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Abstract
In recent years, researchers have studied the use of different iteration processes from
fixed point theory in the generation of complex fractals. For instance, the Mann,
Ishikawa, Noor, Jungck–Mann and Jungck–Ishikawa iterations have been used. In this
paper, we study the use of the Picard–Mann iterationwith s-convexity in the generation
of Mandelbrot and Julia sets. We prove the escape criterion for the (k + 1)st degree
complex polynomial. Moreover, we present some graphical and numerical examples
regarding Mandelbrot and Julia sets generated using the proposed iteration.

Keywords Picard–Mann iteration · Julia set · Mandelbrot set · escape criterion

Mathematics Subject Classification 37F45 · 47H10 · 47J25

1 Introduction

TheMandelbrot and Julia sets represent some of themost beautiful examples of fractal
structures generated by non-linear dynamic systems. They were introduced by Benoit
Mandelbrot in the late 1970s [28], but Julia sets were studied much earlier, namely
in the early 20th century by French mathematicians Pierre Fatou and Gaston Julia.
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Working at IBM, Mandelbrot studied their work and plotted the Julia sets for z2 + c,
where c ∈ C is the parameter. During the generation, he used the following feedback
iteration process:

zn+1 = z2n + c, (1)

where z0 ∈ C is a starting point. He was surprised by the result that he obtained.
Since then, many different generalisations of the sets presented by Mandelbrot

were proposed. The most obvious was the use of z p + c instead of the quadratic
function [10,27]. Then, other functions were used: rational [5], trigonometric [11,22,
30], exponential [9,30] etc. Over time, generalisations based on switching processes
have been proposed [3,26]. In recent years, some researchers focused on a different
type of generalisation. They used the results that can be found in fixed point theory.

Introducing Qc(z) = z2 + c, we can express (1) in the following form:

zn+1 = Qc(zn). (2)

In fixed point theory this form of the feedback iteration is called the Picard iteration and
it is used to find fixed points in a given mapping. In order to obtain faster convergence
(weak, strong, etc.), some other iteration processes were introduced in the fixed point
theory. For example, the Mann iteration [29] is defined in the following way:

zn+1 = (1 − αn)zn + αnT (zn), (3)

where αn ∈ (0, 1] and T is the mapping for which we want to find the fixed points.
The first works regarding the use of other iteration processes in the generation of
complex fractals appeared in 2004. Rani and Kumar used the Mann iteration in the
generation of Mandelbrot and Julia sets [35,36]. Then, other iterations were used to
generalise those sets. The iterations can be divided into two groups, namely explicit
and implicit. The Mann iteration belongs to the explicit group of iterations. Other
iterations from this group that were used in the study of Mandelbrot and Julia sets
are the following: the Ishikawa iteration [6], the Noor iteration [2], the S-iteration
[20,21] and the Abbas iteration [24]. The implicit iterations are the following: Jungck–
Mann [39] and Jungck–Ishikawa [17]. Moreover, in both groups, several researchers
proposed the use of s-convexity. The Ishikawa iteration with s-convexity [31], the
Noor iteration with s-convexity [7], the SP iteration with s-convexity [25] and the
S-iteration with s-convexity [15] were proposed in the explicit group of iterations,
whereas the Jungck–Noor iteration with s-convexity [19], and the Jungck–Mann and
Jungck–Ishikawa iterations with s-convexity [32] in the implicit group. The study
of such a variety of iteration processes is twofold. Firstly, these various iteration
processes obtain a faster convergence than the standard Picard iteration used in the
classical Mandelbrot and Julia sets [1]. Secondly, each iteration presents a different
behaviour and dynamics [1], which are fascinating not only from the graphical point
of view but also from the applications point of view.

It is worth mentioning that the various iteration processes have also found applica-
tion in the generation of other types of fractals, e.g. iterated function system fractals
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[34,38], biomorphs [14], polynomiography [13,16,18], inversion fractals [12] and
superfractals [37].

In this paper, we study the use of the Picard–Mann iteration with s-convexity
in the generation of Mandelbrot and Julia sets. We also prove the escape criterion
for the (k + 1)st degree complex polynomial. Moreover, we present some graphical
and numerical examples regarding the Mandelbrot and Julia sets generated using the
proposed iteration.

The rest of the paper is organised as follows. In Sect. 2, we briefly introduce the
notions used in the paper. Next, in Sect. 3, we generalise the Picard–Mann iteration
with the use of the s-convex combination. Moreover, we prove the escape criterion
for the function of the form Qc(z) = zk+1 + c using the Picard–Mann iteration with
s-convexity. In Sect. 4, we present some graphical examples of the Mandelbrot and
Julia sets obtained with the derived criterion. Then, in Sect. 5, numerical experiments
regarding the generation times and the average number of iterations of the generated
Mandelbrot and Julia sets are presented. Finally, in Sect. 6, we give some concluding
remarks.

2 Preliminaries

Definition 1 (Julia set [4]) Let f : C → C be a polynomial of degree ≥ 2. Let F f be
the set of points in C whose orbits do not converge to the point at infinity, i.e.

F f = {z ∈ C : {∣∣ f n(z)
∣
∣}∞n=0 is bounded}. (4)

F f is called a filled Julia set of polynomial f . The boundary points of F f comprise
the Julia set of polynomial f or simply the Julia set.

Definition 2 (Mandelbrot set [8]) The Mandelbrot set M consists of all parameters c
to which the filled Julia set of Qc(z) = z2 + c is connected, i.e.

M = {c ∈ C : FQc is connected}. (5)

In fact, M contains an enormous amount of information about the structure of Julia
sets.

TheMandelbrot set M for the quadratic function Qc(z) = z2+c can be also defined
in the following way [41]:

M = {c ∈ C : {Qn
c (0)} does not tend to ∞ as n → ∞}. (6)

We choose the initial point 0, because 0 is the only critical point of Qc, i.e., Q′
c(0) = 0.

Definition 3 Let C ⊂ C be a non-empty set and f : C → C . For any point z0 ∈ C ,
the Picard orbit is defined as the set of iterates of point z0, i.e.

O( f , z0) = { f n(z0)}∞n=0. (7)
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Theorem 1 Let Qc(z) = zk+1 + c, where k = 1, 2, . . . and c ∈ C.

1. (escape criterion for the Picard iteration [40]) Suppose that

|z0| > max
{

|c|, 2 1
k

}

. (8)

Then, for zn given by the Picard iteration, i.e., zn = Qc(zn−1), we have |zn| → ∞
as n → ∞.

2. (escape criterion for the Mann iteration [35]) Suppose that

|z0| > max

{

|c|,
(
2

α

) 1
k
}

, (9)

where α ∈ (0, 1]. Then, for zn given by the Mann iteration, i.e., zn = (1−α)zn−1+
αQc(zn−1), we have |zn| → ∞ as n → ∞.

Definition 4 (Picard–Mann orbit [23]) Let C ⊂ C and f : C → C . Consider a
sequence zn of iterates for the initial point z0 ∈ C such that

{

zn+1 = f (wn),

wn = (1 − αn)zn + αn f (zn), n = 0, 1, 2, . . . ,
(10)

where αn ∈ (0, 1]. This sequence of iterates is called the Picard–Mann orbit, which
is a function of three arguments ( f , z0, αn) and will be denoted by P M O( f , z0, αn).

The Picard–Mann iteration belongs to the group of explicit iteration processes. In
this group, some of the iteration processes are reduced for particular values of the
parameters used in those iterations. A review of the various iteration processes and
their dependencies can be found in [13].

3 Main results

In the first step of the Picard–Mann iteration, we use a convex combination of zn and
f (zn). In the literature, we can find some generalisations of the convex combination.
One such generalisation is the s-convex combination.

Definition 5 (s-convex combination [33]) Let z1, z2, . . . , zn ∈ C and s ∈ (0, 1]. The
s-convex combination is defined in the following way:

λs
1z1 + λs

2z2 + . . . + λs
nzn, (11)

where λk ≥ 0 for k ∈ {1, 2, . . . , n} and ∑n
k=1 λk = 1.

Let us note that the s-convex combination for s = 1 reduces to the standard con-
vex combination. Now, we will replace the convex combination in the Picard–Mann
iteration with the s-convex one.
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Let Q be a polynomial and z0 ∈ C. We define the Picard–Mann iteration with
s-convexity as follows:

{

zn+1 = Q(wn),

wn = (1 − α)s zn + αs Q(zn), n = 0, 1, 2, . . . ,
(12)

where α, s ∈ (0, 1]. We will denote the Picard–Mann iteration with s-convexity by
P M Os(Q, z0, α, s).

If we take α = 1, then let us note that

wn = (1 − α)s zn + αs Q(zn) = (1 − 1)s zn + 1s Q(zn) = Q(zn) (13)

and in consequence zn+1 = Q(wn) = Q(Q(zn)). Thus, in a single Picard–Mann
iteration for α = 1 we perform two iterations of Picard’s type.

Next, we will study the escape criterion for the generation of Mandelbrot and
Julia sets using the Picard–Mann iteration with s-convexity. Let us note that by using
the Picard–Mann with s-convexity we will create—during the generation process—
completely new orbits and, by extension, we will obtain new fractal forms.

Theorem 2 Let Qc(z) = zk+1+c, where c ∈ C and k = 1, 2, . . .. Assume that z0 ∈ C

and |z0| ≥ |c| >
( 2

sα

) 1
k , where α, s ∈ (0, 1]. Define zn as follows:

{

zn+1 = Qc(wn),

wn = (1 − α)s zn + αs Qc(zn), n = 0, 1, 2, . . . .
(14)

Then, |zn| → ∞ as n → ∞.

Proof Consider:

|w0| = |(1 − α)s z0 + αs Qc(z0)|. (15)

For Qc(z) = zk+1 + c we have:

|w0| = |(1 − α)s z0 + αs(zk+1
0 + c)|.

Since α, s ∈ (0, 1], so αs ≥ sα, we get:

|w0| ≥ |(1 − α)s z0 + sα(zk+1
0 + c)|

≥ |sαzk+1
0 + (1 − α)s z0| − |sαc|

≥ |sαzk+1
0 + (1 − α)s z0| − |sαz0|, because |z0| ≥ |c|

≥ |sαzk+1
0 | − |(1 − α)s z0| − |sαz0|. (16)

By the binomial expansion of (1 − α)s up to the linear terms of α we obtain:

|w0| ≥ |sαzk+1
0 | − |(1 − sα)z0| − |sαz0|
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= |sαzk+1
0 | − |z0| + |sαz0| − |sαz0|

= |z0|(sα|z0|k − 1). (17)

In the second step of the Picard–Mann iteration with s-convexity, we have:

|z1| = |Qc(w0)| = |(wk+1
0 + c)|

≥ |(|z0|(sα|z0|k − 1))k+1 + c|
≥ |(|z0|(sα|z0|k − 1))k+1| − |c|
≥ |(|z0|(sα|z0|k − 1))k+1| − |z0|, because |z0| ≥ |c|. (18)

Since |z0| > (2/(sα))
1
k , it is implied that sα|z0|k > 2. Thus,

(sα|z0|k − 1)k+1 > 1

|z0|k+1(sα|z0|k − 1)k+1 > |z0|k+1. (19)

Using (19) in (18) we have:

|z1| ≥ |z0|k+1 − |z0| = |z0|(|z0|k − 1).

Because |z0| > (2/(sα))
1
k > 2

1
k , so |z0|k − 1 > 1. Therefore, there exists λ > 0

such that |z0|k − 1 > 1 + λ > 1. Consequently,

|z1| > (1 + λ)|z0|. (20)

We may apply the same argument repeatedly to obtain:

|z2| > (1 + λ)2|z0|,
...

|zn| > (1 + λ)n|z0|.

Hence, |zn| → ∞ as n → ∞. This completes the proof. �	
Corollary 1 Suppose that:

|c| >

(
2

sα

) 1
k

, (21)

then the orbit P M Os(Qc, 0, α, s) escapes to infinity.

Corollary 2 (Escape Criterion) Let α, s ∈ (0, 1], c ∈ C and Qc(z) = zk+1 + c, where
k = 1, 2, . . .. Suppose that:

|z0| > max

{

|c|,
(

2

sα

) 1
k
}

. (22)
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Then, for zn defined by (12) there exists λ > 0 such that |zn| > (1 + λ)n|z0| and we
have |zn| → ∞ as n → ∞.

Corollary 3 Let α, s ∈ (0, 1], c ∈ C and Qc(z) = zk+1 + c, where k = 1, 2, . . ..
Suppose that:

|zm | > max

{

|c|,
(

2

sα

) 1
k
}

, (23)

for some m ≥ 0. Then, there exists λ > 0 such that |zm+n| > (1 + λ)n|zm | and we
have |zn| → ∞ as n → ∞.

4 Graphical examples

In this section, we present some graphical examples of the fractal patterns (Mandelbrot
and Julia sets) obtained using the Picard–Mann iteration with s-convexity. For the
generation of these fractals, we used the escape time algorithms. The algorithm for
the Mandelbrot set generation is presented in Algorithm 1, whereas the algorithm for
the Julia sets in Algorithm 2. In all examples, we used the same colour map that is
presented in Fig. 1.

Algorithm 1: Mandelbrot set generation

Input: Qc(z) = zk+1 + c, where c ∈ C and k = 1, 2, . . .; A ⊂ C—area; K—maximum number of
iterations; α, s ∈ (0, 1]—parameters for the Picard–Mann iteration with s-convexity;
colourmap[0..C − 1]—colour map with C colours.

Output: Mandelbrot set for area A.

1 for c ∈ A do

2 R = max{|c|, (2/(sα))
1
k }

3 n = 0
4 z0 = 0
5 while n ≤ K do
6 wn = (1 − α)s zn + αs Qc(zn)

7 zn+1 = Qc(wn)

8 if |zn+1| > R then
9 break

10 n = n + 1

11 i = �(C − 1) n
K �

12 colour c with colourmap[i]

We start with an example presenting the use of the Picard–Mann iteration with
s-convexity in the classical Mandelbrot set (k = 1). For comparison purposes, the
Mandelbrot set generated using the Picard iteration is presented in Fig. 2. In the
example, we used the following parameters: k = 1, A = [−3, 1] × [−2, 2], K = 50.
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Algorithm 2: Julia set generation

Input: Qc(z) = zk+1 + c, where k = 1, 2, . . .; c ∈ C—parameter; A ⊂ C—area; K—maximum
number of iterations; α, s ∈ (0, 1]—parameters for the Picard–Mann iteration with
s-convexity; colourmap[0..C − 1]—colour map with C colours.

Output: Julia set for area A.

1 R = max{|c|, (2/(sα))
1
k }

2 for z0 ∈ A do
3 n = 0
4 while n ≤ K do
5 wn = (1 − α)s zn + αs Qc(zn)

6 zn+1 = Qc(wn)

7 if |zn+1| > R then
8 break

9 n = n + 1

10 i = �(C − 1) n
K �

11 colour z0 with colourmap[i]

Fig. 1 Colour map used in the graphical examples

Fig. 2 Mandelbrot set for k = 1
generated using Picard’s
iteration

Figure 3 presents Mandelbrot sets generated using the Picard–Mann iteration with
s-convexity, where the s parameter is fixed (s = 0.1) and the α parameter is variable.
From the presented images, we see that for α = 1 the obtained set is very similar
to the Mandelbrot set generated using Picard’s iteration (Fig. 2). The differences are
a consequence of the fact that for α = 1 we perform two iterations of Picard’s type
in a single Picard–Mann iteration. Thus, for K = 50 we can perform at most 100
iterations of Picard type. In consequence, some of the points that were classified as
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Fig. 3 Mandelbrot set for k = 1 generated using Picard–Mann iteration with s-convexity with s = 0.1 and
varying α

not escaping for the standard Picard iteration can be classified as escaping for the
Picard–Mann using the same maximal number of iterations. If we had performed an
infinite number of iterations, the sets in both cases would be identical. From Fig. 3
we can also observe that the lower the value of α the bigger the set shape change. For
α = 0.01, the difference in shape is significant.

An example of a fixed value of α (α = 0.4) and varying s for the same Mandelbrot
set is presented in Fig. 4. In this case, we can observe the opposite situation in the
change of the shape, i.e. for low values of s the shape of the obtained set is more similar
to the Mandelbrot set generated using Picard’s iteration (Fig. 2), and the higher the
value of s is, the bigger the change of the shape. Moreover, we can observe that the
value of s has a bigger impact on the shape of the obtained set.

Next, we present examples of Mandelbrot sets for k = 4 generated using the
Picard–Mann iteration with s-convexity. The Mandelbrot set generated using Picard’s
iteration is presented in Fig. 5. The parameters used to generate this and the other sets
in this example were the following: k = 4, A = [−2, 2] × [−2, 2], K = 50.

Figure 6 presents examples of Mandelbrot sets generated using the Picard–Mann
iteration with s-convexity for various values of α and s. The values of the parameters
were the following: (a) α = 0.01, s = 0.18, (b) α = 0.15, s = 0.45, (c) α = 0.25,
s = 0.6, (d) α = 0.53, s = 1.0, (e) α = 0.8, s = 0.9, (f) α = 1.0, s = 0.01. From the
images, we can observe that by using the Picard–Mann iteration with s-convexity, we
are able to generate Mandelbrot sets containing many different details that were not
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Fig. 4 Mandelbrot set for k = 1 generated using the Picard–Mann iteration with s-convexity with α = 0.4
and varying s

Fig. 5 Mandelbrot set for k = 4
generated using Picard’s
iteration

present in the Mandelbrot set generated with the use of the Picard iteration. We also
see that the parameters have a high impact on the shape of the obtained sets. Moreover,
the set obtained for α = 1 is very similar to the one generated with the Picard iteration.
The small differences are a consequence, like in the example for k = 1, of the fact
that for α = 1 the Picard–Mann reduces to two iterations of Picard’s type.
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Fig. 6 Mandelbrot set for k = 4 generated using the Picard–Mann iteration with s-convexity for various
values of α and s

Fig. 7 Julia set for k = 1 and
c = 0.285 + 0.01i generated
using Picard’s iteration

Let us turn now to similar examples for the Julia sets. We start with an example
of a quadratic Julia set, i.e. k = 1 with c = 0.285 + 0.01i. The set obtained with
Picard’s iteration is presented in Fig. 7. The parameters used to generate all images in
this example were the following: k = 1, c = 0.285 + 0.01i, A = [−2, 2] × [−2, 2],
K = 50.
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Fig. 8 Julia set for k = 1 and c = 0.285+0.01i generated using the Picard–Mann iteration with s-convexity
with s = 1.0 and varying α

Figure 8 presents Julia sets generated using the Picard–Mann iteration with s-
convexity, where the s parameter is fixed (s = 1.0) and the α parameter is variable.
We can observe that the variation in shape is huge—we obtain sets with different
shapes and details. Moreover, we see that—for the same reasons as in the case of the
Mandelbrot set—the shape of the obtained sets is similar to the classical Julia set for
α = 1, whereas for other values of α the shape varies from the original.

The case of a fixed value of α (α = 0.6) and varying s in the generation of a Julia set
is presented in Fig. 9. From the obtained images, we see that the value of s has a great
impact on the resulting shape. The change of the shape is different in comparison to
the example with the varying value of α. Moreover, we can observe that for all values
of s the sets are completely different from the original Julia set generated with the
Picard iteration (Fig. 7).

In the last graphical example, we generated Julia sets for k = 4 and various values
of α and s in the Picard–Mann iteration with s-convexity. The parameters used in this
example were the following: k = 4, c = −0.7269 + 0.1889i, A = [−1.2, 1.2] ×
[−1.2, 1.2], K = 50. The generated Julia set for the Picard iteration is presented in
Fig. 10, whereas the sets for the Picard–Mann iteration with s-convexity in Fig. 11.
The values of the α and s parameters used to generate images in Fig. 11 were the
following: (a) α = 0.01, s = 0.76, (b) α = 0.20, s = 0.40, (c) α = 0.38, s = 0.80,
(d) α = 0.60, s = 0.90, (e) α = 0.80, s = 0.10, (f) α = 1.00, s = 0.25. From the
images, we can observe that by using the Picard–Mann iteration with s-convexity, we
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Fig. 9 Julia set for k = 1 and c = 0.285+0.01i generated using the Picard–Mann iteration with s-convexity
with α = 0.6 and varying s

Fig. 10 Julia set for k = 4 and
c = −0.7269 + 0.1889i
generated using Picard’s
iteration

are able to generate Julia sets containing many different details that were not present
in the Julia set generated with the use of the Picard iteration. Moreover, we see that
the parameters have a high impact on the shape of the obtained sets.
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Fig. 11 Julia set for k = 4 and c = −0.7269 + 0.1889i generated using the Picard–Mann iteration with
s-convexity for various values of α and s

5 Numerical examples

From the examples presented in Sect. 4, we see a high variation in the shapes and
sizes of the sets generated with the Picard–Mann iteration. The investigation of the
dependencyon the shape and size ofMandelbrot and Julia sets and the parameters in the
Picard–Mann iteration with s-convexity is not an easy task, because this dependency
is a non-trivial one. To get an idea on this non-trivial dependency in this section we
present numerical examples showing the dependence of two measures—time and the
average number of iterations (ANI)—on the parameters in the Picard–Mann iteration
with s-convexity (α, s).

Both measures give us relative information about the set size and the speed of
computations. The non-escaping points (points for which we perform K iterations in
the escape time algorithms) have a significant impact on the measures, because the
more non-escaping points are present in the considered area, the higher value of the
measures. Therefore, if the difference between the measures, especially for the ANI,
for two sets of parameters is high, then we know that the sizes of the corresponding
sets (Mandelbrot or Julia sets) differ in a significant way.

In each of the examples, we generated a complex fractal in the given area for varying
α and s parameters, and measured the time needed to generate this fractal. We then
calculated the average number of iterations in the considered area. The intervals to
which the parameters belong are divided into 100 equally spaced values, so the total
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Fig. 12 The times and average number of iterations in the parameters’ space for the Mandelbrot set with
k = 1

number of generated fractals in each example is equal to 10,000. The resolution of
the images was set to 600 × 600 pixels, generated using the algorithms presented in
Sect. 4—Algorithms 1 and 2. The algorithms were implemented in Mathematica 10,
and the experiments were performed on a computer with the following specifications:
Intel i5-4570 (@3.2 GHz) processor, 16 GB DDR3 RAM and Microsoft Windows 10
(64-bit).

In the first example, we generated Mandelbrot sets using Picard–Mann with s-
convexity for the following parameters: k = 1, A = [−3, 1] × [−2, 2], K = 50.
For the standard Picard iteration, the generation time was equal to 0.3558s and the
ANI was equal to 7.4453. The obtained results for the Picard–Mann iteration with
s-convexity are presented in Fig. 12. From the plot, we see that both measures (time,
ANI) are non-trivial and that the function of the parameters is non-monotonic. Both
plots have a similar shape, but the plot for the time is noisier, whereas the plot for the
ANI is smooth. Minimal time, equal to 0.391s, is attained at α = 0.02 and s = 0.01,
whereas the maximal value (0.875s) at α = 0.28 and at s = 0.96. Thus, the generation
time in the case of the Picard–Mann iteration with s-convexity is higher than in the
case of Picard’s iteration. For the ANI measure, the minimal value of 6.44 is attained
at α = 1.0 and at s = 1.0, whereas the maximal value of 33.161 at α = 0.25 and
s = 1.0. Thus, the dispersion of the values is wide. Comparing these results with the
results for Picard’s iteration, we see that the generated Mandelbrot sets in the given
area can be generated using a lower number of iterations. Moreover, from both plots,
we can observe that the highest values of the measures are obtained when the α values
are low and the value of s is high.

In the next example, Mandelbrot sets for k = 4 were generated using the Picard–
Mann iteration with s-convexity. The parameters used to generate the images of the
sets were the following: k = 4, A = [−2, 2] × [−2, 2], K = 50. The time and
ANI measures obtained for the Picard iteration were equal to 0.3718s and 8.3730
respectively. The results for the Picard–Mann iteration with s-convexity are presented
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Fig. 13 The times and average number of iterations in the parameters’ space for the Mandelbrot set with
k = 4

in Fig. 13. From the obtained results, we see that the overall shape of the dependency
functions is similar and that, as is the case with the quadratic Mandelbrot set, the plot
for the times is noisy, whereas the plot for the ANI is smooth. High values of time
and ANI are obtained when the values of α are low and the values of s are high. The
maximal value of time (0.578s) is attained at α = 0.1 and s = 1.0, whereas the
maximal value of ANI (13.697) is attained at α = 0.07 and s = 1.0. Low values for
both measures are obtained for very low values of s, attaining the minimal value at
α = 0.01 and s = 0.01 for the time (minimum—0.328s), and α = 0.6 and s = 0.01
for the ANI (minimum—3.349). Moreover, we can observe that the dispersion of the
values is lower than in the case of the quadratic Mandelbrot set.

The following presents numerical examples for two different Julia sets generated
using the Picard–Mann iteration with s-convexity. In the first example, we generated
quadratic Julia sets for c = 0.285+0.01i in the area A = [−2, 2]× [−2, 2], using the
maximal number of iterations equal to 50. The generation time of the Julia set using
the standard Picard iteration was equal to 0.3403s and the ANI was equal to 6.3327.
The obtained results for the Picard–Mann iteration with s-convexity are presented in
Fig. 14. From the plots, we can observe that the function is not as complex as in the
case of the Mandelbrot set. Nevertheless, we can observe one similarity, namely that
the high values of themeasures are obtained for high values of s. Themaximal value of
time equal to 0.706s is attained at α = 0.35 and s = 1.0, whereas the maximal value
of ANI equal to 23.524 is attained at α = 0.36 and s = 1.0. Thus, both measures
obtain the maximal value for similar parameter values. The minimal values of the
measures are obtained for low values of s attaining the minimal value at α = 0.58,
s = 0.23 for the time (minimum—0.279s) and α = 0.92, s = 0.37 for the ANI
(minimum—2.295).

In the final example, we generated Julia sets for k = 4. The parameters used in
this example were the following: k = 4, c = −0.7269 + 0.1889i, A = [−1.2, 1.2] ×
[−1.2, 1.2], K = 50. For the standard Picard iteration, the generation time was equal
to 0.3102s and the ANI was equal to 5.0711. The obtained results for the Picard–
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Fig. 14 The times and average number of iterations in the parameters’ space for the Julia set with k = 1
and c = 0.285 + 0.01i

Fig. 15 The times and average number of iterations in the parameters’ space for the Julia set with k = 4
and c = −0.7269 + 0.1889i

Mann iteration with s-convexity are presented in Fig. 15. From the plots, we see that
for bothmeasures the dependency function is non-trivial and non-monotonic. As in the
previous examples, the shape of the plots (time, ANI) is similar, and the plot for time is
noisy, whereas the plot for ANI is smooth.Minimal time, equal to 0.266s, is attained at
α = 0.02 and s = 0.01, whereas the maximal value (0.875s) at α = 0.26 and s = 1.0.
Thus, for the Picard–Mann iteration with s-convexity, the obtained shortest times are
faster in comparison to the Picard iteration. For the ANI measure, the minimal value
of 1.524 is attained at α = 0.75 and s = 0.07, whereas the maximal value of 39.576
at α = 0.18 and s = 1.0. From both plots, we can observe that the highest values of
the measures are obtained for high values of s. Moreover, we can observe that the s
parameter has a great impact on generation time and the ANI.
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6 Conclusions

In this paper, we presented the use of an alternative iteration to Picard’s for the gen-
eration of Mandelbrot and Julia sets. For the purpose of this study, the Picard–Mann
iteration was extended with the use of the s-convex combination. We proved escape
criterion for the proposed iteration process. Additionally, we presented a number
of graphical and numerical examples. The graphical examples showed that the pro-
posed iteration scheme has the capacity to generate new fractal forms. The numerical
examples showed that the dependence of the considered measures (time, ANI) on the
iteration’s parameters is a non-trivial and non-monotonic function. The results also
showed that the s parameter has greater impact on the measures than the α parameter.

In future work, we will attempt to derive the escape criteria in the Picard–Mann
iteration with s-convexity for functions of classes other than the polynomial, e.g.
trigonometric. Moreover, in the fixed point literature we can find many different iter-
ation methods that can be used in the study of Julia and Mandelbrot sets. A review
of explicit iterations and their dependencies can be found in a paper by Gdawiec and
Kotarski [13].

Funding This research received no external funding.

Availability of data and materials The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Code availability The code that supports the findings of this study is available from the corresponding
author upon reasonable request.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Abbas,M., Iqbal, H., De la Sen,M.: Generation of Julia andMandelbrot sets via fixed points. Symmetry
12(1), 86 (2020). https://doi.org/10.3390/sym12010086

2. Ashish, Rani, M., Chugn, R.: Julia sets and Mandelbrot sets in Noor orbit. Appl. Math. Comput. 228,
615–631 (2014). https://doi.org/10.1016/j.amc.2013.11.077

3. Ashlock, D., Jamieson, B.: Evolutionary exploration of complex fractals. In: Hingston, P., Barone, L.,
Michalewicz, Z. (eds.) Design by Evolution, Natural Computing Series, pp. 121–143. Springer, Berlin
(2008). https://doi.org/10.1007/978-3-540-74111-4_8

4. Barnsley, M.: Fractals Everywhere, 2nd edn. Academic Press, Boston (1993)

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym12010086
https://doi.org/10.1016/j.amc.2013.11.077
https://doi.org/10.1007/978-3-540-74111-4_8


The Picard–Mann iteration with s-convexity in the… 583

5. Beardon, A.: Iteration of Rational Functions: Complex Analytic Dynamical Systems. Springer, New
York (1991)

6. Chauhan, Y., Rana, R., Negi, A.: New Julia sets of Ishikawa iterates. Int. J. Comput. Appl. 7(13), 34–42
(2010)

7. Cho, S., Shahid, A., Nazeer, W., Kang, S.: Fixed point results for fractal generation in Noor orbit and
s-convexity. SpringerPlus 5, 1843 (2016). https://doi.org/10.1186/s40064-016-3530-5

8. Devaney, R.: A First Course in Chaotic Dynamical Systems: Theory and Experiment, 2nd edn. CRC
Press, Boca Raton (2020)

9. Devaney, R., Krych, M.: Dynamics of exp(z). Ergod. Theory Dyn. Syst. 4(1), 35–52 (1984). https://
doi.org/10.1017/S014338570000225X

10. Dhurandhar, S., Bhavsar, V., Gujar, U.: Analysis of z-plane fractal images from z ← zα + c for α<0.
Comput. Graph. 17(1), 89–94 (1993). https://doi.org/10.1016/0097-8493(93)90056-F

11. Durkin, M.: Observations on the dynamics of the complex cosine-root family. J. Differ. Equ. Appl.
4(3), 215–228 (1998). https://doi.org/10.1080/10236199808808139

12. Gdawiec, K.: Inversion fractals and iteration processes in the generation of aesthetic patterns. Comput.
Graph. Forum 36(1), 35–45 (2017). https://doi.org/10.1111/cgf.12783

13. Gdawiec, K., Kotarski, W.: Polynomiography for the polynomial infinity norm via Kalantari’s formula
and nonstandard iterations. Appl. Math. Comput. 307, 17–30 (2017). https://doi.org/10.1016/j.amc.
2017.02.038

14. Gdawiec, K., Kotarski, W., Lisowska, A.: Biomorphs via modified iterations. J. Nonlinear Sci. Appl.
9(5), 2305–2315 (2016). https://doi.org/10.22436/jnsa.009.05.33

15. Gdawiec, K., Shahid, A.: Fixed point results for the complex fractal generation in the S-iteration orbit
with s-convexity. Open J. Math. Sci. 2(1), 56–72 (2018). https://doi.org/10.30538/oms2018.0017
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