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Abstract
Interval exchange transformations are typically uniquely ergodic maps and therefore
have uniformly distributed orbits. Their degree of uniformity can be measured in
terms of the star-discrepancy. Few examples of interval exchange transformations
with low-discrepancy orbits are known so far and only for n = 2, 3 intervals, there
are criteria to completely characterize those interval exchange transformations. In this
paper, it is shown that having low-discrepancy orbits is a conjugacy class invariant
under composition of maps. To a certain extent, this approach allows us to distinguish
interval exchange transformationswith low-discrepancy orbits from thosewithout. For
n = 4 intervals, the classification is almost complete with the only exceptional case
having monodromy invariant ρ = (4, 3, 2, 1). This particular monodromy invariant is
discussed in detail.

Keywords Interval exchange transfomrations · Conjugacy classes · Low-discpreancy
sequences · Fundamental discontinuities

Mathematics Subject Classification 37E05 · 11J71 · 11K38 · 11B50

1 Introduction

Interval exchange transformations (IETs) are an important kind of generalization of
circle rotations and are therefore a widely considered class of discrete dynamical
systems, see e.g. [9]. They act on the unit interval by cutting it into n ∈ N subintervals
and permuting these subintervals. Hence, they are piecewise linear functions. Besides
their rich dynamics, their special importance lies amongst others in their connection
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to translation flows, see e.g. [18], and moduli spaces, see e.g. [21]. In the simplest case
of n = 2 intervals, interval exchange transformations are circle rotations and their
orbits are the famous (shifted) Kronecker sequences.

A seminal result, which was independently proved in [13,17], states that almost
every interval exchange transformation is uniquely ergodic. Thus, they typically have
uniformly distributed orbits. However, this does notmean that the orbits are necessarily
low-discrepancy sequences, i.e. roughly speaking as uniformly distributed as possible,
which only occurs on rare occasions. The present article is dedicated to the purpose
to better understand when interval exchange transformations possess low-discrepancy
orbits.

Recall that for a sequence P = (xi )
∞
i=1 in [0, 1), the star-discrepancy of its first

N points is defined by

D∗
N (P) := sup

B⊂[0,1)

∣
∣
∣
∣

| {xi |1 ≤ i ≤ N } ∩ B|
N

− λ(B)

∣
∣
∣
∣
,

where the supremum is taken over all intervals B = [0, a) ⊂ [0, 1) anchored at zero
and λ(·) denotes the Lebesgue measure. If D∗

N (P) satisfies

D∗
N (P) = O(N−1(log(N )))

then P is called a low-discrepancy sequence. Indeed, this is the best possible order
of convergence to zero by the work of Schmidt, see [16]. The precise best possible
value of the constant c with D∗

N (P) ≤ cN−1 log(N ) for all N ∈ N and a sequence P
is still unknown (see e.g. [12]). The concept of star-discrepancy is closely related to
the construction of optimal integration rules via the Koksma-Hlawka inequality. For
more details, in particular on higher dimensions, we refer the reader to [5]. A complete
classification of low-discrepancy orbits for IETs with n = 2 intervals goes back to
Behnke: the low-discrepancy property relies on the continued fraction expansion of the
angle of rotation. These orbits are some of the classical examples of low-discrepancy
sequences, i.e. (shifted) Kronecker sequences, see e.g. [14].

Theorem 1.1 ( [7], Corollary 1.65) Let z ∈ R\Q with continued fraction expansion
z = [a0, a1, a2, . . .]. Then the sequence ({nz})n≥0, where {·} denotes the fractional
part, has low-discrepancy if and only if the Cesàro mean

a(1)
m (z) = 1

m

m
∑

j=1

a j

is a bounded sequence.

While a theorem of Khintchine implies that the set

{

z ∈ [0, 1) | z /∈ Q, a(1)
m (z) is a bounded squence

}
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has Lebesguemeasure zero, see [11], it has Hausdorff dimension one due to the Jarnik-
Besicovitch Theorem, see [10], [3]. The same observation essentially holds true for
n = 3 intervals. In this case, an (admissible) interval exchange transformation is
not a rotation if and only if the ordering of the intervals is inverted by the map. In
other words, the so-called monodromy invariant, which describes the ordering of the
subintervals after applying the interval exchange transformation, is ρ = (3, 2, 1) then,
compare with [18].1

Theorem 1.2 ([20], Theorem 3.1) Let λ1, λ2, λ3 be the lengths of three intervals with
λ1+λ2+λ3 = 1. Let f : [0, 1) → [0, 1) denote the interval exchange transformation,
which inverts the ordering of the three intervals. Then f yields a low-discrepancy
sequence ( f n(y))n≥0 for all y ∈ [0, 1) if and only if λ2+λ3

1+λ2
is irrational and its

continued fraction expansion has bounded Cesàro mean.

Recall that for a map f : [0, 1) → [0, 1), its iteration is inductively defined by
f 1 := f and f i+1 := f ( f i ). Together, Theorem 1.1 and Theorem 1.2 completely
characterize all interval exchange transformation with n ∈ {2, 3} intervals that posses
low-discrepancy orbits. In the case of n ≥ 4 intervals, there is much less known. It is
a consequence of [22] that given a monodromy invariant Lebesgue-almost all interval
exchange do not have low-discrepancy orbits for n ≥ 4 as well. In contrast, an abstract
criterion for identifying interval exchange transformationswith low-discrepancy orbits
was derived in [6]. It involves the constructive geometric definition of systems of rank
one, see also [8], and can therefore hardly be applied in practice to check if a given IET
has a low-discrepancy orbit. To the best of our knowledge, the only explicit examples of
interval exchange transformations with n ≥ 4 intervals having low-discrepancy orbits
have been found in [20]. In this paper, we aim to contribute to a better understanding
of the situation. The idea is to consider conjugacy classes of the group of all interval
exchange transformations, where the group action is given by functional composition.
The following theorem is a key observation for this novel approach, which allows
applications on the distributional properties of IET orbits. Its proof will be given in
Sect. 2.

Theorem 1.3 Let P = (xi )
∞
i=1 be a sequence of points in [0, 1). Furthermore, let f

be an (arbitrary) interval exchange transformation with n intervals and denote the
sequence ( f (xi ))

∞
i=1 by P∗. For every N ∈ N then

1

n
D∗

N (P) ≤ D∗
N (P∗) ≤ nD∗

N (P)

holds.

Note that the second inequality follows from the first by considering f −1 instead of
f . By applying the well-known formula (see e.g. [14], Theorem 2.6)

D∗
N (P) = 1

2N
+ max

i=1,2,...,N

∣
∣
∣
∣
xi − 2i − 1

N

∣
∣
∣
∣

1 The general definition of themonodromy invariant is given in Sect. 2. Herewe assume that the subintervals
before rotation are labeled in increasing ordering.
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402 C. Weiß

for the star-discrepancy of an ordered set P = {x1, x2, . . . , xN } ⊂ [0, 1) with x1 ≤
x2 ≤ . . . ≤ xN , the boundary in Theorem 1.3 can be seen to be sharp in the following
cases.

• For n = 1, the interval exchange transformation is the identity and the claim
follows trivially.

• For n = 2 and N arbitrary, choose

xi = 1

N
+ (i − 1)

N − 2

N (N − 1)

for i = 1, . . . , N . Then D∗
N (x1, . . . , xN ) = 1/N . Now let f exchange the two

intervals [0, 1/N ) and [1/N , 1). Then D∗
N ( f (x1), . . . , f (xN )) = 2/N .

• For n = 2N , we choose the starting set P as xi = (2i − 1)/2N for i = 1, . . . N .
This set has star-discrepancy 1/(2N ) which is the lowest possible value that can
be achieved. Now let 1/N > ε > 0 be arbitrary. For i = 1, . . . , 2N we define the
following intervals

Ii =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

[0, x1 − ε/2) i = 1

[xn − ε/2, xn + ε/2) i = 2n, n = 1, . . . , N

[xn + ε/2, xn+1 − ε/2) i = 2n + 1, n = 1, . . . , N − 1

[xN − ε/2, 1) i = 2N

and choose the monodromy invariant ρ as

ρ =
{

2i i ≤ N

i − N + (i − N − 1) · 2 N < i ≤ 2N .

Then the star-discrepancy converges D∗
N ( f (x1), . . . , f (xN )) → 1 as ε → 0.

On the other hand, it is trivial that the given boundary cannot be sharp for interval
exchange transformationswithn > 2N intervals because 1

2N ≤ D∗
N (x1, . . . , xN ) ≤ 1.

By applying Theorem 1.3 to an interval exchange transformation g and realizing that
(g f g−1)i (x) = g f i (g−1(x)), the following corollary is an immediate consequence
of Theorem 1.3.

Corollary 1.4 Let f , g be two interval exchange transformations and let x ∈ [0, 1)
be arbitrary. Then ( f i (g−1(x)))∞i=1 is a low-discrepancy sequence if and only if

(
(

g f g−1
)i

(x))∞i=1 is a low-discrepancy sequence.

This result is particularly helpful in the case of n = 4 intervals, where we can show that
an (admissible) interval exchange transformationwith n = 4 intervals andmonodromy
invariant ρ 
= (4, 3, 2, 1) is always conjugate to an interval exchange transformation
with atmost 3 intervals (Theorem2.4).We call these interval exchange transformations
old transformations. Theorems 1.1 and Theorem 1.2 can then be used to determine if
an old transformation has a low-discrepancy orbit or not. This constitutes a significant
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Fig. 1 Interval exchange
transformation for n = 4

1 2 3 4

4 3 2 1

step towards a complete and practically applicable (in contrast to the systems of rank
one viewpoint) classification of IETs that have low-discrepancy orbits. Moreover, it
limits the number of monodromy invariants to consider when searching for potential
new low-discrepancy sequences generated by IETs. To complete the picture for n = 4
intervals, Proposition 2.8 gives a sufficient condition under which an interval exchange
transformation with ρ = (4, 3, 2, 1) cannot be achieved by conjugation of an interval
exchange transformation with a lower number of intervals. Such an interval exchange
transformation is called a new transformation. An essential tool in this context is
the work of Bernazzani in [2]. The conjugation method proposed in the present paper
can also be applied in the case of n > 4 intervals. However, it is farer from yielding a
complete classification then. For instance 50 of 71 (admissible) monodromy invariants
in the case of n = 5 intervals can this way be excluded to give new transformations.
Furthermore, it is shown in Example 2.6 that there are old transformations with n = 5
intervals having one of the 21 monodromy invariants we could not directly exclude.

2 Discrepancy properties of conjugacy classes

2.1 Interval exchange transformations

Let {Iα|α ∈ A} be a finite partition of the unit interval [0, 1) into sub-intervals indexed
by the finite alphabetA = {1, . . . , n}. An interval exchange transformation is amap
f : [0, 1) → [0, 1) which is a translation on each subinterval Iα . It is determined by
its combinatorial data and its length data. The combinatorial data consists of two
bijections π0, π1 : A → A, and the length data are numbers (λα)α∈A with λα > 0
and 1 = ∑

α∈A λα . The number λα is the length of the subinterval Iα and the pair
π = (π0, π1) describes the ordering of the subintervals before and after the map f is
iterated (compare Fig. 1).

Whenever it is necessary to stress the number of subintervals involved, the map f is
called an n-interval exchange transformation or shorthand an n-IET. The combinatorial
data is not uniquely determined by f (see e.g. [18], Example 1.3). In contrast, the
expression ρ = π1 ◦ π−1

0 is unique and called the monodromy invariant of f .
When we normalize π0 = Id, then π1 coincides with the monodromy invariant. If the
combinatorial data satisfies

π−1
0 ({1, . . . , k}) = π−1

1 ({1, . . . , k}) (1)

for some k < n, the interval exchange transformation splits into two interval exchange
transformations of simpler combinatorics. The analysis of interval exchange transfor-
mations is therefore usually restricted to admissible combinatorial data, for which (1)
does not hold for any k < n. Moreover, an interval exchange transformation f satis-
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404 C. Weiß

fies the Keane condition if the orbits of the end points of the subintervals are infinite
and as disjoint as possible, i.e. f m(∂ Iα) 
= ∂ Iβ for all m ≥ 1 and α, β ∈ A with
π0(β) 
= 1. Finally, let us consider the set of discontinuities D( f ) = {β1, β2, . . . βm}
of an interval exchange transformation f . A finite sequence of points x1, x2, . . . , xk

is a f -chain if x1, xk both belong to D( f ) ∪ {0} and f (xi ) = xi+1. A maximal
f -chain is an f -chain, which is not a proper subset of another f -chain. Now suppose
that x ∈ D( f ) is non-periodic and the initial point in the unique maximal f -chain of
length N (x) to which it belongs. If f N (x) is discontinuous at x , then x is a funda-
mental discontinuity of f . Further details on interval exchange transformation can
be found e.g. in [2,18,21].

2.2 Low-discrepancy orbits

For a map f : [0, 1) → [0, 1), the orbit of a point x ∈ [0, 1) is the sequence
( f i (x))∞i=1. An orbit is called a low-discrepancy orbit if it defines a low-discrepancy
sequence. The simplest class of examples of interval exchange transformations with
low-discrepancy orbits are rotations which satisfy the assumptions of Theorem 1.1.
Moreover, Theorem 1.2 yields a complete classification for the remaining case of 3-
IETs. Besides that, the only known examples of interval exchange transformations
with low-discrepancy orbits stem from [20]: For arbitrary n ∈ N, let L ∈ N, S ∈ N0
such that L + S = n and choose β as the positive solution of Lβ + Sβ2 = 1. Then
the monodromy invariant ρL,S is specified by

ρL,S(i) = i + 1, i = 1, . . . , L − 1,

ρL,S(L) = L + S,

ρL,S(L + 1) = 1,

ρL,S(i) = i − 1, i = L + 2, . . . L + S.

and the length data by λi = β for i = 1, . . . , L and λi = β2 for i = L +1, . . . , L + S.
The corresponding interval exchange transformation is denoted by fL,S . The following
result holds.

Theorem 2.1 ([20], Corollary 3.9) If L ≥ S, then the sequence ( f i
L,S(x0))∞i=0 is a

low-discrepancy sequence for all x0 ∈ [0, 1).

2.3 Conjugation

The set of all interval exchange transformations forms a group G under the operation
of functional composition. Conjugacy classes and centralizers ofG have recently been
studied in [2] building on earlier work of [4,15,19]. Here, we aim to understand the
effect of conjugation on the discrepancy of an orbit. Theorem 1.3, which is of interest
on its own, serves this purpose. It suffices to prove the second inequality mentioned
therein because the first inequality follows from the second one by applying f −1 to
P∗.
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Proof of Theorem 1.3 Without loss of generality n ≥ 2. Let λ1, . . . , λn denote the
length data of f and define λ0 = 0 and 	k = ∑k

i=0 λi for k = 0, . . . , n. We set

D∗
N ,i (P) := sup

	i−1≤b≤	i

∣
∣
∣
∣

|P ∩ [0, b)|
N

− b

∣
∣
∣
∣
.

Note that D∗
N ,i (P) ≤ D∗

N (P) for all i . The number of points of P lying in interval i
is denoted by #i . Moreover, we interpret the monodromy invariant ρ as permutation
π and let λ∗

i = λπ−1(i) be the length data after permutation and set λ∗
0 = 0 and

	∗
k = ∑k

i=0 λ∗
i for k = 0, . . . , n. By definition we have

D∗
N (P∗) = sup

0≤b≤1

∣
∣
∣
∣

|P∗ ∩ [0, b)|
N

− b

∣
∣
∣
∣
.

Assume that the supremum is achieved in the k-th interval (after permutation). Hence

D∗
N (P∗) = sup

	∗
k−1≤b≤	∗

k

∣
∣
∣
∣

|P∗ ∩ [0, b)|
N

− b

∣
∣
∣
∣

For the sake of clarity and completeness we consider the case k = n first. Then

D∗
N (P∗) =

∣
∣
∣
∣

L∗

N
− b∗

∣
∣
∣
∣

(2)

with L∗ = ∑

i 
=π−1(k) #i +Lk ≤ N , 0 ≤ Lk ≤ #π−1(k) and b∗ = ∑

i 
=π−1(k) λi +bk ≤
1, 0 ≤ bk ≤ λπ−1(k). Thus we get

D∗
N (P∗) =

∣
∣
∣
∣
∣
∣

∑

i 
=π−1(k) #i

N
−

∑

i 
=π−1(k)

λi + Lk

N
− bk

∣
∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣
∣

∑

i<π−1(k) #i

N
−

∑

i<π−1(k)

λi + Lk

N
− bk

∣
∣
∣
∣
∣
∣

+
∣
∣
∣
∣
∣
∣

∑

i>π−1(k) #i

N
−

∑

i>π−1(k)

λi

∣
∣
∣
∣
∣
∣

≤ D∗
N ,π−1(k)

(P) +
∣
∣
∣
∣
∣
∣

N − ∑

i≤π−1(k) #i

N
− (1 −

∑

i≤π−1(k)

λi )

∣
∣
∣
∣
∣
∣

≤ D∗
N ,π−1(k)

(P) + D∗
N ,π−1(k)

(P) ≤ 2D∗
N (P) ≤ nD∗

N (P).

Now let k < n be arbitrary and let J = { j1 < j2 < . . . < jk−1} denote the set of
indices with π−1( ji ) < π−1(k). We use similar notation as in the case k = n, namely
we assume (2)with L∗ = ∑

J #i +Lk ≤ N , 0 ≤ Lk ≤ #π−1(k) andb∗ = ∑

J λi +bk ≤
1, 0 ≤ bk ≤ λπ−1(k). Then

D∗
N (P∗) =

∣
∣
∣
∣
∣
∣

∑

J #i

N
−

∑

J

λi + Lk

N
− bk

∣
∣
∣
∣
∣
∣
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≤
∣
∣
∣
∣
∣
∣

∑

i<π−1(k) #i

N
−

∑

i<π−1(k)

λi + Lk

N
− bk

∣
∣
∣
∣
∣
∣

+
∣
∣
∣
∣
∣
∣

∑

i>π−1(k) #i

N
−

∑

i>π−1(k)

λi

∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣
∣

∑

i 
=π−1(k),i /∈J #i

N
−

∑

i 
=π−1(k),i /∈J

λi

∣
∣
∣
∣
∣
∣
∣

≤ 2D∗
N (P) +

∣
∣
∣
∣
∣
∣
∣

∑

i 
=π−1(k),i /∈J #i

N
−

∑

i 
=π−1(k),i /∈J

λi

∣
∣
∣
∣
∣
∣
∣

If j1 = 1, j2 = 2, . . . jr = r and jr+1 > r + 1 for r ∈ N then
∣
∣
∣
∣
∣
∣
∣

∑

i 
=π−1(k),i /∈J

(
#i

N
− λi

)

∣
∣
∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣
∣

r
∑

i=1

(
#i

N
− λi

)
∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣
∣

∑

i 
=π−1(k),i /∈J\{1,...,r}

(
#i

N
− λi

)

∣
∣
∣
∣
∣
∣
∣

≤ D∗
N (P) +

∣
∣
∣
∣
∣
∣
∣

∑

i 
=π−1(k),i /∈J\{1,...,r}

(
#i

N
− λi

)

∣
∣
∣
∣
∣
∣
∣

and J ∗ = J\ {1, ..., r} has r elements less than J . If j1 > 1, then
∣
∣
∣
∣
∣
∣
∣

∑

i 
=π−1(k),i /∈J

(
#i

N
− λi

)

∣
∣
∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣
∣

j1∑

i=1

(
#i

N
− λi

)
∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣
∣

∑

i 
=π−1(k),i /∈J\{ j1}

(
#i

N
− λi

)

∣
∣
∣
∣
∣
∣
∣

≤ D∗
N (P) +

∣
∣
∣
∣
∣
∣
∣

∑

i 
=π−1(k),i /∈J\{ j1}

(
#i

N
− λi

)

∣
∣
∣
∣
∣
∣
∣

and J ∗ = J\ { j1} has one element less than J . In both of the cases it follows by
induction on the number of elements in J that

∣
∣
∣
∣
∣
∣

∑

i 
=π−1(k),i /∈J

(
#i

N
− λi

)
∣
∣
∣
∣
∣
∣

≤ (k − 1)D∗
N (P).

In total, the calculation yields

D∗
N (P∗) ≤ (k + 1)D∗

N (P).

Since k < n, the claim follows. �
Inwhat followswe discuss applications of Theorem 1.3 andCorollary 1.4 respectively.
If f i (y)∞i=1 is known to be a low-discrepancy sequence, then Corollary 1.4 can be
applied directly by choosing x = g(y). Furthermore, note that neither the number
of intervals nor the permutations of the two interval exchange transformations have
to coincide. If f , g are two 2-IETs, then they can both be interpreted as rotations of
the circle and hence ( f (xi ))

∞
i=1 and (g f g−1(xi ))

∞
i=1 are equal. This also shows that

the low-discrepancy sequence examples fL,S(x) cannot be generated by Kronecker
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sequences using conjugation. Moreover, Corollary 1.4 implies that low-discrepancy
is a conjugacy class invariant if all orbits of f are known to yield low-discrepancy
sequences. From Theorem 2.1, we hence get.

Corollary 2.2 For any interval exchange transformation g and any x ∈ [0, 1), the
sequence g fL,Sg−1(x) is a low-discrepancy sequence if L ≥ S.

Although the known examples of n-IETs with low-discrepancy orbits are non-
trivial in the sense that they cannot be generated by rotations exclusively, the following
example shows amongst others that the map f2,2 is conjugate to a 3-IET.

Example 2.3 Let f2,2 be the 4-IET and let g−1 be the circle rotation by the angle z. Here
we consider the three special cases z ∈ {

β, 2β, 2β + β2
}

. If z = β, then g f2,2g−1 has
length data (β, β2, β2, β) and monodromy invariant (3, 4, 2, 1). By merging the third
and the fourth interval (before rotation), we see that g f2,2g−1 can also be regarded
as a 3-IET with length data (β, β2, 1/2) and monodromy invariant (3, 2, 1). In the
case z = 2β we have λ = (β2, β, β, β2) and ρ = (3, 1, 4, 2) after conjugation. This
4-IET cannot be simplified to a 3-IET. Finally, if z = 2β + β2, then g f2,2g−1 can be
represented by an 3-IET with λ = (1/2, β, β2) and monodromy invariant (3, 2, 1).

In fact, being conjugate to a 3-IET is not a special feature of the examples fL,S but
the typical case for 4-IETs. Whenever one of the following conditions is satisfied then
(possibly) after conjugation by a rotation an n-IET can be represented by an IET with
a smaller number of intervals involved:

(1) ρ(i + 1) = ρ(i) + 1, for some 1 ≤ j ≤ n − 1,

(2) ρ(i) = n, ρ(i + 1) = 1, for some 1 ≤ j ≤ n − 1,

(3) ρ(n) = j, ρ(1) = j + 1,

(4) ρ(n) = n, ρ(1) = 1.

Generalizing notation from [1], we call the monodromy invariant strongly separating
if it does not fulfill any of the properties (1) − (4). The following theorem shows that
there is only one admissiblemonodromy invariant of a 4-IETwhich cannot be achieved
by conjugation from a 3-IET (compare Fig. 1).

Theorem 2.4 Let f define an admissible 4-IET with monodromy invariant ρ 
=
(4, 3, 2, 1). Then f is conjugate to a 3-IET.

Proof We consider the 13 admissible monodromy invariants of 4-IETs. These are

(4, 3, 2, 1), (4, 1, 3, 2), (3, 1, 4, 2), (4, 2, 1, 3), (2, 4, 3, 1),

(3, 2, 4, 1), (2, 4, 1, 3), (4, 2, 3, 1), (4, 1, 2, 3), (4, 3, 1, 2),

(3, 4, 1, 2), (2, 3, 4, 1), (3, 4, 2, 1).

The only strongly separating monodromy invariant is ρ = (4, 3, 2, 1). Following the
lines of the proof of Proposition 2.3 in [1], the map f is hence conjugate to a 2- or
3-IET because the number of discontinuities after an appropriate rotation is at most 3.

�
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Summing up, we therefore have a criterion at hand (Theorem 1.1, Theorem 1.2)
to decide, if a given interval exchange transformation with n = 4 intervals and mon-
odromy invariant ρ 
= (4, 3, 2, 1) has a low-discrepancy orbit or not.

Definition 2.5 We call an n-IET h which is given by h = g f g−1 with f being an
m-IET with m < n and g an arbitrary interval exchange transformation an old trans-
formation. Otherwise h is called a new transformation.

Thus, Theorem 2.4 can be restated in the form that every 4-IETwith ρ 
= (4, 3, 2, 1)
is an old transformation. For n = 5, there are 21 of 71 admissible monodromy invari-
ants that can potentially yield new transformations and for n = 6, there are 126 out
of 461. Note that our notation of strong separation only takes into account conjuga-
tion by rotations and therefore not all of the identified potential new transformations
are truly new. Indeed, the following example shows that not every interval exchange
transformation that is strongly separating is necessarily a new transformation.

Example 2.6 Let f be a 2-IET with ρ f = (2, 1) and g be a 3-IET with ρg = (3, 2, 1).
We choose β as the unique positive solution of 2β +2β2 = 1 and let λ f = (1−β, β)

and λg = (β, β2, 1 − β − β2). Then g f g−1 has length data (β, β2, β2, β2, β − β2)

and monodromy invariant ρg f g−1 = (4, 2, 5, 3, 1) which is a strongly separating IET.

Moreover, the interval exchange transformation fL,S is an old transformation for any
choice L ∈ N, S ∈ N0: by counting discontinuities as in Example 2.3, every map
fL,S can be seen to be conjugate to a 3-IET with monodromy invariant ρ = (3, 2, 1)
and length data λ1 = β, λ2 = (L − 1)β, λ3 = Sβ2. This fact suffices to generalize
Theorem 2.1 and leave away the condition L ≥ S therein.

Theorem 2.7 Let L ∈ N, S ∈ N0 and let β > 0 be the positive solution of Lβ+Sβ2 =
1. Then the sequence ( f i

L,S(x0))∞i=0 is a low-discrepancy sequence for all x0 ∈ [0, 1)
if and only if β is irrational.

Proof If β is rational then fL,S has finite order and cannot have a low-discrepancy
orbit. If β is irrational, then

ν = λ2 + λ3

1 + λ2
= 1 − β

1 + (L − 1)β

is a real algebraic number of degree 2. In particular, ν has bounded partial quotients and
thus also its Cesàro mean is bounded. Therefore, the claim follows from Theorem 1.2.

�
In the case of monodromy invariant ρ = (4, 3, 2, 1) we finally give sufficient

conditions under which f is a new transformation.

Proposition 2.8 Let f be an arbitrary 4-IET with monodromy invariant (4, 3, 2, 1)
which satisfies the Keane condition. Furthermore assume that f 2 is discontinuous at
f −1(0). Then f is a new transformation.

To prove Proposition 2.8, we use two results from [2] (Proposition 4.3, Corol-
lary 4.5) which we combine here to get the following lemma.
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Lemma 2.9 ([2]) Let f , g be two interval exchange transformations. Then f and
g f g−1 have the same number of fundamental discontinuities.

Proof of Proposition 2.8 Suppose that f = ghg−1. If f was an old transformation,
then h would either have monodromy invariant ρ = (2, 1) or ρ = (3, 2, 1) because
all other 3-IETs are either not admissible or a rotation. By Proposition 4.6 in [2],
the IET h can have at most three fundamental discontinuities. However since f 2 is
discontinuous at f −1(0), the IET f has four fundamental discontinuities. Hence f
and h cannot be conjugate by Lemma 2.9 and f cannot be an old transformation. �
Moregenerally, everyn-IETwhich satisfies theKeane condition andhasn fundamental
discontinuities is a new transformation by Corollary 4.5 in [2].
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