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Abstract

Let H be a Hilbert space of distributions on R? which contains at least one non-zero
element of the Feichtinger algebra Sy and is continuously embedded in 2. If H is
translation and modulation invariant, also in the sense of its norm, then we prove that
H = L2, with the same norm apart from a multiplicative constant.
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Introduction

In the paper we show that any Hilbert space of distributions on R¢ which is transla-
tion and modulation invariant with respect to the norms, agrees with L2(R¢). These
considerations are strongly linked with Feichtinger’s minimization property, which
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shows that the Feichtinger algebra So(R?), which is the same as the modulation space
MU1(RY), is the smallest non-trivial Banach space of tempered distributions which
is norm invariant under translations and modulations. Our investigations may there-
fore be considered as a Hilbert space analogue of those investigations which lead to
Feichtinger’s minimization property.

We remark that the search for the smallest Banach space possessing such norm
invariance properties, seems to be the main reason that Feichtinger led to introduce
and investigate So(R¢) and in its prolongation the foundation of classical modulation
spaces (see [2]). The space Sp R% = m"! (Rd) is small in the sense that it is contained
in every Lebesgue space L” (Rd) and its Fourier image, p € [1, oo] (cf. [2,5,9] and
the references therein).

On the contrary, the modulation space M <>O""’(Rd), which is the dual of M1 (R4 ),
contains all these Lebesgue and Fourier Lebesgue spaces. By straight-forward argu-
ments (see Proposition A.1) it follows that for a translation and modulation invariant
Banach space B of tempered distributions which contains at least one non-zero element
in So(R9), we have

So(RY) = MM(RY) € B € M®>®RY). (0.1)

Here the first inclusion is a reformulation of the Feichtinger’s minimization property
(in the unweighted case). We refer to Sect. 1 and [5,6] for notations and some facts on
distributions.

Feichtinger’s minimization property has been extended in different ways, e.g. to
weighted spaces (see e. g. [5, Chapter 12]), and to the quasi-Banach situation (see e. g.
[9]). At the same time minimization property has been applied e. g. in non-uniform
samplings, and for deducing sharp Schatten-von Neumann and nuclear results for
operators with kernels in modulation spaces (see e.g. [9]). Note also that transla-
tion and modulation invariant Banach spaces are important in Gabor analysis, e.g.
when searching for suitable windows for Gabor frames. It also seems necessary for a
Banach space to be translation and modulation invariant, if it should be conveniently
discretizable by Gabor expansions (see e. g. [5] and the references therein).

In our investigations we do not present any such weighted analogies in the Hilbert
space case. On the other hand, we consider translation and modulation invariant Banach
spaces, 13, which are continuously embedded in 2’ (R9), the set of all distributions
on R%. As a first step we prove in Proposition 1.5 that any such B is continuously
embedded in.#” (R?), the set of all tempered distributions on R¢. Note that the original
approaches in [2,5] have the more restrictive assumption that these /3 are continuously
embedded in the subspace ./ (R%) of 2/ (R?).

1 Translation and modulation invariant Hilbert spaces
In this section we first recall the definition of translation and modulation invariant

spaces. Thereafter we consider such spaces which at the same time are Hilbert spaces
of distributions on R?. We show some features on how differentiations and multipli-
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cations by polynomials of such spaces behave in the inner product of such Hilbert
spaces. In the end we show that such Hilbert spaces agree with L2(R%).

The definition of translation and modulation invariant Banach spaces is given in
the following (cf. [2,5]).

Definition 1.1 Let 5 be a Banach space which is continuously embedded in 7' (RY).
Then B is called translation and modulation invariant,if y — f(y—x)e'¢) belongs
to B and

IfC- =0 =11lB

forevery f € Band x, & € R%.

Remark 1.2 We identify .’ (R?) as a subspace of 2’(R?) in the same way as in [6].
In particular it follows that f € 2’(R%) belongs to .7/ (R?), if and only if there is a
constant C > 0 and semi-norm || - || on . (R%) such that

IKf )l = Clivll,

for every ¢ € Cgo (Rd). For such f, there is a unique fo € %’ (Rd) such that
(f,¥) = (fo, ¥) for every ¢ € C§° (R?). (See [6][Chapter VII].) Then we identify
f with fo, and thereby consider f as an element in .’ (R?).

Our main result is the following.

Theorem 1.3 Let H be a translation and modulation invariant Hilbert space, continu-
ously embedded in 7' (R?) and contains at least one element of M"'(R%) \ {0}. Then
H = L*(RY) with

I flln = c- 1 fll2ways (1.1)

for some constant ¢ > 0 which is independent of f € H = L*(R%).

We observe that L2(R?) is the same as the modulation space M 2.2(RY) (see [2]).
Hence the analogy of (0.1) in the Hilbert space case is that for translation and modu-
lation invariant Hilbert spaces H one has

M*2RY) =H. (1.2)
Remark 1.4 1t is obvious that the constant ¢ in (1.1) can be evaluated by

c=f 2 1l

for any fixed f € H \ {0}.

We need some preparations for the proof of Theorem 1.3. First we note that the
restriction of the L2 scalar product (-, -);2 on.” (Rd) x .7 (Rd) is uniquely extend-
able to a continuous sesqui-linear form on .% (R?) x /(R%) and that the dual of
Z(R?) can be identified by .7 (R¢) through this extension.

As a consequence of the following proposition we have that any translation and
modulation invariant Banach space on R is continuously embedded in .7’ (R?).
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Proposition 1.5 Let B be a Banach space, continuously embedded in 9'(R?) such
that y — f(y — x) belongs to B for every x € R and

IfC =0l =Ccd+xDIflBs,

for some constants C,r > 0 which are independent of f € B and x € R%. Then B is
continuously embedded in .' (R?).

Proposition 1.5 follows by similar arguments as in the proof of Bochner-Schwartz
theorem for positive definite distributions (see e. g. [7] and the references therein). In
order to be self contained we give a proof in Appendix A.

Remark 1.6 By Proposition 1.5 it follows that results on Feichtinger’s minimization
property in e.g. [2,5,9], still hold true with relaxed assumptions that the involved
Banach spaces are embedded in 2’ (R?) instead of its subspace .% '(RY).

For a translation and modulation invariant Banach space B in Definition 1.1,
there is also a maximization property, analogous to Feichtinger’s minimization prop-
erty (see Proposition A.1 in Appendix A). In the unweighted case, the largest
possible such B is given by S(’)(Rd) = M°°(R?) in the Banach-Gelfand triple
(So(RY), L2(R?), S{(R?)) studied in [4] (see Appendix A for the definition of
MOO,OO(Rd )).

As a consequence of Proposition 1.5 we have that H in Theorem 1.3 is contained in
' (R?). Since H contains at least one element in M1 (R?) we get the more refined

SRY < MY (RY € H € M®®RY), (1.3)

with continuous inclusions, by Proposition A.1 and Feichtinger’s minimization prop-

erty. In particular, the standard Gaussian ho(x) = a—Gem 2l belongs to H.
For the proof of Theorem 1.3, we also need some properties on Hermite functions.
Recall that the Hermite function 4, of order @ € N on R? is defined by

he(x) = 5 (=Dl 2@l 2020 P (el Py e RY, o € N

It is well-known that {A4},cNe 1s an orthonormal basis for L?*(R?), and a basis for
S (R?) (seee.g. [7.8]).

We may pass from one Hermite function to another by successively applying the
annihilation and creation operators, which are given by

1 ad 1 a
A]=ﬁ<)€1+a> and Cjzﬁ(xj_a)’

respectively, j = 1,...,d. It is then well-known that if e; is the jth vector in the
standard basis in RY, then

i hy—e., ;i >1,
Ajhy = ST /
0, Oéj=0

(1.4)
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and
Cjha = otj + Lhate;, o €N (1.5)

(Cf. e.g. [1].) This implies

AY by, = a!? ho, and Coho=al” hy,  (1.6)
where
d d
o o
A"‘:HA]:’, and cazl_[cj-’, o= (o, ..., o). 1.7)
j=1 j=1
Furthermore,
Aﬁhazo when «; < B; forsome je€{l,...,d}. (1.8)

We have now the following lemma.

Lemma 1.7 Let H be a translation and modulation invariant Hilbert space on RY.
Then the following is true:

(1) forevery f,g € Hand x, & € R? it holds

(fC =x),n=(f.8( +x)n (1.9)

and
(f e gy = (f,g ey (1.10)

Q) O%f, 9 = (f, (=) and x*f,8)n = (f,x%g)n for every f,g €
L (RY) and o € N4.

We observe that (2) in the previous lemma gives

(f.Cion=WA f on. [.geSRN j=1,....d. (L1D)
Proof We have by Definition 1.1
LG =00 N3, = 1L f113,
which by polarization gives

(fC—x)e 8 g(c —x)e 5y = (f, 9)n, (1.12)

when f, g € H and x, £ € R?. This gives (1).
The assertion (2) follows by applying 0% and 8? on (1.9) and (1.10) with f, g €
< (RY), and then putting x = & = 0. O
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Proof of Theorem 1.3 Suppose that o, 8 € N are such that ; > o) for some j €
{1,...,d}. By (1.11), (1.6) and (1.8) we get

(hato hp) 1 = BU 2 (h. CP o)y = B2 (AP g, ho)py = O
and

1
a3, = (has ha)r = 72 (ha, C% ho)y

1
"2 (A" ha, ho)r = (ho, ho)w = lholl3.

This implies that {||/¢ ||7__(1]’la}a€Nd is an orthonormal system for H.
Hence, if f € . (R?), then

2

1= [ D (frhadizha| = lholFy D 12 ha) g2l = lholF I £132-
aeNd H aeNd
(1.13)
Since the inclusions

7R < MM (R € L2(RY)

are continuous and dense (see e.g. [2,5]), it follows that LZ(R%) is continuously
embedded in H, and that (1.1) holds. Furthermore, let from now on the original H
norm be replaced by the equivalent Hilbert norm f +— | kg ||7_{1 Il f1l#¢- Then it follows
that the inclusion i : L2(R%) — H is an isometric injection.

We shall use Hahn-Banach’s theorem to prove that the latter map is in fact bijective.
Suppose that £ is a linear continuous form on H which is zero on LZ(R%). Then
L(f) = (f, go)n for some unique go € H. We need to prove that go = 0.

Since the forms (-, -);2 and (-, - ) agree on L?(R?), which contains .# (R9),
and since H C ./(R?), the same extension and duality properties hold true with
(-, -)n in place of (-, -);2 (cf. the paragraph after Remark 1.4). In particular,

f Q=1 [feIRY, ge s R).

We have go € H C .7/(RY). Recall that any element in .#/(R?) has a Hermite
series expansion converging in.%”” (R?), whose coefficients are polynomially bounded
with respect to their orders (see [7]). Consequently,

g= Y c@ha,

aeNd
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for some {c(a)},ene such that [c(a)| < C(1 + la|)N for some constants C, N > 0.
Since (f, go)» = 0 when f € L*(RY), and that h, € .7 (R%) we get

c(a) = (ha, 80)12 = (ha, 80) =0,

giving that gg = 0.

By Hahn-Banach’s theorem it follows that LZ(Rd) is dense in H. Since L2(Rd) is
also a closed subset of H in view of (1.13), it follows that H = LZ(R?), and the result
follows.

m}
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Appendix A. Some properties of translation invariant Banach spaces

In this appendix we give a proof of Proposition 1.5 and discuss maximality of trans-
lation and modulation invariant Banach spaces of distributions on R¢.

Proof of Proposition 1.5 Let (x) = 1 + |x|, ¢ > 0, Q be the cube [0, 1 + ¢]? < R?
and 0 < ¢ € C§°(RY) be such that

suppp € Q and  » (- —j)=1.
jezd

Since B is continuously embedded in 2’(R?), it follows from Chapter II in [6] that
there exists a constant C > 0 and integer N > 0 such that

(w0l < ClIflls Y 19%Yolleco),

le|<N

for every Yo € C3°(Q) and f € B. Here we have also used the fact that a distribution
restricted to a compact set has finite order.

@ Springer


http://creativecommons.org/licenses/by/4.0/

396 JToftetal.

Hence, if y € C§° (Rd), Leibniz’ rule gives

AR <f, PIRATIE —j>>

jezd

< Y UG+ D+ Do)

jezd
<G Y NG+ DB Y. 1YW + Dol
jezd le|<N

<Clifls Y. Y 1% WC + Hedlixc

jezd le|<N

<Glifls Y. Y. GYIE W+ HEP Pl

jeZd |al,|BI=N

<Glifls Y. Y. I+ @ W+ N P9l

jezd lal,|BI=N

= C3-Coll flBIVI,

for some semi-norm || - || in . (R%), and some constants C;, C, and C3 which are
independent of f € BB and . Here C,, depends only on ¢, and we have used

(x4+y) = &) - ().

Hence,

Il = Cliflslivl (A.D)

for some constant C which is independent of f € B and ¥ € Ci° (R%). By Remark
1.2 and (A.1) it follows that 3 is continuously embedded in .’ '(RY).

]

Next we prove the maximization property for translation and modulation invariant
Banach spaces. Let w € L (R*; R,) be such that

loc

wx+y,&+n = Colx, )1+ [yl +In)’ (A2)

for some constants C,r > 0 which are independent of x, y, &, n € RY. Also let
¢ € .7R%) \ {0}. Then the modulation space M 80 /$(Rd ) is given by

ME SR ={f e RY; [(Vpf)/olre < oo},

@ Springer



Translation and modulation invariant Hilbert spaces 397

Here V f is the short-time Fourier transform of f € .’ (RY), given by

d .
Vo f(x,6) = Q) 2(f,¢(- —x)e't 8y 0.

The Banach space topology in M (Oﬁacf (R?) is then given by the norm
I laggice = IVo )/l e

(Cf. [2,3,5].) We set M = M(OZ)’OO when w = 1.

For other choices of w satisfying (A.2), the L? scalar product (-, +);2 0n.% (R?) x
54 (Rd ) is uniquely extendable to a continuous sesqui-linear form on M, (10); (Rd) X

M ?10 /Z; (RY), where M (lw; (R?) is the weighted version of M1 (R?) with respect to

o. Furthermore, M (010 /::; (R?) is the dual of M (10,5 (R?) with respect to this product (cf.
[2,5]).

Proposition A.1 Let w € LIOOOC(RM ; Ry) satisfies (A.2). Let B be a translation and

modulation invariant Banach space which is continuously embedded in 9’ (R?) and

contains at least one element of M (16;; (R¥)\ {0}. Suppose that for some constant C > 0
it holds

If ¢ +x)e g < Cote, O fls,  feB, x, £ eRE
Then B is continuously embedded in M 80 /53 (Rd).

Proof By Proposition 1.5 it follows that 3 is continuously embedded in .7’ (R%).
Hence, for any fixed ¢ € ./ (Rd )\O, the map

f = (fv ¢)L2

is linear and continuous from B to C, because B is continuously embedded in .’ (RY),
giving that

I(f )2l = CollfllB, [ €B.

This gives

Vo f . O =1(f(- +0)e” 8 ) < Coll (- +x)e 85
= CpCo(x, 5 fllB.

which shows that
Vo f(x,8)/wx, &) <Clfls (A.3)
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for some constant C > 0. Hence

(Vg f)/wl € L (R™),

00,00

(1/w)

Il < Cllfls. f €B.

which implies f € M (R?). Furthermore, (A.3) shows that

Consequently, 13 is continuously embedded in M, (033 (R?), and the assertion follows.
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