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Abstract
In Rao et al. (Comptes Rendus Acad Sci Paris Ser I(342):191–196, 2006), Rao–
Ruan–Xi solved an open question posed by David and Semmes and gave a complete
Lipschitz classification of self-similar sets on R with touching structure. In this short
note, by applying a matrix rearrangeable condition introduced in Luo (J Lond Math
Soc 99(2):428–446, 2019), we generalize their result onto the self-similar sets with
overlapping structure.
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1 Introduction

Two compact metric spaces (E, d1) and (F, d2) are said to be Lipschitz equivalent,
denote by E � F , if there is a bijection f from E onto F and a constant C > 0 such
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344 L. Wang, D. Xiong

that for all x, y ∈ E , we have

C−1d1(x, y) ≤ d2( f (x), f (y)) ≤ Cd1(x, y).

From the definition, it is trivial to know that two Lipschitz equivalent spaces must
have the commonHausdorff dimension. But the converse is usually not true in general.
Hence except the Hausdorff dimension, Lipschitz equivalence plays another important
role for the classification of fractal sets.

Around 1990,with different viewpoints, Cooper–Pignataro [2] andFalconer–Marsh
[5] made an initial attempt on the Lipschitz equivalence of Cantor sets. In 2006, Rao–
Ruan–Xi [16] achieved a breakthrough on self-similar sets with touching structure.
They used a technique of graph directed system to give a solution to an open question
of David and Semmes [3]. The result triggered a lot of interest. Since then, there have
been fruitful researches on this topic [4,10–13,15,17,20,21]. However, very limited
results involved the self-similar sets with overlapping structure (in the absence of the
open set condition). It is known that the topological structure of self-similar sets with
overlaps is quite complicated (see [14]). That may make more difficult to study the
Lipschitz equivalence.

Recently, Guo et al. [7] first constructed a Lipschitz equivalence class of self-similar
sets with complete overlaps onR. Some other sufficient or necessary conditions for the
Lipschitz classification of self-similar sets on R were also concerned in [1,8]. At the
same time, Lau andLuo [10,12] introduced the classical Gromov hyperbolic graph into
the study of Lipschitz equivalence. They developed a new tractable approach on the
problem. In particular, for self-similar sets with overlaps, Luo in [10] provided a very
general sufficient condition (later we will call it the matrix rearrangeable condition
(MRC)) for the Lipschitz equivalence of self-similar sets.

The main purpose of this note is to apply the MRC to classify the collection of
self-similar sets as follows: Let I = [0, 1] be a unit interval, n ≥ 3 be an integer and
let 0 < r < 1/n. Denote by Cn,r ,� the collection of self-similar sets K satisfying:

(1) K = ⋃n
i=1 Si (K ) where Si (x) = r x + bi for i = 1, . . . , n.

(2) 0 = b1 < b2 < · · · < bn = 1 − r .
(3) If Si (I ) ∩ Si+1(I ) �= ∅ for some 1 ≤ i < n, then the intersection either is a

one-point set (touching) or satisfies |Si (I ) ∩ Si+1(I )| = r2 (overlapping).
(4) � = #{i ∈ {1, . . . , n − 1} : |Si (I ) ∩ Si+1(I )| = r2} (the number of overlaps).

We prove that

Theorem 1.1 Any two self-similar sets in Cn,r ,� are Lipschitz equivalent.

Note that the self-similar set K ∈ Cn,r ,� is always totally disconnected as nr < 1.
Rao–Ruan–Xi [16] proved the case that � = 0 (i.e., there are no overlaps on K ).
Let Cn,r = ⋃n−1

�=0 Cn,r ,� be the collection of self-similar sets K satisfying the above
conditions (1), (2), (3). Then the Lipschitz classification of Cn,r only depends on the
number of overlaps �.

Corollary 1.2 Let K , K ′ ∈ Cn,r . Then K � K ′ if and only if K , K ′ ∈ Cn,r ,� for some
�.
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Lipschitz classification of self-similar sets with overlaps 345

We recall some well established results on Gromov hyperbolic graphs, hyperbolic
boundaries and the definition of MRC in Sect. 2. By verifying the MRC of the hyper-
bolic graph induced by K in the condition (1), we finally prove Theorem 1.1 and
Corollary 1.2 in Sect. 3.

2 Preliminaries

In this section, we follow the standard notation in [10]. Let (X , E) be a graph, where
X is a set of vertices and E is a set of edges, i.e., E ⊂ (X × X) \ {(x, x) : x ∈ X}. By
a path in (X , E) from x to y, means a finite sequence x = x0, x1, . . . , xn = y such
that (xi , xi+1) ∈ E for i = 0, 1, . . . , n − 1. Moreover, if the path has the minimal
length among all possible paths from x to y, then we say that the path is a geodesic
and denote by π(x, y). Call X a tree if for any two distinct vertices there is a unique
path connecting them. We equip a graph (X , E) with an integer valued metric d(x, y),
which is the length of a geodesic π(x, y) from x to y. Let ϑ ∈ X be a fixed vertex
and call it the root (or reference point) of the graph. We use |x | to denote d(ϑ, x), and
say that x belongs to the n-th level of the graph if |x | = n. We always assume that the
graph X is connected, i.e., any two vertices can be joined by a path.

A graph (X , E) is called a Gromov hyperbolic graph (with respect to ϑ) if there is
δ ≥ 0 such that

|x ∧ y| ≥ min{|x ∧ z|, |z ∧ y|} − δ for any x, y, z ∈ X

where |x ∧ y| := 1
2 (d(ϑ, x)+d(ϑ, y)−d(x, y)) is the Gromov product [6].We choose

a > 0 with exp(3δa) <
√
2, and define for x, y ∈ X , ρa(x, y) = δx,y exp(−a|x ∧ y|),

where δx,y = 0 or 1 according to x = y or x �= y. This is not necessarily a metric
unless X is a tree. However ρa is equivalent to a metric, hence we usually regard ρa

as a (visual) metric [19]. Let X be the completion of a hyperbolic graph X under ρa .
The hyperbolic boundary of X is defined by ∂ X := X \ X which is a compact metric
space under the metric ρa . A tree is a hyperbolic graph with δ = 0 and its hyperbolic
boundary is a Cantor-type set.

Let K = ∪n
i=1Si (K ) be a self-similar set of Cn,r ,� as in the introduction. Denote by

� = {1, 2, . . . , n} and �∗ = ∪k≥0�
k where �0 = ∅ (as a root). For x = i1i2 . . . ik ∈

�k , write the length |x | = k and the composition of maps Sx = Si1 ◦ · · · ◦ Sik . Say
x, y ∈ �∗ are equivalent, denote by x ∼ y, if Sx = Sy . Trivially, ∼ defines an
equivalence relation on �∗. Let Xk = �k/ ∼ be the set of equivalence classes on
level k. Then X = ∪∞

k=0Xk is the quotient space of �∗ under the relation ∼. For
convenience, we use [x] to express the equivalence class containing x . Occasionally,
we replace [x] by x with no confusion.

There is a natural graph structure on X by the standard concatenation of indices,
we denote the (vertical) edge set by Ev . That is, (x, y) ∈ Ev if and only if there exist
x ′ ∈ [x], y′ ∈ [y] and some z ∈ � such that y′ = x ′z or x ′ = y′z. According to the
geometric structure of K , we need to define a horizontal edge set on X :
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346 L. Wang, D. Xiong

Eh =
∞⋃

k=1

{(x, y) ∈ Xk × Xk : x �= y and Sx (I ) ∩ Sy(I ) �= ∅}.

Let E = Ev ∪ Eh , then (X , E) resembles Kaimanovich’s augmented tree [9], and is
a Gromov hyperbolic graph (due to Theorem 1.2 of [18]). Moreover, we have

Proposition 2.1 The hyperbolic boundary of (X , E) is Hölder equivalent to K .

Proof According to Theorem 1.3 of [18]. It suffices to prove that the iterated function
system {Si }n

i=1 of K satisfies the condition (H):
There exists a constant c > 0 such that for any integer k > 0 and any x, y ∈ Xk ,

either Sx (K ) ∩ Sy(K ) �= ∅ or |Sx (p) − Sy(q)| ≥ crk for any p, q ∈ K .
Since r < 1

n , I �= ∪n
i=1Si (I ). Let I1, . . . , Im be the open intervals from left to right

in I \∪n
i=1Si (I ). Then the shortest length of the open intervals, say c := min0≤i≤m |Ii |,

is the desired constant in condition (H). ��
For T ⊂ X , we say that T is a horizontal component if T ⊂ Xk for some k and

T is a maximal connected subset of Xk with respect to Eh . We remark that if Eh = ∅
then the horizontal component T is a single vertex. Geometrically, T is a horizontal
component of X if and only if ∪x∈T Sx (I ) is a connected component of ∪x∈Xk Sx (I ).
We use TD to denote the union of T and its all descendants, that is,

TD = {xy : x ∈ T , y ∈ X}.

Then TD, equipped with the edge set E restricted on TD, is a subgraph of X . For any
x ∈ X , we define xT := {xy : y ∈ T }.

Let T ⊂ Xk, T ′ ⊂ Xm be two horizontal components of X . We say that T and T ′
are equivalent, denote by T ∼ T ′, if there exists a graph isomorphism g : TD → T ′

D,
i.e., the map g and the inverse map g−1 preserve the vertical and horizontal edges of
TD and T ′

D. Denote by [T ] the equivalence class and F the family of all horizontal
components of X .

Lemma 2.2 For any two horizontal components T1 ⊂ Xk1 , T2 ⊂ Xk2 with #T1 = #T2.
If there exists a similitude φ(x) = rk2−k1 Rx + c where R = ±1, c ∈ R such that

{φ ◦ Sx : x ∈ T1} = {Sy : y ∈ T2},

then T1 ∼ T2.

Proof Without loss of generality, we may assume that T1 = {x1, . . . , xm} and T2 =
{y1, . . . , ym} and φ ◦ Sxi = Syi where i = 1, . . . , m. Then for any finite word z ∈ �∗,
we have

φ ◦ Sxi z = φ ◦ Sxi ◦ Sz = Syi ◦ Sz = Syi z, i = 1, . . . , m.

It follows that for any z, w ∈ �∗, Sxi z = Sxi w if and only if Syi z = Syi w and
Sxi z(I ) ∩ Sxi w(I ) �= ∅ if and only if Syi z(I ) ∩ Syi w(I ) �= ∅. That proving T1 ∼ T2. ��
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Lipschitz classification of self-similar sets with overlaps 347

Definition 2.3 We call the graph (X , E) simple if the number of equivalence classes
in F is finite. Let [T1], [T2], . . . , [Td ] be the equivalence classes, and let ai j denote
the cardinality of the horizontal components of offspring of T ∈ [Ti ] that belong to
[Tj ]. We call A = [ai j ]d×d the incidence matrix of (X , E).

Since Sx = Sy may happen for x �= y, the natural graph (X , Ev) may be not a
tree. In that situation, one vertex of X may have multiparents that destroys the tree
structure. However, we can reduce it into a tree (X , E∗

v ) in the following way: for a
vertex y ∈ X \ {ϑ}, let x1, x2, . . . , xk be all the parents of y such that |xi | = |y| − 1
and (xi , y) ∈ Ev , i = 1, 2, . . . , k. Suppose x1 < x2 < · · · < xk in the lexicographical
order for finite indices. We keep only the edge (x1, y) and remove all other vertical
edges. We denote by E∗

v the set of remained edges. Then (X , E∗
v ) is the reduced tree.

Similarly, for the tree (X , E∗
v ), we say two vertices x, y of X are equivalent (write

x ∼ y) if the two subtrees {x}D and {y}D are graph isomorphic. (X , E∗
v ) is called a

simple tree if X has only finitelymany non-equivalent vertices. In this sense, we denote
by [t1], [t2], . . . , [tk] the equivalence classes of vertices (ϑ ∈ [t1] for convenience) and
B = [bi j ]k×k the corresponding incidence matrix. Obviously, if (X , E) is simple then
as a subgraph, (X , E∗

v ) is also simple. Therefore, any horizontal component of (X , E)

can be represented by the equivalence classes of vertices as follows: For T ∈ [Ti ],
1 ≤ i ≤ d, suppose that T consists of ui j vertices belonging to [t j ], j = 1, . . . , k. We
represent it by using a vector ui = [ui1, . . . , uik] (relative to [t1], . . . , [tk]), and write
u = [u1, . . . ,ud ]. Then the vector u can be regard as a representation of the classes
[T1], . . . , [Td ] with respect to the classes [t1], . . . , [tk].
Theorem 2.4 [10] Let (X , E∗

v ) and (Y , E ′∗
v ) be two simple trees defined as above. If

they have same incidence matrix B, then they are graph isomorphic.

Definition 2.5 Let B be a k × k non-negative matrix, let u = [u1, . . . ,ud ] where
ui = [ui1, . . . , uik] ∈ Z

k+. A d × d matrix A is said to be (B,u)-rearrangeable (or to
satisfy the matrix rearrangeable condition) if for each row vector ai of A, there exists
a non-negative matrix C = [ci j ]p×d where p = ∑k

j=1 ui j such that

ai = 1C, Cu∗ =

⎡

⎢
⎢
⎢
⎢
⎣

∑d
j=1 c1 ju j

∑d
j=1 c2 ju j

...
∑d

j=1 cpju j

⎤

⎥
⎥
⎥
⎥
⎦

:=

⎡

⎢
⎢
⎢
⎣

c1
c2
...

cp

⎤

⎥
⎥
⎥
⎦

,

and #
{
ct : ct = b j , t = 1, 2, . . . , p

} = ui j , where b j is the j-th row vector of B,

1 = [1, . . . , 1] such that the involved matrix product is well defined, and u∗ =
[

u1
.
.
.
ud

]

.

The notion of the matrix rearrangeable condition (MRC) is the most important
technical device in constructing the needed bi-Lipschitz map. It was introduced and
systematically studied by Lau and Luo (please see a series of papers [4,10,12]). Many
matrices, such as primitive matrices, satisfy the MRC.
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348 L. Wang, D. Xiong

With the above notion and Proposition 2.1, the main theorems of [10] can be refor-
mulated as follows.

Theorem 2.6 Suppose the graph (X , E) of a self-similar set K is simple and suppose
the incidence matrix A is (B,u)-rearrangeable. Then ∂(X , E) � ∂(X , E∗

v ).
Moreover, since (X , E∗

v ) is a tree, its hyperbolic boundary is a Cantor-type set.
Then the self-similar set K is Lipschitz equivalent to a Cantor-type set.

3 The proof of Theorem 1.1

By Theorem 2.6, to prove Theorem 1.1, we only need to show that the graph (X , E)

induced by any self-similar set K ∈ Cn,r ,� where � ≥ 1 is simple and the incidence
matrix A is (B,u)-rearrangeable.

Lemma 3.1 Let K ∈ Cn,r ,�, � ≥ 1. Then the hyperbolic graph (X , E) is simple.

Proof Obviously, 0, 1 ∈ K and K ⊂ I . Let X = ∪∞
k=0Xk and E = Ev ∪Eh be defined

as in Sect. 2. From the conditions (1), (2), (3) of K , it can be seen that any horizontal
component of X is generated by either one vertex (see Fig. 1b where 1T0 is generated
by the vertex 1) or two vertices that are joined by one horizontal edge in the previous
level (see Fig. 1b where T3 is generated by the two vertices {1, 2}). In the later case,
there are only two types according to the condition (3): Let (x, y) ∈ Eh be a horizontal
edge with x < y. Then either

|Sx (I ) ∩ Sy(I )| = r |x |+1 (Type A)

or Sx (I ) ∩ Sy(I ) is a one-point set (Type B).

Write

V1 = {x ∈ X : ∃y ∈ X s.t. (x, y) is of Type A},
V2 = {x ∈ X : ∃y ∈ X s.t. (x, y) is of Type B}.

From the condition (2) of K , there are at least two components in the first iteration
∪i∈� Si (I ) (see Fig. 1a). Hence there are at least two horizontal components in the first
level X1 of the hyperbolic graph (X , E). We denote them by T0, T1, . . . , Tk , where
k ≥ 1. Without loss of generality, we may assume that 1 ∈ T0 and n ∈ T1.

Let mi = #(Ti ∩ V1) and �i = #(Ti ∩ V2), then #Ti = mi + �i + 1 where
i = 0, 1, . . . , k. Moreover, we have

m0 + m1 + · · · + mk = � and �0 + �1 + . . . + �k = n − � − k − 1. (3.1)

For any two vertices x, y ∈ Ti with x < y, if (x, y) ∈ Eh , then we need to consider
the following two cases:

(i) the edge (x, y) is of TypeA. Since Sxn = Sy1, the offsprings of vertices {x, y} arise
a new horizontal component, say Tk+1 := xT1 ∪ yT0 with #Tk+1 = #T0 +#T1 −1
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Lipschitz classification of self-similar sets with overlaps 349

Fig. 1 An illustration of the structure of the graph (X ,E)

(see Fig. 1b). All the horizontal components generated by {x, y} are

xT0, xT2, . . . , xTk, Tk+1, yT2, . . . , yTk, yT1.

It can be seen that #Tk+1 = mk+1 + �k+1 + 1 where mk+1 := #(Tk+1 ∩ V1) and
�k+1 := #(Tk+1 ∩ V2). Hence

mk+1 = m0 + m1, �k+1 = �0 + �1. (3.2)

(ii) the edge (x, y) is of TypeB. In the offsprings of {x, y}, we can find a newhorizontal
component Tk+2 := xT1 ∪ yT0 with #Tk+2 = #T0 + #T1 (see Figure 1(c)). All the
horizontal components generated by {x, y} are

xT0, xT2, . . . , xTk, Tk+2, yT2, . . . , yTk, yT1.

If we let mk+2 = #(Tk+2 ∩ V1) and �k+2 = #(Tk+2 ∩ V2). Then #Tk+2 = mk+2 +
�k+2 + 1. Hence

mk+2 = m0 + m1, �k+2 = �0 + �1 + 1. (3.3)

By similarity and Lemma 2.2, it is easy to check that yTi ∼ Ti for i = 0, . . . , k.
We mention that it is possible that [Ti ] = [Tj ] for i �= j ∈ {0, 1, . . . , k + 2}, but that
will not affect the finiteness of the equivalence classes.

In the third level X3, for i = 0, 1, . . . , k + 2, we have #Ti = mi + �i + 1 with
mi = #(Ti ∩ V1) and �i = #(Ti ∩ V2). It follows that, in Ti , there are mi pairs of
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350 L. Wang, D. Xiong

{x, y} so that (x, y) is of Type A and �i pairs of {x, y} so that (x, y) is of Type B.
By using the similar arguments as above and Lemma 2.2, the offsprings of vertices in
Ti give rise to one class [T0], one class [T1], mi classes [Tk+1], �i classes [Tk+2] and
mi +�i +1 classes [Ti ] for i = 2, . . . , k. Hence we find out all the equivalence classes
of horizontal components in the first three levels of X which are [T0], [T1], . . . , [Tk+2].

Based on the previous arguments, there will be no new classes appearing in the
offsprings of any component T ∈ [Ti ] for i = 0, 1, . . . , k + 2. Therefore, (X , E) is
simple and the incidence matrix A is of the form

A =

⎡

⎢
⎢
⎢
⎣

1 1 m0 + �0 + 1 · · · m0 + �0 + 1 m0 �0
1 1 m1 + �1 + 1 · · · m1 + �1 + 1 m1 �1
...

...
...

...
...

...

1 1 mk+2 + �k+2 + 1 · · · mk+2 + �k+2 + 1 mk+2 �k+2

⎤

⎥
⎥
⎥
⎦

.

(3.4)
��

Lemma 3.2 Let K ∈ Cn,r ,�, � ≥ 1. Then the reduced tree (X , E∗
v ) is simple with

incidence matrix

B =
[

n − � �

n − � − 1 �

]

. (3.5)

Proof By using the similar arguments as in the proof of Lemma 3.1, we shall find the
incidencematrix B. For any pair of indices x, y ∈ �∗ with x < y. If |Sx (I )∩Sy(I )| =
r |x |+1 then we must have Sxn = Sy1 and xn, y1 ∈ �∗ are equivalent (i.e., xn ∼ y1),
hence {xn, y1} forms an identifying vertex of X (= �∗/ ∼). On the other hand, from
the conditions (1), (2), (3) of the self-similar set K , we can see that any identifying
vertex of X has at most two members of the form {xn, y1}.

Let t1 = ϑ be the root of X and [t1] be the equivalence class containing ϑ . Due to
condition (4) of K , we may assume that i1, . . . , i� are the indices in the first level X1
such that |Si j (I )∩Si j +1(I )| = r2, j = 1, . . . , �. Hence there are � identifying vertices
in the second level X2, say x j := {i j n, (i j + 1)1}, j = 1, . . . , �. By the construction
of the reduced tree (X , E∗

v ), we need to remove the vertical edges (i j +1, x j ) and keep
(i j , x j ) in the graph (X , Ev) as i j < i j + 1. Then the number of offsprings of vertex
i j + 1 is n − 1 for each j . We denote by [t2] the equivalence class containing i j + 1.
If we continue this progress until the third level X3, it can be seen that there are only
two classes of vertices in (X , E∗

v ), say [t1], [t2], and the incidence matrix follows. ��

Lemma 3.3 A is (B,u)-rearrangeable, whereu is the representation defined in Sect. 2.

Proof Matrices A and B have been determined by Lemmas 3.1 and 3.2. We still need
to get the vector u. For i = 0, 1, . . . , k + 2, we have #Ti = mi + �i + 1 where
mi = #(Ti ∩ V1) and �i = #(Ti ∩ V2). Hence there are mi vertices in Ti that belong
to the class [t2]. The remaining �i + 1 vertices belong to [t1]. We can write u as

u = [u0,u1, . . . ,uk+2], where ui = [�i + 1, mi ], i = 0, 1, . . . , k + 2.
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Lipschitz classification of self-similar sets with overlaps 351

Let ai be the i-th row vector of the matrix A in (3.4) and let p = 1 + �i + mi . By
(3.1), (3.2) and (3.3), we obtain that 1C = ai and

Cu∗ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

n − � �

n − � �
...

...

n − � �

n − � − 1 �
...

...

n − � − 1 �

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

p×2

where C =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 · · · 1 0 0
0 0 1 · · · 1 0 1
...

...
...

...
...

...

0 0 1 · · · 1 0 1
0 0 1 · · · 1 1 0
...

...
...

...
...

...

0 0 1 · · · 1 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

p×(k+3)

.

Consequently, A is (B,u)-rearrangeable by Definition 2.5. ��
Proof of Theorem 1.1 Let K , K ′ ∈ Cn,r ,�, and let X , Y be their hyperbolic graphs,
respectively. By Lemma 3.2, their reduced trees are both simple with the common
incidencematrix B as in (3.5), hence are graph isomorphic byTheorem2.4. Lemma3.1
implies that both X and Y are simple. We denote their incidence matrices by A and A′,
respectively. According to Lemma 3.3, A is (B,u)-rearrangeable and A′ is (B,u′)-
rearrangeable where u,u′ are the corresponding representations. Then K and K ′ are
Lipschitz equivalent to the common Cantor-type set by Theorem 2.6. Therefore K �
K ′. ��
Proof of Corollary 1.2 If K ∈ Cn,r ,� for � ≥ 1. Let (X , E) be the hyperbolic graph
induced by K . Lemma 3.2 implies that the reduced tree (X , E∗

v ) is simple with the

incidence matrix B as in (3.5). The spectral radius of B is ρ := n+√
n2−4�
2 . Let

e1 = [1, 0], 1 = [1, 1] and 1t be the transpose of 1. Then the number of ver-
tices of k-th level can be calculated by #Xk = e1Bk1t and limk→∞(e1Bk1t )1/k =
limk→∞(||Bk ||∞)1/k = ρ by Gelfand’s formula. Moreover, #Xk also counts the num-
ber of different pieces of K in the k-th iteration. Since the corresponding IFS {Si }n

i=1
of K satisfies the weak separation property [18], by Theorem 2 in [22], we obtain

dimH K = lim
k→∞

log(#Xk)

−k log r
= log ρ

− log r
.

If K ∈ Cn,r ,0, there are no overlaps, then dimH K = log n
− log r . Suppose K , K ′ ∈

Cn,r (= ⋃n−1
�=0 Cn,r ,�) and K � K ′, then they have the same Hausdorff dimension.

Thus, K , K ′ belong to the common collection Cn,r ,� for some �. The converse follows
from Theorem 1.1. ��
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