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Abstract
In this note, we cover a gap in the proof of [2, Proposition 4.3]. In conclusion, Theorem
1.1 in [2] is revisited: if D is a 2-design with gcd(r , λ) = 1 and G is a flag-transitive
almost simple automorphism group of D whose socle is PSU (n, q) with (n, q) �=
(3, 2), then D belongs to one of the three infinite families of Hermitian unitals, Witt–
Bose–Shrikhande spaces and 2-designs with parameters (q3 + 1, q, q−1), or it is
isomorphic to a design with parameters (6, 3, 2), (7, 3, 1), (8, 4, 3), (10, 6, 5), (11, 5,
2) or (28, 7, 2).
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1 Introduction

A 2-design D with parameters (v, k, λ) is a pair (P,B) with a set P of v points and a
setB of b blocks such that each block is a k-subset ofP and each two distinct points are
contained in λ blocks.We sayD is nontrivial if 2 < k < v−1, and symmetric if v = b.
Each point ofD is contained in exactly r blocks which is called the replication number
of D. A flag of D is a point-block pair (α, B) such that α ∈ B. An automorphism of
a 2-design D is a permutation of the points permuting the blocks and preserving the
incidence relation. The full automorphism group Aut(D) ofD is the group consisting
of all automorphisms of D. For G ≤ Aut(D), G is called flag-transitive if G acts
transitively on the set of flags and G is said to be point-primitive if it is primitive onP .
In this note, we cover a gap in the proof of [2, Proposition 4.3]. Therefore, we correct
Theorem 1.1 in [2] as below:

Theorem 1.1 Let D be a nontrivial 2-design with gcd(r , λ) = 1, and let α be a point
of D. Suppose that G is an automorphism group of D whose socle is X = PSU(n, q)

with (n, q) �= (3, 2). If G is flag-transitive, then λ ∈ {1, 2, 3, 5} and v, k, λ, Xα and
X are as in one of the lines in Table 1 or one of the following holds:

(a) D is a Witt–Bose–Shrikhande space with parameters (2n−1(2n − 1), 2n−1, 1) and
X is PSU(2, 2n) with n ≥ 3;

(b) D is a Hermitian unital UH (q) with parameters (q3 + 1, q + 1, 1) and X is
PSU(3, q);

(c) D is a 2-design with parameters (q3 + 1, q, q − 1) and X is PSU(3, q), and the
point set of D is the point set of a Hermitian unital UH (q) and the block set is
(�\{γ })G where � is a line of UH (q) and γ ∈ �.

Remark 1.1 We remark here that the class C5 should be excluded from [2, Lemma 3.11]
when H is of type GUn(q0) with q = qt0 and t odd prime. However, this change
does not affect the proof of [2, Proposition 4.3] as the large subgroup condition in
[2, Lemma 3.6] implies in this case that t = 3 which was handled in [2, Proposi-
tions 4.1 and 4.3].

It is worth noting by [6] that there is a general construction method for 2-designs
from linear space: For a 2-(v, k, 1) design S = (P,L) with k ≥ 3, let B = {�\{α} |
� ∈ L, α ∈ �} and D(S) = (P,B). Then [6, Proposition 4.1] implies that D(S) is a
2-(v, k − 1, k − 2) design, and moreover, that G is flag-transitive on D(S) whenever
G ≤ Aut(S) is flag-transitive on S and induces a 2-transitive action on each line of
S. Therefore, the design in Theorem 1.1 can be obtained in this way by taking S as
the Hermitian unital UH (q).

2 Proof of Theorem 1.1

In this section, we prove Proposition 2.1 below, and this together with [2, Proposi-
tion 4.2] will prove Theorem 1.1. In order to prove Proposition 2.1, we first need to
introduce the Hermitian unitals. Here, we follow the same terminology as in [8] with
a few exceptions in our notation.
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Table 1 Some nontrivial 2-design with gcd(r , λ) = 1

Line v b r k λ Xα X Designs References

1 6 10 5 3 2 D10 PSU(2, 5) – [4,12]

2 7 7 3 3 1 Sym4 PSU(2, 7) PG(2, 2) [1,4,9]

3 8 14 7 4 3 C7 : C3 PSU(2, 7) –

4 10 15 9 6 5 C2
3 : C4 PSU(2, 9) – [1,4,12]

5 11 11 5 5 2 Alt5 PSU(2, 11) Hadamard [1,4,9]

6 28 36 9 7 2 D18 PSU(2, 8) – [4,12]

Let q = pa > 2 with p a prime. The mapping x �→ xq is an automorphism
of the Galois field Fq2 , which we will write as xq = x̄ occasionally. The Galois
field Fq is then the fixed field of this automorphism. Let V be a three-dimensional
vector space over Fq2 and ϕ a nondegenerate σ -Hermitian form on V . The full uni-
tary group �U(3, q) consists of those semilinear transformations of V that induce
a collineation of PG(2, q2) which commutes with ϕ. The general unitary group
GU(3, q) = �U(3, q) ∩ GL(3, q2) is the group of nonsingular linear transforma-
tions of V leaving ϕ invariant. The projective unitary group PGU(3, q) is the quotient
group GU(3, q)/Z , where Z = {aI | a ∈ Fq2 , aq+1 = 1} is the center of GU(3, q)

and I the identity transformation. The special projective unitary group PSU(3, q) is the
quotient group SU(3, q)/(Z ∩SU(3, q)), where SU(3, q) is the subgroup of GU(3, q)

consisting of linear transformations of unit determinant. The group PSU(3, q) is equal
to PGU(3, q) if 3 is not a divisor of q + 1, and is a subgroup of PGU(3, q) of index
3 otherwise. It is well-known that the automorphism group of PSU(3, q) is equal to
P�U(3, q) := PGU(3, q)〈σp〉, where σp : x �→ x p is the Frobenius map. By [8,
Lemma 4.1], we choose an appropriate basis {e1, e2, e3} for V with corresponding
Hermitian matrix of ϕ by

⎛
⎝
0 0 1
0 1 0
1 0 0

⎞
⎠ .

If u = (x1, x2, x3) and v = (y1, y2, y3) are vectors in V , then ϕ(u, v) = x1y
q
3 +

x2y
q
2 + x3y

q
1 . A vector u ∈ V is called isotropic if ϕ(u, u) = 0 and nonisotropic

otherwise. Let

P = {〈0, 0, 1〉, 〈1, a, b〉 | a, b ∈ Fq2 and a
q+1 + b + bq = 0}, (1)

where 〈a, b, c〉 denotes the 1-dimensional subspace of V spanned by (a, b, c) ∈ V .
The elements of P are called the absolute points. It is well-known that |P| = q3 + 1,
PSU(3, q) is 2-transitive on P , and P�U(3, q) leaves P invariant. Denote

∞ := 〈0, 0, 1〉 and 0 := 〈1, 0, 0〉,
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and set

Δ := {〈1, 0, b〉 | b ∈ Fq2 and b + bq = 0}, (2)

and let H be the point-stabiliser of ∞ in X = PSU(3, q), that is to say, H = X∞. By
[8], we have the following information about these groups and their actions on P:

(a) H = QL , where Q is a normal subgroup of H of order q3 which acts regularly
on P\{∞} and L = X∞,0 which is a cyclic subgroup of H of order (q2 −
1)/ gcd(3, q + 1);

(b) L = X∞,0 has two trivial orbits {0}, {∞}, one nontrivial orbitΔ\{0} = {〈1, 0, b〉 |
0 �= b ∈ Fq2 and b + bq = 0} of length q − 1, and its remaining nontrivial orbits
are of length (q2 − 1)/ gcd(3, q + 1);

(c) P = Z(Q) = [Q, Q] is a subgroup of Q of orderq fixing∞ and acting transitively
on Δ defined in (2);

(d) PL = X∞,�(∞) is transitive on Δ and it is of order q(q2 − 1)/ gcd(3, q + 1),
where �(∞) = {∞} ∪ Δ, that is to say,

�(∞) = {∞} ∪ {〈1, 0, b〉 | b ∈ Fq2 , b + bq = 0}; (3)

The Hermitian unital UH (q) is defined to be the block design with the point set P
in which a subset of P is a block (called a line) precisely when it is the set of absolute
points contained in some 〈u, v〉. We know by [7,8,11] that UH (q) is a linear space
with q3 + 1 points, q2(q2 − q + 1) lines, q + 1 points in each line, and q2 lines on
each point. It was proved in [8,11] that Aut(UH (q)) = P�U(3, q). Thus, every G
with X = PSU(3, q) ≤ G ≤ P�U(3, q) acts 2-transitively on the point set of UH (q).
This implies that G is also block-transitive and flag-transitive on UH (q). A line of
PG(2, q2) contains either one absolute point or q + 1 absolute points. In the latter
case, the set of such q + 1 absolute points is a line of UH (q), and all lines of UH (q)

are of this form. In particular, �(∞) defined in (3) is a line of UH (q) containing ∞
(see [8, Lemma 2.5]). Moreover, the line stabiliser X�(∞) is transitive on �(∞) and
P ≤ X∞,�(∞) is transitive on �(∞)\{∞}, and hence X�(∞) is 2-transitive on �(∞).
Since X is flag-transitive, for each line � of UH (q), we conclude that X� is 2-transitive
on �.

Suppose now that B = �(∞)\{0}. The information given above are useful to
observe that X∞,B = X∞,0 and XB ≤ X�(∞), and so XB = X0,B is a subgroup of
index q + 1 in X�(∞) and |XB : X∞,B | = q. Note that X is 2-transitive on P . If
B = BX , then (P,B) is a 2-design with parameters (q3 + 1, q, q − 1), and hence this
gives an explicit construction for the design that appears in Theorem 1.1(c).

We are now ready to revisit Proposition 4.3 in [2], and prove Proposition 2.1 below.
In what follows, we frequently use the results mentioned above about the Hermitian
unitals and their automorphism groups.

Proposition 2.1 Let D be a nontrivial 2-design with gcd(r , λ) = 1. Suppose that G
is an automorphism group of D whose socle is X = PSU(n, q) with n ≥ 3 and
(n, q) �= (3, 2). If G is flag-transitive, then X is PSU(3, q), and one of the following
holds:
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(a) D is a Hermitian unital with parameters (q3 + 1, q + 1, 1);
(b) D is a 2-design with parameters (q3 + 1, q, q − 1), and the point set of D is the

point set of a Hermitian unital UH (q) and the block set is (�\{γ })G where � is a
line of UH (q) and γ ∈ �.

Proof Suppose that H = Gα with α a point of D. If H is not a parabolic subgroup
Pm , then we follow the same argument as in [2, Proposition 4.3] which leads to no
possible parameters. Therefore, considering Remark 1.1, we only need to deal with
the case where H is isomorphic to Pm , for some 2m ≤ n. In this case, by the same
argument as in [2, Proposition 4.3], the inequality v < r2 restricts to the case where
n = 3, that is to say, X = PSU(3, q) and H ∩ X ∼= q̂3(q2 − 1) in which case
v = q3 + 1. If λ = 1, then by [10], D is a Hermitian unital as in part (a). Suppose
now that λ > 1. Here, X acts 2-transitively on the point set of D, and this action
is permutationally isomorphic to the action of X on the set P as in (1). Therefore,
without loss of generality, we can identify the point set ofD withP , and take α := ∞.
Since gcd(r , λ) = 1, [5, 1.2.8] implies that X is flag-transitive, and hence we can also
assume that G = X , and so H = X∞ ∼= q̂3(q2 − 1). Let B be a block containing ∞,
and let � := �(∞) be a line in UH (q) passing through ∞. Since r divides v − 1 = q3

where q = p3a , it follows that r = pt , for some t ≤ 3a. Since also b = rv/k, we have
that |XB | = |X |/b = kp3a−t (q2−1). By inspecting themaximal subgroups of X from
[3, Table 8.5], we then conclude that XB is contained in X� which is isomorphic to
ˆGU2(q). Since XB is contained in a maximal subgroup M of X� and X� is 2-transitive
on �, M is a point-stabiliser of X�. By possibly replacing B with its conjugate, we
can assume that XB ≤ X0,�. Thus X∞,B is contained in X∞,0,� = X∞,0. Since
bk = vr = pt (q3 +1) and bk = |X : XB | · |XB : X∞,B | = |X : X∞,B |, we conclude
that |X∞,B | = p3a−t (q2−1)/d. Recall that X∞,B ≤ X∞,0 and X∞,0 is a cyclic group
of order (q2 − 1)/d. Therefore, X∞,B = X∞,0. We know that |X0,� : X∞,0| = q.
Since X0,B is contained in X0,�, it follows that k = |XB : X∞,B | = |XB : X∞,0| ≤
|X0,� : X∞,0| = q, that is to say, k ≤ q. Recall that X∞,B = X∞,0. Then X∞,0 fixes
B, and so B\{∞} is a union of nontrivial X∞,0-orbits. We know that X∞,0 fixes ∞
and 0, and it has one nontrivial orbit of length q −1 and its remaining nontrivial orbits
are of length (q2−1)/d. Since k ≤ q, we conclude that B\{∞} is the nontrivial X∞,0-
orbit �\{∞, 0} of length q − 1. Therefore, B = �\{0}. Indeed, B = {∞} ∪ (Δ\{0}),
where Δ is as in (2). This implies that k = q, b = q2(q3 + 1) and λ = q − 1. In
conclusion,D is a 2-design with parameters (q3+1, q, q−1). If X fixes 0 and �, then
it fixes �\{0}. Thus X0,� ≤ XB , and since X0,� is transitive on B = �\{0}, it follows
that XB is transitive on B = �\{0}, and hence X is flag-transitive. Therefore, D is a
2-design with parameters (q3 +1, q, q −1) whose points are the points of UH (q) and
B = BX , where B = �\{0} with � a line of UH (q). ��
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