 − √

9075

2
= 1.8686 · · ·

αu(10, 2) =
√
1725 − 12

17
= 1.7372 · · · and α�(10, 2) = 45 − √

1725

2
= 1.7334 · · ·

αu(9, 2) =
√
5103 − 22

31
= 1.5946 · · · and α�(9, 2) = 27 − √

567

2
= 1.5941 · · ·
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Fig. 17 Arrangement with
N = 10, α = 1.7372

N = 10, α = 1.7372 · · · (k = 2, i = 2)

T 3
α(α + 1) = Tα(α + 1)

F4

F3

F2

F1

�1�2�3�4

Fig. 18 Arrangement with
N = 9, α = 1.5946

F4

F3

F2

F1

�1�2�3�4

N = 9, α = 1.5946 · · · (k = 2, i = 3)

T 3
α(α + 1) = Tα(α + 1)

αu(8, 2) =
√
228 − 5

7
= 1.4428 · · · and α�(8, 2) = 9 − √

57 = 1.4501 · · ·

We see that the intervals αu − α� decrease as N decreases, until (for N = 8) the
‘interval’ would have negative length, hence does not exist.

123



114 J. de Jonge et al.

Fig. 19 Arrangement with
N = 21, α = 2.7123

F5

F4

F3

F2

�2�3�4�5

N = 21, α = 2.7123
α� = 2.7122 and αu = 2.7123

Now suppose N = 2k2 + 2k − 4 (note that voor k = 2 we have N = 8). Then

αu(2k
2 + 2k − 4, 2) = (k + 2)

√
D − (k3 + k2 + 2k + 4)

2(k2 + 4k + 2)

and

α�(2k
2 + 2k − 4, 2) = (k − 1)

√
D − (k3 + 4k2 − k − 4)

2(k2 − 2k − 1)
,

with

D = 9k4 + 18k3 − 7k2 − 16k.

There are no gaps provided α�(2k2 + 2k − 4, 2) − αu(2k2 + 2k − 4, 2) > 0. Once
more we omit the calculations, finding that this inequality holds for k ∈ N≥2, so we
conclude that there are no gaps in case N = 2k2 + 2k − 4. If we replace the number 4
in N = 2k2 + 2k − 4 by larger integers (if possible), there will not be any gaps either:
the length of the ‘interval’ [α�, αu]would only become more negative. This concludes
the proof that if Iα = Δd ∪ Δd−1 ∪ Δd−2 ∪ Δd−3 and there is a gap containing fd−1
and fd−2 in Iα , then N = 2k2 + 2k − i , with k > 1 and i ∈ {1, 2, 3}.

For the converse statement, we assume that N = 2k2 + 2k − i , with k ∈ N and
i ∈ {1, 2, 3}. If also d = k + 2, then earlier in this proof we showed that only then
α�(N , 2) ≤ αu(N , 2). We will show that for α such that α�(N , 2) ≤ α ≤ αu(N , 2)
there is a gap in Iα = Δd ∪ Δd−1 ∪ Δd−2 ∪ Δd−3 containing both fd−1 and fd−2.
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Fig. 20 Arrangement with
N = 20, α = 2.6124

F5

F4

F3

F2

�2�3�4�5

N = 20, α = 2.6124

α� = 2.6132 · · · and αu = 2.6115 · · ·

As earlier in this proof, we set

q = [d − 1, d − 2]N ,α and r = [d − 2, d − 1]N ,α.

SetG = (q, r), then clearly both fd−1 ∈ G and fd−2 ∈ G. Furthermore, by definition
of α�(N , 2) and αu(N , 2) we have that for every α ∈ [α�(N , 2), αu(N , 2)] that

Tα(α) ≤ q (and therefore T 2
α (α) ≥ r)

and that

Tα(α + 1) ≥ r (and therefore T 2
α (α + 1) ≤ q).

Note that Tα((pd , q)) = (r , α + 1) and that Tα((r , pd−2)) = (α, q). Then we have
that Tα(Gc) = Gc, where Gc is the complement of G in Iα . We are left to show that
G = (q, r) is a gap; i.e. that for almost all x ∈ G there exists an n = n(x) such that
T n

α (x) ∈ Gc.
To show this, consider the map T : Iα → Iα , defined by

T (x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−x
pd−α

+ (α+1)pd−α2

pd−α
, if x ∈ Δd;

N
x − (d − 1), if x ∈ Δd−1;
N
x − (d − 2), if x ∈ Δd−2;

−x
α+1−pd−2

+ (α+1)2−α pd−2
α+1−pd−2

, if x ∈ Δd−3.

(28)
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Table 1 The thin thread between
having a gap or not

α�(N , 2) αu(N , 2)

N = 9 1.594119 · · · 1.594686 · · ·
N = 21 2.712252 · · · 2.712310 · · ·
N = 37 3.776839 · · · 3.776851 · · ·
N = 57 4.817672 · · · 4.817675 · · ·
N = 8 1.450165 · · · 1.442809 · · ·
N = 20 2.613247 · · · 2.611575 · · ·
N = 36 3.700989 · · · 3.700407 · · ·
N = 56 4.756087 · · · 4.755832 · · ·

So on Δd and on Δd−3 we have that T is a straight line segment with negative slope,
through (α, α + 1) and (pd , α) on Δd , resp. through (pd−2, α + 1) and (α + 1, α)

on Δd−3. For x ∈ Δd−1 ∪ Δd−2 we have that T (x) = Tα(x). To show that G is
a gap, it is enough to show the ergodicity of T . Then the maximality of G follows
from the fact that the support of the absolutely continuous invariant measure is Gc,
since Tα(Gc) = Gc. The proof of the existence of the absolutely continuous invariant
measure for T and its ergodicity is similar to the proof of Theorem 2. Here all branches
are complete and the proof is rather simpler. Once we have the ergodicity of T , it is
obvious that for a.e. x ∈ G there exists n0 = n0(x) such that z = T n0(x) ∈ Gc. Then
z never returns in G under iterations of Tα . This finishes the proof of Theorem 7. �

We stress that the in case of N = 2k2 +2k−3 the intervals [α�, αu] on which gaps
exist may be very small; see Fig. 19. On the other hand, in case N = 2k2 + 2k − 4,
the gaplessness may be a very close call; see Fig. 20. Table 1 illustrates how fast these
differences between α� and αu decrease as N increases:

Remark 15 While a fixed point fi is repellent for points within Δi , the fixed points
in two adjacent cylinder sets behave mutually contracting for all other points in these
cylinder sets. As a consequence, it may take quite some time before the orbit of points
in the full cylinders of gap arrangements with four cylinders leave these full cylinders
for the first time. As an example we take the gap arrangement for k = 50 (according
to the notations used above). Then N = 2 · 502 + 2 · 50 − 3 = 5097, d = 52 and
α ≈ αu ≈ α� ≈ 49.98019737. Table 2 shows for ten values of x between α and α + 1
the smallest n such that T n

α (x) /∈ Δ51 ∪ Δ50. What is more, there are uncountably
many x in the gap (a, b) that contains fd−1 and fd−2 such that T n

α (x) ∈ (a, b) for all
n ∈ N∪{0}. Indeed, for any sequence (d1, d2, . . . , dn, . . .) such thatdn ∈ {d−1, d−2},
with n ∈ N, we have that x = [d1, d2, d3, . . .]N ,α ∈ (a, b).

For the final, second part of the proof of Theorem 4, we will consider one by one
all cases left, that is N ∈ {2, . . . , 11}. If N = 11 and α ≥ f7, Iα consists of five
cylinder sets if and only if α ∈ ( f2 −1, f6); see the left arrangement of Fig. 21, which
we already saw in Fig. 13. Since α�(11, 3) > αu(11, 3) (cf. page 5), we conclude
on similar grounds as in the proof of Theorem 7, that the arrangement is gapless. If
α ∈ [ f7, f2 − 1], the interval Iα consists of four cylinder sets, implying gaplessness
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Table 2 The difficulty of leaving the gap: with N = 5097, α = 49.98019737, for each of ten values of
x ∈ [α, α + 1] the smallest n is given such that T n

α (x) /∈ Δ51 ∪ Δ50

x 50 50.1 50.2 50.3 50.4 50.5 50.6 50.7 50.8 50.9

n 5417 2090 3568 1123 4776 185 5816 16231 5646 7604

�2�3�4�5

N = 11, α = f6

�2�3�4�5

N = 7, α = f6 = 1

�2�3�4�5�6�7

N = 7, α = 1
2

√
14 − 1

�13 · · · �2 �1

N = 2, α = 0.15

Fig. 21 Borderline cases for part II of the proof of Theorem 4

because of Theorem 7. Since |T ′
α( f7 + 1)| = 2.04 · · · , gaps are also excluded for

all α ≤ f7. A similar approach works for N = 10 (with |T ′
α( f7 + 1)| = 2.03 · · · ),

N = 9 (with |T ′
α( f7 + 1)| = 2.02 · · · ) and even N = 8, in which case f7 = 1,

|T ′
α( f7 + 1)| = 2, and the arrangement with four cylinders is full.
For N ∈ {3, . . . , 7} we take a different approach, confining ourselves to the case

N = 7; the cases N ∈ {3, . . . , 6} are done similarly. We will omit most calculations,
which are generally quite tedious and do hardly elucidate anything. So let N = 7.
Then Iα consists of at least five cylinder sets if and only if α < f6; see the second
arrangement of Fig. 21. We have |T ′

α(α + 1)| = 2 for α = 1
2

√
14 − 1, in which case

dmin = 2; see the third arrangement of Fig. 21. Now suppose 1
2

√
14−1 ≤ α < f6 = 1.

We have |T ′
α( f6 + 1)| = 7

4 and |T ′
α(α)| > 7. Regarding these relatively large values,

it is not hard to understand that Δ2 is gapless. The part of the orbit of α + 1 under Tα

in the third arrangement of Fig. 21 illustrates that even in the case of α = 1
2

√
14, the

expansion of [Tα(α + 1), p3] under Tα clearly excludes the existence of gaps.
Finally, let N = 2. We have |T ′

α( f1)| = 2, indicating the rapid increase of |T ′
α| on

Iα if α decreases. The large expansiveness of Tα left of f1 assures the gaplessness of
Δ1. We will show that for any α ∈ (0,

√
2−1] the image of [Tα(α +1), p2]) contains

most of the fixed points, implying the gaplessness of Iα; see the last arrangement of
Fig. 21 for an illustration of this. If Tα(α+1) ≤ f2 this is quite obvious, so we assume
Tα(α + 1) > f2. Suppose that T 2

α (α + 1) = fs , for some s ∈ N≥2. Then, omitting
some basic calculations, we have α = (s + 1 − √

s2 + 8)/(2s − 7), whence

d = d(α) =
⌊
4s2 − 11s + (4s − 13)

√
s2 + 8 − 15

2s − 7

⌋

≥ 4s2 − 13s + (4s − 13)
√
s2 + 8 − 8

2s − 7
,
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from which we derive that d ≥ 4s.
This finishes the proof of Theorem 4. �

Remark 16 A paper worthwhile to read alongside our paper is [12]. As the title of
this paper states, it deals with mixing properties of expanding Lorentz maps. There
are many interesting results in [12] that embed the results from our paper in a more
general context.
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