CORRECTION

Correction to: Flag-transitive block designs and unitary groups

Seyed Hassan Alavi¹ · Mohsen Bayat¹ · Ashraf Daneshkhah¹

Published online: 12 April 2021 © Springer-Verlag GmbH Austria, part of Springer Nature 2021

Correction to: Monatsh Math https://doi.org/10.1007/s00605-020-01421-8

Abstract

In this note, we cover a gap in the proof of [2, Proposition 4.3]. In conclusion, Theorem 1.1 in [2] is revisited: if \mathcal{D} is a 2-design with $gcd(r, \lambda) = 1$ and *G* is a flag-transitive almost simple automorphism group of \mathcal{D} whose socle is PSU (n, q) with $(n, q) \neq (3, 2)$, then \mathcal{D} belongs to one of the three infinite families of Hermitian unitals, Witt–Bose–Shrikhande spaces and 2-designs with parameters $(q^3 + 1, q, q-1)$, or it is isomorphic to a design with parameters (6, 3, 2), (7, 3, 1), (8, 4, 3), (10, 6, 5), (11, 5, 2) or (28, 7, 2).

Keywords 2-Design, Flag-transitive, Automorphism group, Almost simple group, Unitary group

Mathematics Subject Classification 05B05 · 05E18 · 20D05

Seyed Hassan Alavi alavi.s.hassan@basu.ac.ir; alavi.s.hassan@gmail.com

Mohsen Bayat m.bayat@sci.basu.ac.ir

Ashraf Daneshkhah adanesh@basu.ac.ir

We would like to thank the editors for their helpful comments. We would also like to thank Shenglin Zhou for pointing out this missing part while we were working on a joint project.

The original article can be found online at https://doi.org/10.1007/s00605-020-01421-8.

¹ Department of Mathematics, Faculty of Science, Bu-Ali Sina University, Hamedan, Iran

1 Introduction

A 2-design \mathcal{D} with parameters (v, k, λ) is a pair $(\mathcal{P}, \mathcal{B})$ with a set \mathcal{P} of v points and a set \mathcal{B} of b blocks such that each block is a k-subset of \mathcal{P} and each two distinct points are contained in λ blocks. We say \mathcal{D} is nontrivial if 2 < k < v - 1, and symmetric if v = b. Each point of \mathcal{D} is contained in exactly r blocks which is called the *replication number* of \mathcal{D} . A *flag* of \mathcal{D} is a point-block pair (α, B) such that $\alpha \in B$. An *automorphism* of a 2-design \mathcal{D} is a permutation of the points permuting the blocks and preserving the incidence relation. The full automorphism group Aut (\mathcal{D}) of \mathcal{D} is the group consisting of all automorphisms of \mathcal{D} . For $G \leq Aut(\mathcal{D})$, G is called *flag-transitive* if G acts transitively on the set of flags and G is said to be *point-primitive* if it is primitive on \mathcal{P} . In this note, we cover a gap in the proof of [2, Proposition 4.3]. Therefore, we correct Theorem 1.1 in [2] as below:

Theorem 1.1 Let \mathcal{D} be a nontrivial 2-design with $gcd(r, \lambda) = 1$, and let α be a point of \mathcal{D} . Suppose that G is an automorphism group of \mathcal{D} whose socle is X = PSU(n, q) with $(n, q) \neq (3, 2)$. If G is flag-transitive, then $\lambda \in \{1, 2, 3, 5\}$ and $v, k, \lambda, X_{\alpha}$ and X are as in one of the lines in Table 1 or one of the following holds:

- (a) \mathcal{D} is a Witt–Bose–Shrikhande space with parameters $(2^{n-1}(2^n 1), 2^{n-1}, 1)$ and X is $PSU(2, 2^n)$ with $n \ge 3$;
- (b) \mathcal{D} is a Hermitian unital $\mathcal{U}_H(q)$ with parameters $(q^3 + 1, q + 1, 1)$ and X is PSU(3, q);
- (c) D is a 2-design with parameters (q³ + 1, q, q − 1) and X is PSU(3, q), and the point set of D is the point set of a Hermitian unital U_H(q) and the block set is (ℓ\{γ})^G where ℓ is a line of U_H(q) and γ ∈ ℓ.

Remark 1.1 We remark here that the class C_5 should be excluded from [2, Lemma 3.11] when *H* is of type $GU_n(q_0)$ with $q = q_0^t$ and *t* odd prime. However, this change does not affect the proof of [2, Proposition 4.3] as the large subgroup condition in [2, Lemma 3.6] implies in this case that t = 3 which was handled in [2, Propositions 4.1 and 4.3].

It is worth noting by [6] that there is a general construction method for 2-designs from linear space: For a 2-(v, k, 1) design $S = (\mathcal{P}, \mathcal{L})$ with $k \ge 3$, let $\mathcal{B} = \{\ell \setminus \{\alpha\} \mid \ell \in \mathcal{L}, \alpha \in \ell\}$ and $\mathcal{D}(S) = (\mathcal{P}, \mathcal{B})$. Then [6, Proposition 4.1] implies that $\mathcal{D}(S)$ is a 2-(v, k - 1, k - 2) design, and moreover, that *G* is flag-transitive on $\mathcal{D}(S)$ whenever $G \le \operatorname{Aut}(S)$ is flag-transitive on S and induces a 2-transitive action on each line of S. Therefore, the design in Theorem 1.1 can be obtained in this way by taking S as the Hermitian unital $\mathcal{U}_H(q)$.

2 Proof of Theorem 1.1

In this section, we prove Proposition 2.1 below, and this together with [2, Proposition 4.2] will prove Theorem 1.1. In order to prove Proposition 2.1, we first need to introduce the Hermitian unitals. Here, we follow the same terminology as in [8] with a few exceptions in our notation.

Line	v	b	r	k	λ	X_{α}	X	Designs	References
1	6	10	5	3	2	D ₁₀	PSU(2, 5)	_	[4,12]
2	7	7	3	3	1	Sym ₄	PSU(2, 7)	PG(2, 2)	[1,4,9]
3	8	14	7	4	3	$C_7 : C_3$	PSU(2, 7)	_	
4	10	15	9	6	5	$C_3^2 : C_4$	PSU(2, 9)	_	[1,4,12]
5	11	11	5	5	2	Alt ₅	PSU(2, 11)	Hadamard	[1,4,9]
6	28	36	9	7	2	D ₁₈	PSU(2, 8)	-	[4,12]

Table 1 Some nontrivial 2-design with $gcd(r, \lambda) = 1$

Let $q = p^a > 2$ with p a prime. The mapping $x \mapsto x^q$ is an automorphism of the Galois field \mathbb{F}_{q^2} , which we will write as $x^q = \bar{x}$ occasionally. The Galois field \mathbb{F}_q is then the fixed field of this automorphism. Let V be a three-dimensional vector space over \mathbb{F}_{q^2} and φ a nondegenerate σ -Hermitian form on V. The full unitary group $\Gamma U(3, q)$ consists of those semilinear transformations of V that induce a collineation of PG(2, q^2) which commutes with φ . The general unitary group $GU(3,q) = \Gamma U(3,q) \cap GL(3,q^2)$ is the group of nonsingular linear transformations of V leaving φ invariant. The projective unitary group PGU(3, q) is the quotient group GU(3, q)/Z, where $Z = \{aI \mid a \in \mathbb{F}_{q^2}, a^{q+1} = 1\}$ is the center of GU(3, q) and I the identity transformation. The special projective unitary group PSU(3, q) is the quotient group $SU(3, q)/(Z \cap SU(3, q))$, where SU(3, q) is the subgroup of GU(3, q)consisting of linear transformations of unit determinant. The group PSU(3, q) is equal to PGU(3, q) if 3 is not a divisor of q + 1, and is a subgroup of PGU(3, q) of index 3 otherwise. It is well-known that the automorphism group of PSU(3, q) is equal to $P\Gamma U(3,q) := PGU(3,q)\langle \sigma_p \rangle$, where $\sigma_p : x \mapsto x^p$ is the Frobenius map. By [8, Lemma 4.1], we choose an appropriate basis $\{e_1, e_2, e_3\}$ for V with corresponding Hermitian matrix of φ by

$$\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}.$$

If $u = (x_1, x_2, x_3)$ and $v = (y_1, y_2, y_3)$ are vectors in V, then $\varphi(u, v) = x_1 y_3^q + x_2 y_2^q + x_3 y_1^q$. A vector $u \in V$ is called *isotropic* if $\varphi(u, u) = 0$ and *nonisotropic* otherwise. Let

$$\mathcal{P} = \{ \langle 0, 0, 1 \rangle, \langle 1, a, b \rangle \mid a, b \in \mathbb{F}_{q^2} \text{ and } a^{q+1} + b + b^q = 0 \}, \tag{1}$$

where $\langle a, b, c \rangle$ denotes the 1-dimensional subspace of *V* spanned by $(a, b, c) \in V$. The elements of \mathcal{P} are called the *absolute points*. It is well-known that $|\mathcal{P}| = q^3 + 1$, PSU(3, q) is 2-transitive on \mathcal{P} , and P Γ U(3, q) leaves \mathcal{P} invariant. Denote

$$\infty := \langle 0, 0, 1 \rangle$$
 and $0 := \langle 1, 0, 0 \rangle$,

and set

$$\Delta := \{ \langle 1, 0, b \rangle \mid b \in \mathbb{F}_{q^2} \text{ and } b + b^q = 0 \},$$
(2)

and let *H* be the point-stabiliser of ∞ in X = PSU(3, q), that is to say, $H = X_{\infty}$. By [8], we have the following information about these groups and their actions on \mathcal{P} :

- (a) H = QL, where Q is a normal subgroup of H of order q^3 which acts regularly on $\mathcal{P} \setminus \{\infty\}$ and $L = X_{\infty,0}$ which is a cyclic subgroup of H of order $(q^2 - 1)/\gcd(3, q + 1);$
- (b) L = X_{∞,0} has two trivial orbits {0}, {∞}, one nontrivial orbit Δ\{0} = {⟨1, 0, b⟩ | 0 ≠ b ∈ F_{q²} and b + b^q = 0} of length q − 1, and its remaining nontrivial orbits are of length (q² − 1)/gcd(3, q + 1);
- (c) P = Z(Q) = [Q, Q] is a subgroup of Q of order q fixing ∞ and acting transitively on Δ defined in (2);
- (d) $PL = X_{\infty,\ell(\infty)}$ is transitive on Δ and it is of order $q(q^2 1)/\gcd(3, q + 1)$, where $\ell(\infty) = \{\infty\} \cup \Delta$, that is to say,

$$\ell(\infty) = \{\infty\} \cup \{\langle 1, 0, b \rangle \mid b \in \mathbb{F}_{q^2}, \ b + b^q = 0\};$$
(3)

The Hermitian unital $\mathcal{U}_H(q)$ is defined to be the block design with the point set \mathcal{P} in which a subset of \mathcal{P} is a block (called a line) precisely when it is the set of absolute points contained in some $\langle u, v \rangle$. We know by [7,8,11] that $\mathcal{U}_H(q)$ is a linear space with $q^3 + 1$ points, $q^2(q^2 - q + 1)$ lines, q + 1 points in each line, and q^2 lines on each point. It was proved in [8,11] that $\operatorname{Aut}(\mathcal{U}_H(q)) = \operatorname{PFU}(3, q)$. Thus, every Gwith $X = \operatorname{PSU}(3, q) \leq G \leq \operatorname{PFU}(3, q)$ acts 2-transitively on the point set of $\mathcal{U}_H(q)$. This implies that G is also block-transitive and flag-transitive on $\mathcal{U}_H(q)$. A line of $\operatorname{PG}(2, q^2)$ contains either one absolute point or q + 1 absolute points. In the latter case, the set of such q + 1 absolute points is a line of $\mathcal{U}_H(q)$, and all lines of $\mathcal{U}_H(q)$ are of this form. In particular, $\ell(\infty)$ defined in (3) is a line of $\mathcal{U}_H(q)$ containing ∞ (see [8, Lemma 2.5]). Moreover, the line stabiliser $X_{\ell(\infty)}$ is transitive on $\ell(\infty)$ and $P \leq X_{\infty,\ell(\infty)}$ is transitive on $\ell(\infty) \setminus \{\infty\}$, and hence $X_{\ell(\infty)}$ is 2-transitive on $\ell(\infty)$. Since X is flag-transitive, for each line ℓ of $\mathcal{U}_H(q)$, we conclude that X_ℓ is 2-transitive on ℓ .

Suppose now that $B = \ell(\infty) \setminus \{0\}$. The information given above are useful to observe that $X_{\infty,B} = X_{\infty,0}$ and $X_B \le X_{\ell(\infty)}$, and so $X_B = X_{0,B}$ is a subgroup of index q + 1 in $X_{\ell(\infty)}$ and $|X_B : X_{\infty,B}| = q$. Note that X is 2-transitive on \mathcal{P} . If $\mathcal{B} = B^X$, then $(\mathcal{P}, \mathcal{B})$ is a 2-design with parameters $(q^3 + 1, q, q - 1)$, and hence this gives an explicit construction for the design that appears in Theorem 1.1(c).

We are now ready to revisit Proposition 4.3 in [2], and prove Proposition 2.1 below. In what follows, we frequently use the results mentioned above about the Hermitian unitals and their automorphism groups.

Proposition 2.1 Let \mathcal{D} be a nontrivial 2-design with $gcd(r, \lambda) = 1$. Suppose that G is an automorphism group of \mathcal{D} whose socle is X = PSU(n, q) with $n \ge 3$ and $(n, q) \ne (3, 2)$. If G is flag-transitive, then X is PSU(3, q), and one of the following holds:

- (a) \mathcal{D} is a Hermitian unital with parameters $(q^3 + 1, q + 1, 1)$;
- (b) D is a 2-design with parameters (q³ + 1, q, q − 1), and the point set of D is the point set of a Hermitian unital U_H(q) and the block set is (ℓ\{γ})^G where ℓ is a line of U_H(q) and γ ∈ ℓ.

Proof Suppose that $H = G_{\alpha}$ with α a point of \mathcal{D} . If H is not a parabolic subgroup P_m , then we follow the same argument as in [2, Proposition 4.3] which leads to no possible parameters. Therefore, considering Remark 1.1, we only need to deal with the case where H is isomorphic to P_m , for some 2m < n. In this case, by the same argument as in [2, Proposition 4.3], the inequality $v < r^2$ restricts to the case where n = 3, that is to say, X = PSU(3, q) and $H \cap X \cong q^3(q^2 - 1)$ in which case $v = q^3 + 1$. If $\lambda = 1$, then by [10], \mathcal{D} is a Hermitian unital as in part (a). Suppose now that $\lambda > 1$. Here, X acts 2-transitively on the point set of \mathcal{D} , and this action is permutationally isomorphic to the action of X on the set \mathcal{P} as in (1). Therefore, without loss of generality, we can identify the point set of \mathcal{D} with \mathcal{P} , and take $\alpha := \infty$. Since $gcd(r, \lambda) = 1$, [5, 1.2.8] implies that X is flag-transitive, and hence we can also assume that G = X, and so $H = X_{\infty} \cong q^3(q^2 - 1)$. Let B be a block containing ∞ , and let $\ell := \ell(\infty)$ be a line in $\mathcal{U}_H(q)$ passing through ∞ . Since r divides $v - 1 = q^3$ where $q = p^{3a}$, it follows that $r = p^{t}$, for some t < 3a. Since also b = rv/k, we have that $|X_{R}| = |X|/b = kp^{3a-t}(q^{2}-1)$. By inspecting the maximal subgroups of X from [3, Table 8.5], we then conclude that X_B is contained in X_ℓ which is isomorphic to $\mathrm{GU}_2(q)$. Since X_B is contained in a maximal subgroup M of X_ℓ and X_ℓ is 2-transitive on ℓ , M is a point-stabiliser of X_{ℓ} . By possibly replacing B with its conjugate, we can assume that $X_B \leq X_{0,\ell}$. Thus $X_{\infty,B}$ is contained in $X_{\infty,0,\ell} = X_{\infty,0}$. Since $bk = vr = p^{t}(q^{3}+1)$ and $bk = |X : X_{B}| \cdot |X_{B} : X_{\infty,B}| = |X : X_{\infty,B}|$, we conclude that $|X_{\infty,B}| = p^{3a-t}(q^2-1)/d$. Recall that $X_{\infty,B} \leq X_{\infty,0}$ and $X_{\infty,0}$ is a cyclic group of order $(q^2 - 1)/d$. Therefore, $X_{\infty,B} = X_{\infty,0}$. We know that $|X_{0,\ell} : X_{\infty,0}| = q$. Since $X_{0,B}$ is contained in $X_{0,\ell}$, it follows that $k = |X_B : X_{\infty,B}| = |X_B : X_{\infty,0}| \le |$ $|X_{0,\ell}: X_{\infty,0}| = q$, that is to say, $k \leq q$. Recall that $X_{\infty,B} = X_{\infty,0}$. Then $X_{\infty,0}$ fixes B, and so $B \setminus \{\infty\}$ is a union of nontrivial $X_{\infty,0}$ -orbits. We know that $X_{\infty,0}$ fixes ∞ and 0, and it has one nontrivial orbit of length q - 1 and its remaining nontrivial orbits are of length $(q^2-1)/d$. Since $k \le q$, we conclude that $B \setminus \{\infty\}$ is the nontrivial $X_{\infty,0}$ orbit $\ell \setminus \{\infty, 0\}$ of length q - 1. Therefore, $B = \ell \setminus \{0\}$. Indeed, $B = \{\infty\} \cup (\Delta \setminus \{0\})$, where Δ is as in (2). This implies that k = q, $b = q^2(q^3 + 1)$ and $\lambda = q - 1$. In conclusion, \mathcal{D} is a 2-design with parameters $(q^3 + 1, q, q - 1)$. If X fixes 0 and ℓ , then it fixes $\ell \setminus \{0\}$. Thus $X_{0,\ell} \leq X_B$, and since $X_{0,\ell}$ is transitive on $B = \ell \setminus \{0\}$, it follows that X_B is transitive on $B = \ell \setminus \{0\}$, and hence X is flag-transitive. Therefore, \mathcal{D} is a 2-design with parameters $(q^3 + 1, q, q - 1)$ whose points are the points of $\mathcal{U}_H(q)$ and $\mathcal{B} = B^X$, where $B = \ell \setminus \{0\}$ with ℓ a line of $\mathcal{U}_H(q)$.

References

 Alavi, S.H., Bayat, M., Daneshkhah, A.: Symmetric designs admitting flag-transitive and pointprimitive automorphism groups associated to two dimensional projective special groups. Des. Codes Cryptogr. 79(2), 337–351 (2016). https://doi.org/10.1007/s10623-015-0055-9

- Alavi, S.H., Bayat, M., Daneshkhah, A.: Flag-transitive block designs and unitary groups. Monatshefte für Mathematik 193(3), 535–553 (2020). https://doi.org/10.1007/s00605-020-01421-8
- Bray, J.N., Holt, D.F., Roney-Dougal, C.M.: The maximal subgroups of the low-dimensional finite classical groups, *London Mathematical Society Lecture Note Series*, vol. 407. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139192576.With a foreword by Martin Liebeck
- Colbourn, C.J., Dinitz, J.H. (eds.): Handbook of combinatorial designs, second edn. Discrete Mathematics and its Applications (Boca Raton). Chapman & Hall/CRC, Boca Raton, FL (2007)
- Dembowski, P.: Finite geometries. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 44. Springer, Berlin (1968)
- Devillers, A., Liang, H., Praeger, C.E., Xia, B.: On flag-transitive 2-(v, k, 2) designs. J. Combin. Theory Ser. A 177(105309), 45 (2021). https://doi.org/10.1016/j.jcta.2020.105309
- Kantor, W.M.: Homogeneous designs and geometric lattices. J. Combin. Theory Ser. A 38(1), 66–74 (1985). https://doi.org/10.1016/0097-3165(85)90022-6
- O'Nan, M.E.: Automorphisms of unitary block designs. J. Algebra 20, 495–511 (1972). https://doi. org/10.1016/0021-8693(72)90070-1
- O'Reilly-Regueiro, E.: On primitivity and reduction for flag-transitive symmetric designs. J. Combin. Theory Ser. A 109(1), 135–148 (2005). https://doi.org/10.1016/j.jcta.2004.08.002
- Saxl, J.: On finite linear spaces with almost simple flag-transitive automorphism groups. J. Combin. Theory Ser. A 100(2), 322–348 (2002). https://doi.org/10.1006/jcta.2002.3305
- Taylor, D.E.: Unitary block designs. J. Comb. Theory Ser. A 16, 51–56 (1974). https://doi.org/10.1016/ 0097-3165(74)90071-5
- Zhan, X., Zhou, S.: Non-symmetric 2-designs admitting a two-dimensional projective linear group. Des. Codes Cryptogr. 86(12), 2765–2773 (2018). https://doi.org/10.1007/s10623-018-0474-5

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.