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Abstract
We consider the Fourier expansion of a Hecke (resp. Hecke–Maaß) cusp form of
general level N at the various cusps of �0(N )\H. We explain how to compute these
coefficients via the local theory of p-adicWhittaker functions and establish a classical
Voronoï summation formula allowing an arbitrary additive twist. Our discussion has
applications to bounding sums of Fourier coefficients and understanding the (gener-
alised) Atkin–Lehner relations.

Keywords Automorphic forms · Vornoi summation · Fourier coefficients

Mathematics Subject Classification 11F12 · 11F30 · 11F70

1 Introduction

The purpose of this note is to prove two formulae. The first, a Voronoï-type summation
formula, relating additively twisted Fourier coefficients of a cuspidal Hecke eigenform
f to a dual sum of coefficients at another cusp, related to the original twist. Secondly,
we give an explicit formula for the Fourier coefficients f at an arbitrary cusp. As
applications, we prove upper bounds for sums of Fourier coefficients and we revise
the classical Atkin–Lehner relations in a p-adic setting.

Whilst similar formulae are, in certain settings, well known, we provide a perspec-
tive here that links the two fundamentally and lays bare the mechanics behind additive
twists and switching cusps. That perspective is derived from noting that classical
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658 E. Assing, A. Corbett

Fourier coefficients are special values of p-adic Whittaker functions on GL2(Qp). In
that vein, we intend the following exposition to serve pedagogically as a reference for
the analysis of classical Fourier coefficients with adelic machinery.

For the remainder of this introduction we detail our main results for a holomorphic
cusp form f (z) = ∑

n≥1 a f (n)e(nz) of level N ∈ N, weight k ∈ 2N and nebentypus
χ ; see Proposition 4.1 and Corollary 6.3 below where the case of Maaß forms is
included. Fix a modulus q ∈ N for the additive character n �→ e(an/q) where
(a, qδ(a)) = 1. Then for a Bruhat–Schwartz function F : R>0 → C we prove

∑

n∈N

e

(
an

q

)

a f (n)n− k−1
2 F(n)

= q−1
∑

n∈N

e

(

− an

qδ(a)

)

a f (n, a)

(
n

δ(a)

)− k−1
2 [H f F]

(
n

[q2, Mq, N ]
)

(1)

where H f F is the Hankel transform of F [see (38) and (39) below] and a f (n; a)
denotes the n-th Fourier coefficient of f at the cusp a = a/q of (extended) cusp width
δ(a), as defined in (8). Formula (1) constitutes one case of Corollary 6.3 given later.

Many of the technicalities in evaluating such formulae explicitly, in terms of the
coefficients a f (n), are buried inside the coefficients a f (n; a), bringing us to our second
result, formally given in Proposition 4.1. Write n1 = ∏

p|N pnp for some n p ≥ 0 and
n0 ∈ N with (n0, N ) = 1. Then at the cusp a = a/q for some q | N we have

a f (n1n0; a) = �χ,q,δ(a)a f (n0,∞)e

(
na

δ(a)L

) (
n1

δ(a)

) k
2

×
∏

p|n1
ωχ,p

(
n0n1

(n1, p∞)

)

Wp

((
0 pnp−dπp (qp)

−1 −u p(n0)p
q−1
p

))

(2)

where Wp is the p-th component of the global Whittaker function associated to f
(see (24) below), its matrix argument is given in Proposition 4.1; ωχ,p is the p-th
component of the Hecke-character associated to χ ; and �χ,q,δ(a) ∈ C|z|=1 is defined
in (33) and in particular satisfies �χ,q,δ(a) = 1 whenever χ = 1 or q = 1. By the
results of [1], one may evaluate the local factors at p | n1 explicitly. Furthermore,
combining (2) with (1) we thus obtain a general Voronoï summation formula for GL2
in the N -q aspect.

Remark 1.1 Formula (2) implies the well known phenomenon that the Fourier coeffi-
cients a f (n; a) in general are not multiplicative objects. Moreover, due to the possible
large values ofWp, derived in [1], the coefficients a f (n; a) can be quite large in terms
of the level N .
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Voronoï summation via... 659

We are able to give some novelty results as immediate corollaries to (2). For exam-
ple, in Corollary 4.4 we compute the bound

∑

n≤X

|a f (n; a)|2 � k2N ε

δ(a)k

(

Xk+ε + Xk− 1
2+ε(L,

N

L
)k

)

.

Another application of (2) is to derive an adelic approach to the classical Atkin–
Lehner relations. We will see in Sect. 5 that, via (2), the Atkin–Lehner involution
arises naturally through local matrix identities. The corresponding identities relating
Fourier coefficients at different cusps arise from several functional equations of the
local Whittaker functions Wp.

Remark 1.2 Such formulae as (1) and (2) are naturally sensitive to the inducing
information that determines the local representation attached to f at p. Hence a
Voronoï formula is inherently non-uniform in the N -q aspect outside the extreme cases
(N , q) = 1 and N | q, where the local representations do not interact. We remark that
our formula trivially agrees with the ‘go-to’ reference [13, Sect. A] in such extreme
cases (see Corollaries 6.5 and 6.6). Uniformity may nonetheless be recovered should
one concede to looking at families of fixed (or restricted) representation type at p, in
which case such a general Voronoï formula is quickly derived from the formulae given
in [1], in conjunction with (1) and (2).

Remark 1.3 Our approach towards Voronoï summation does not directly rely on the
functional equation of Dirichlet series. Instead it can be explained in terms of a strong
Gelfand formation. (See [16] for discussion on strong Gelfand formations.) The sides
of the formation are formed by the inclusions {1} ⊂ N ⊂ GL2 and {1} ⊂ wNw−1 ⊂
GL2 where N is the unipotent subgroup of GL2. Each inclusion comes with the strong
multiplicity-one property. This enables one to expand the trivial period

[ϕ �→ ϕ(g)] ∈ Hom{1}(π, C),

for an automorphic representation π of GL2, in terms of well chosen model periods in
the intermediate Hom-spaces; one wall of the Gelfand formation of course gives rise
to the Whittaker model. The equality arising from equating the expansions coming
from each side determines the functional equation for a general Voronoï-type formula
in the representation theoretic setting. Classically, this can be thought of as swapping
from the Fourier expansion of a cusp form at ∞ to the Fourier expansion at 0. This is
because the group N (resp. wNw−1) corresponds to the stabiliser of ∞ (resp. 0). We
make this remark precise in Theorem 6.2.

Common notation

Put e(z) := e2π i z for z ∈ C. If g = (
a b
c d

) ∈ GL2(C) we write gz = az+b
cz+d and

j(g, z) = cz + d. If moreover g ∈ SL2(Z) then, by convention, a Dirichlet character
χ defines a function χ(g) := χ(d). Let (a, b) and [a, b] denote the greatest common
divisor and the least commonmultiple of a, b ∈ N, respectively. Additionally, if c ∈ N
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660 E. Assing, A. Corbett

let [a, b, c] := [a, [b, c]] = [[a, b], c]. We write a | b∞ to denote that there exists a
k ∈ N such that a | bk ; similarly we let (a, b∞) := maxk≥1(a, bk). We let 
y� and
�y denote the floor and ceiling of y ∈ R. The p-adic valuation of x ∈ Qp is denoted
by vp(x). If A is a logical assertion, we use Dirac’s symbol δ(A) to denote a 1 if A is
true and a 0 otherwise.

2 Classical Fourier expansions at the cusps of 00(N)\H

2.1 Classical newforms

The results of this work apply specifically to newforms on �0(N )\H which vanish
in the cusps. These may come from either the world of Maaß forms or holomorphic
modular forms. 1 We introduce notation here to deal with both of these cases. From a
pedagogical perspective, much of the theory we introduce in this section and the next
appliesmore generally,without the assumptions that the form is newor indeed cuspidal
[4,8]. We shall uniformly refer to a function f : H → C as a cuspidal newform of
weight k ∈ Z≥0 if f falls into one of the following two categories:

• Cuspidal holomorphic Hecke newforms, in which case k > 0.
• Cuspidal Hecke–Maaß newforms of weight k = 0. In this case fix m ∈ {0, 1}
such that f (−z) = (−1)m f (z) and λ f = 1

4 + t2f , the (Laplace) eigenvalue of

� := −y2( ∂2

∂x2
+ ∂2

∂ y2
) for which � f = λ f f .

We additionally assume the normalisation of (6).We consider such a cuspidal newform
f as fixed throughout our exposition. For a Dirichlet character of conductor M with
M | N , we say that a newform f has level N and nebentypus χ if for each γ ∈ �0(N )

the weight k modular identity holds:

f |kγ = χ(γ ) f (3)

where we apply the usual definitions such that for, g = (
a b
c d

)∈GL2(R) with det(g)>
0, we have ( f |kg)(z) := deg(g)k/2(cz + d)−k f (gz) where gz := az+b

cz+d , and when
moreover g ∈ SL2(Z) then χ(g) := χ(d). In particular, for f �= 0 we further impose
that χ(−1) = (−1)k .

We are able to speak of both genres of newform in the same breath by introducing
the notation

κ f (y) :=
{

sgn(y)+1
2 e−2π y if f is a holomorphic modular form

sgn(y)m |y|1/2Kit f (2π |y|) if f is a Maaß form.
(4)

Since
(
1 1
0 1

) ∈ �0(N ) for any N ≥ 1, we have in particular that f (z + 1) = f (z) by
(3). Then with the specialist notation in (4), we deduce the usual Fourier expansion

1 We near enough consider the full spectrum of �\H from a representation theoretic point of view. The
weight k Maaß forms reduce to the weight 0 and 1 cases via the weight lowering operator (see [4, Exer-
cise 2.1.7]). Our omission of the weight 1 Maaß forms is but for notational convenience. Our results may
be straightforwardly amended to describe such forms.
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for f (at the cusp ∞)

f (x + iy) =
∑

n∈Z

a f (n)κ f (ny)e(nx), (5)

the cuspidal condition implying a f (0) = 0. Without loss in generality we assume the
normalisation

a f (1) = 1. (6)

Then the Hecke eigenvalues of f , denoted by λ f (n), satisfy a f (n) = λ f (n)n
k−1
2 .

2.2 The cusps of 00(N)\H

Adetailed account of the construction of the cusps of the Riemann surface�0(N )\H is
given in [14, Sect. 3.4.1], to which we refer. We denote this set of cusps by C(N ); that
is, the set of boundary points of H (modulo the left Möbius action of �0(N )) that are
stabilised by a non-scalar element of�0(N ), or simplyC(N ) = �0(N )\P

1(Q). Indeed,
SL2(Z) acts transitively on P

1(Q) and the stabiliser of the point∞ = [1 : 0] ∈ P
1(Q)

is �∞ = {± (
1 n
0 1

) : n ∈ Z}. Thus C(N ) is identified with �0(N )\SL2(Z)/�∞ as a
left �0(N )-set. We write its elements as a = σ−1∞ for a choice of representatives
{σ } of C(N ).

On the other hand, there is a (transitive) right action of SL2(Z) on P
1(Z/NZ)

which, as in [14, Sect. 3.4.1], may be used to parameterise the set of cusps by classes
[q : d] ∈ P

1(Z/NZ) such that q | N and d ∈ (Z/(q, N/q)Z)×. From this perspective
one refers to [q : d] as the “fraction” d/q and calls q the denominator of the cusp. It
follows that the number of cusps of denominator q is φ((q, N/q)) and furthermore
#C(N ) = ∑

q|N φ((q, N/q)). In this description, the cusp a = ∞ corresponds to
[0 : 1] and is the unique cusp of denominator N .

To summarise these constructions, any cusp a ∈ C(N ) may be identified by an
element

σ−1 =
(
a b
q d

)

∈ SL2(Z) (7)

such that σa = ∞. Then the cusp a has denominator q; it corresponds to the class
[q : d] ∈ P

1(Z/NZ) (as above); and if σ �≡ 1 ∈ �0(N )\SL2(Z)/�∞ then a is equal
to the rational cusp a/q ∈ P

1(Q) where (a, N ) = 1 and ad ≡ 1 (mod (q, N/q)).
The width of a cusp a ∈ C(N ) is defined to be w(a) = [�∞ : �∞ ∩ σ�0(N )σ−1]

where σ ∈ �0(N )\SL2(Z)/�∞ satisfies σa = ∞. Equivalently, amore tactile defini-
tion may be given by noting that w(a) is the least integer n ≥ 1 such that the stabiliser
of a ∈ P

1(Q), under the left action of SL2(Z), contains
(
1 n
0 1

)
. In fact, one may com-

pute the width precisely as w(a) = N/(q2, N ), or equivalently w(a) = [q2, N ]/q2
(see [14, Sect. 3.4.1]).
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662 E. Assing, A. Corbett

Later on it shall be handy to take any fraction a/q with (a, q) = 1 and consider
the equivalence class defining the cusp a. This relates to our notion above as follows:
with σ−1 as in (7), let r , s ∈ Z such that qr + Nds = (q, N ) and rescale σ so that

(
ar ∗

(q, N ) ∗
)

=
(
1 − N

(q,N )
bs

0 1

)

σ−1
(

r ∗
Ns ∗

)

.

Replacing the coefficient ar by its unique minimal representative a′ ≥ 0 modulo
(q, N ), another representative of the cusp a is then a′/(q, N ), the upshot being that
the latter has denominator dividing N .

2.3 The classical Fourier expansion at an arbitrary cusp

For a cusp a ∈ C(N ), pick a representative σ ∈ SL2(Z) such that σa = ∞. The
expansion of f about a is given by the expansion of f |kσ−1 at the cusp ∞. If the
nebentypus were trivial, χ = 1, then f |kσ−1 would be periodic on vertical strips of
width w(a) in H. However, to account for general characters of conductor M | N , we
introduce the extended width

δ(a) := w(a)
M

(qw(a), M)
= [Mq, q2, N ]

q2
. (8)

As withw(a), the extended width only depends on the equivalence class of a. Suppose
that σ = ( d −b−q a

)
; that is, a = σ−1∞ corresponds to the cusp a/q as described in

§ 2.2. Then we have

σ−1
(
1 w(a)t
0 1

)

σ =
(
1 − aqw(a)t a2w(a)t
−q2w(a)t 1 + aqw(a)t

)

for each t ∈ Z. A few applications of the modular identity (3) imply that

( f |kσ−1)(z + w(a)t) = χ(1 − aqw(a)t)( f |kσ−1)(z).

As the conductor of χ isM we see that χ(1−aqw(a)t) = 1 if and only ifM | qw(a)t ,
or equivalently, M

(qw(a),M)
| t . Hence, our definition of δ(a) is justified in that it is the

minimally chosen positive integer satisfying the periodicity relation

( f |kσ−1)(z + δ(a)) = ( f |kσ−1)(z).

The resulting Fourier expansion f at the cusp a is of the form

( f |kσ−1)(x + iy) =
∑

n∈Z

a f (n; a)κ f (ny/δ(a))e(nx/δ(a)). (9)

(One may refer to [9, Theorems 3.4.1 and 3.7.4] for both the holomorphic and Maaß
cases, respectively.)
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When a = ∞ we recover the familiar coefficients a f (n; a) = a f (n); however,
unlike a f (n), the coefficients a f (n; a) are not multiplicative in general (the reason for
this can be found in Section 4.2 below). We refer to f as a cusp form whenever its
constant terms vanish, a f (0; a) = 0, with respect to each a ∈ C(N ). By definition,
if f is holomorphic then its Laurent expansion contains no negatively indexed terms:
a f (n; a) = 0 for all n < 0.

Remark 2.1 Note that δ(a) = w(a) whenever the conductor M is sufficiently small;
for example, if M | N1 where N1 is the smallest integer such that N | N 2

1 . On the
other hand, if q is sufficiently square-full above its prime divisors then δ(a) = w(a),
likewise. As with w(a), the extended width depends only on (q, N ) as can be seen
from δ(a) = w(a) M

(qw(a),M)
and the fact that (M | N ).

Finally, suppose we wish to choose a different representative τ satisfying τa = ∞.
This includes representing a by a different fraction without necessarily asking for the
numerator and denominator to be coprime. Then τ−1 = (

1 m
1

)
σ−1γ for some m ∈ Z

and γ ∈ �0(N ). Applying (3) we obtain

f |kτ−1(x + iy) = χ(γ ) f |kσ−1(x + m + iy)

= χ(γ )
∑

n∈Z

a f (n; a)κ f (ny/δ(a))e(n(x + m)/δ(a)). (10)

This shows explicitly that replacing the matrix σ by an equivalent one τ only skews
the Fourier coefficients by the root of unity χ(γ )e(nm/δ(a)).

3 Whittaker–Fourier expansions and adele groups

In this section we take an expository route to give explicit realisations of classical
forms recast in the adelic theory of representations for G := GL2. We hope to exhibit
the advantage gained by strong approximationwhenworkingwith adelic constructions
– this is the key insight in converting global ramification problems into p-adic analytic
ones.

3.1 Background on automorphic forms on GL2(A)

3.1.1 Notation for adele groups

Let A denote the adele ring of Q and Af its ring of finite adeles; these are given
respectively by the restricted direct products A = ∏′

p≤∞ Qp and Af = ∏′
p<∞ Qp

with respect to the additive subgroupsZp ≤ Qp.We reserve the letterG to denote GL2
and introduce shorthand for the p-adic groups Gp = GL2(Qp), G∞ = GL2(R) and
their maximal compact subgroups Kp = GL2(Zp), K∞ = O2(R), respectively. At
finite places p < ∞ we shall consider the subgroups Kp(N ) ≤ Kp containing those
matrices

(
a b
c d

) ∈ Kp such that c ∈ NZp. Further, the finer subgroups K1,p(N ) ⊂
Kp(N ) (resp. K ′

1,p ⊂ Kp(N )) are defined to contain the elements Kp(N ) such that
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664 E. Assing, A. Corbett

d ∈ 1 + NZp (resp. a ∈ 1 + NZp). The adele group of GL2 is then the restricted
direct product G(A) = ∏′

p≤∞ Gp with respect to the subgroups Kp. We consider the
global congruence subgroups ofG(A) defined by K0(N ) = ∏

p<∞ Kp(N ), K1(N ) =
∏

p<∞ K1,p(N ) and K ′
1(N ) = ∏

p<∞ K ′
1,p(N ).

3.1.2 Notation for matrix groups

For a commutative unital ring R and a subgroup H ≤ G(R)write H+ for the subgroup
of matrices h ∈ H such that det(h) > 0. We consider certain elements given by

z(λ) :=
(

λ

λ

)

, n(x) :=
(
1 x
1

)

, a(y) :=
(
y
1

)

, w :=
(

1
−1

)

for each λ, y ∈ R× and x ∈ R. These elements determine the familiar subgroups
Z(R) := {z(λ) : λ ∈ R×}, the centre ofG(R); N (R) := {n(x) : x ∈ R}, the unipotent
matrices; A(R) := {a(y) : y ∈ R×}; and the upper triangular Borel subgroup B :=
ZN A.

3.1.3 Strong approximation

We diagonally embed Q ↪→ A as a discrete subgroup. The quotient Q\A is compact
and we have the strong approximation theorem

A ∼= Q + ([0, 1) × ∏
p<∞Zp

)
(11)

(see [15, Corollary 5–9]). We additionally have strong approximation theorems for
the adele groups A

× = GL1(A) and G(A) = GL2(A) which state the following:

A
× ∼= Q

× · (
R>0 × ∏

p<∞Z
×
p

)
(12)

G(A) ∼= G(Q) · (G+∞ × K0(N )
)
. (13)

for each N ≥ 1 (see [8, Ch. 3]). The adelic congruence subgroups are then related to
the classical ones via

G(Q) ∩ (
G+∞ × K0(N )

) = �0(N ). (14)

In the spirit of clarity, we specify the place-value of matrices γ ∈ G(Q) by defining
the inclusions ιp : G(Q) ↪→ G(Qp) ↪→ G(A) for each p ≤ ∞ and the diagonal
imbedding ιf : G(Q) ↪→ G(Af) ↪→ G(A).
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3.1.4 Dirichlet characters à la Hecke

A Dirichlet character χ (of conductor M) may be associated to a Hecke character
ωχ : A

× → C
× via the diagram

ωχ : A
× pr−→

∏

p|M
Z

×
p

ChM−→ (Z/MZ)× χ−1

−→ C
×,

where pr denotes the projection ofR>0×∏
p<∞ Z

×
p after applying strong approxima-

tion (12) to A
×; and ChM denotes the cannonical surjection induced by the Chinese

remainder theorem,
∏

p Z
×
p /(1+ pmpZp) ∼= (Z/MZ)× for M = ∏

p pmp . Explicitly,

we highlight the inverse; ωχ(x) = χ(ChM (pr(x)))−1. As with all Hecke charac-
ters, we have the tensor factorisation ωχ = ⊗p≤∞ωχ,p. Observe in particular that
ωχ,∞|R+ = 1. See [12, Sect. 12.1] for extended details. Abusing notation, we extend
the character ωχ = ⊗p≤∞ωχ,p to a character of K0(N ) by setting

ωχ,p(k) =

⎧
⎪⎨

⎪⎩

ωχ,p(d) for k =
(

a b

pvp(N )c d

)

∈ Kp(N ) and p | N ,

1 for p � N .

3.1.5 Adelisation of classical modular forms

We refer the unfamiliar reader to [8] for a friendly introduction and to the following
construction; see also [12, Sect. 12]. For our classical newform f , the ‘adelisation
process’ is to associate an automorphic form ϕ : G(Q)\G(A) → C to f by defining

ϕ(g) := ωχ(k0)( f |kg∞)(i) (15)

where g = γ g∞k0 ∈ G(A) is decomposed as in (13) with γ ∈ G(Q), g∞ ∈ G+∞
and k0 ∈ K0(N ). By choice of f , we consider ϕ as fixed throughout our exposition.
The central character of ϕ is given by ωχ , which is understood as follows. Via (12),
choose r = rQr∞rf ∈ A

× with rQ ∈ Q
×, r∞ ∈ R>0 and rf ∈ ∏

p<∞ Z
×
p . Then one

computes ϕ(z(r)g) = ωχ(z(rf)k0)( f |k z(r∞)g∞)(i) = ωχ(z(rf))ϕ(g). But indeed
ωχ(z(rf)) = ωχ(r) as ωχ(r∞) = 1 by construction. In the adelic setting, the central
character also finds itself as the one dimensional representation of K0(N ) generated
by ϕ since

ϕ(gk0) = ωχ(k0)ϕ(g) (16)

for all k0 ∈ K0(N ) and g ∈ G(A). In particular, ϕ is right K1(N )-invariant.
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666 E. Assing, A. Corbett

3.1.6 Automorphic representations

The right regular action2 of G(A) is realised in the space L2(Z(A)G(Q)\G(A), ωχ ),
containing only forms with central character ωχ . Let π denote the fixed automorphic
representation representation of G(A) generated by ϕ (or, by abuse of language, f ).
The property that f is a cusp form is equivalent toπ being contained in the cuspidal part
of the spectrum of L2(Z(A)G(Q)\G(A), ωχ ); that f is moreover a newform directly
implies thatπ is irreducible. Let π̃ denote the contragredient representation attached to
π . Then π̃ has central characterω−1

χ and satisfies the isomorphism π̃ ∼= (ω−1
χ ◦det)⊗π .

The tensor product theorem (see [4]) states that an automorphic representation π may
be realised as a restricted tensor product π ∼= ⊗′

pπp where each πp is some (complex)
representation of Gp. This algebraic construction is tied fundamentally to the theory
of Euler products of L-functions in that the coefficients λπ(n) of

L(s, π) =
∏

p≤∞
L(s, πp) = L(s, π∞)

∑

n≥1

λπ(n)

ns
(17)

are local objects. It is the G(Q)-invariance of π that implies the global functional
equation about s �→ 1 − s involving the epsilon factor ε(s, π) = ∏

p≤∞ ε(s, πp).
Note that in our particular example that λπ = λ f and the completed L-function
attached to f is given by �(s, f ) = L(s, π).

3.2 TheWhittaker–Fourier Expansion

Let ψ : Q\A → C
× be the standard additive character on A defined as follows: ψ =

⊗pψp where ψ∞(x∞) = e(x∞) and ψp(xp) = 1 if and only if xp ∈ Zp. A smooth
functionW : G(A) → C is called a ψ-Whittaker function ifW (n(x)g) = ψ(x)W (g)
is satisfied for each x ∈ A and g ∈ G(A). By the uniqueness of Whittaker models for
G(A), there exists a subspace of such functions which, under the right regular action
of G(A), is isomorphic to π ; this subspace itself is called the Whittaker model and
is denoted by W(π,ψ). The implied G(A)-isomorphism may be explicated via the
map

ϕ(g) �−→ Wϕ(g) =
∫

Q\A

ϕ(n(x)g) ψ(x) dx (18)

where we take the invariant measure dx onA, which naturally descents to a probability
measure on Q\A. It is then apparent thatW(π,ψ) contains the Fourier transforms of
the function x �→ ϕ(n(x)g) onQ\Awhose dual group is identified asQ by considering
the characters x �→ ψ(ξ x) for each ξ ∈ Q. By Fourier inversion, we thus derive an
expansion of ϕ in terms of Wϕ so that

ϕ(g) =
∑

ξ∈Q×
Wϕ(a(ξ)g) (19)

2 There is a caveat at p = ∞; we instead have a (commuting) action of (Lie(G∞), K∞).
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where we have implicitly used the cuspidal property of ϕ to deduce the vanishing
of the constant term (at ξ = 0). This adelic Fourier expansion is rather marvellous
in that it encodes the classical Fourier expansion (9) of f at all cusps a of �0(N )\H

simultaneously.We now conclude this section with some remarks on using the vantage
point of (19) to compute the coefficients a f (n; a).

3.3 Adelic realisation of classical Fourier coefficients

Let z = x + iy ∈ H and define gz = n(x)a(y) ∈ G+∞. Evaluating ϕ on this matrix we
recover

ϕ(gz) = ( f |kgz)(i) = yk/2 f (z). (20)

Shifting to an arbitrary cusp a = σ−1∞, we combine (19) with our observation above
in (20) to find

( f |kσ−1)(z) = y−k/2( f |kσ−1gz)(i)

= y−k/2ϕ(gzιf(σ ))

= y−k/2
∑

ξ∈Q×
Wϕ(a(ξ)gzιf(σ )). (21)

Note the conceptual part played by strong approximation 13 for this identity to hold.
The corollary to (21) is that we may determine the values Wϕ(a(ξ)gzιf(σ )) in two
ways: firstly by returning full circle in recovering the classical Fourier expansion
(9), and secondly by explicating their values locally via the associated representation
theory. Beginning with the former, a special case of the following result is given (for
amusement) in [8, Lem. 3.6]. We give full generality here.

Proposition 3.1 Let gz = n(x)a(y) for z = x + iy ∈ H and let a ∈ C(N ) with
σa = ∞. Then for ξ ∈ Q

× we have that

Wϕ(a(ξ)gzιf(σ )) = yk/2a f (n; a)κ f (ny/δ(a))e(nx/δ(a))

if ξ = n/δ(a) for some n ∈ Z and Wϕ(a(ξ)gzιf(σ )) = 0 otherwise.

Proof Using the left invariance of ϕ by G(Q) and of the additive Haar measure on A,
d(ξ x ′) = |ξ |Adx ′ = dx ′ for each ξ ∈ Q

×, we compute

Wϕ(a(ξ)gzιf(σ )) =
∫

Q\A

ϕ(n(x ′)a(ξ)gzιf(σ ))ψ(−x ′) dx ′

= ψ∞(ι∞(ξ)x)
∫

Q\A

ϕ(n(x ′)a(y)ιf(σ ))ψ(−ξ x ′) dx ′

= e(ξ x)Cϕ(ξ ; y, σ )
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where we have defined

Cϕ(ξ ; y, σ ) :=
∫

Q\A

ϕ(n(x ′)a(y)ιf(σ ))ψ(−ξ x ′) dx ′.

Firstly, let ξ = n/δ(a) with n ∈ Z. Consider the fundamental domain

Q\A = R/δ(a)Z ×
∏

p<∞
δ(a)Zp (22)

where we associate R/δ(a)Z = [0, δ(a)). This is chosen using strong approximation
(11). For any xp ∈ δ(a)Zp we have σ−1n(xp)σ ∈ Kp(N ), considering the inclusion
�0(N ) ↪→ Kp(N ). Then (16) implies that

ϕ(n(x ′)a(y)ιf(σ )) = ϕ(ι∞(σ−1)n(x∞)a(y))ωχ(σ−1n(xf)σ )

writing x ′ = x∞xf with xf = (xp) as in (22). By construction (of δ(a)), we have

ωχ(σ−1n(xfδ(a))σ ) =
∏

p|M
ωχ,p(1 + aqxp) = 1 (23)

for σ−1 =
(
a b
q d

)
. Evaluating ϕ(ι∞(σ−1)n(x∞)a(y)) by definition as in (15) we find

Cϕ(n/δ(a); y, σ ) = 1

δ(a)
yk/2

∫ δ(a)

0
( f |kσ−1)(x∞ + iy)e(−nx∞/δ(a)) dx∞

= yk/2a f (n; a)κ f (ny/δ(a))

as desired. This last step follows by applying orthogonality of additive characters after
inserting (9).

Now suppose that δ(a)ξ /∈ Z. Then there exists a prime p < ∞ and an inte-
ger m ≥ 1 such that ξ = up−mδ(a)−1 with |u|p = 1. Consider the matrix
ιp(n(δ(a)pm−1)). As w(a) | δ(a), one has n(δ(a)pm−1) ∈ σ�0(N )σ−1, as in §2.2,
and hence σ−1n(δ(a)pm−1)σ ∈ Kp(N ). By (16) this element acts by the scalar
ωχ(σ−1n(δ(a)pm−1)σ ), whence we deduce

Cϕ(ξ ; y, σ ) = ωχ(σ−1n(δ(a)pm−1)σ )−1ψp(up
−1)Cϕ(ξ ; y, σ ).

But ωχ(σ−1n(δ(a)pm−1)σ )−1 = 1 by (23), hence Cϕ(ξ ; y, σ ) = 0 as up−1 /∈ Zp. ��

4 Computing Fourier coefficients via Whittaker functionals

The key application of Proposition 3.1 is that we can now give an explicit product
formula for the classical coefficients a f (n; a) in terms of the factorisation of Wϕ into

123



Voronoï summation via... 669

local Whittaker functionals; this is stated in Proposition 4.1. We then exhibit several
immediate corollaries to this product formula.

4.1 LocalWhittaker new vectors

At each p ≤ ∞ one may construct local Whittaker models W(πp, ψp) ∼= πp,
analogous to the global case. In fact, the global Whittaker model factorises as
W(π,ψ) = ⊗′W(πp, ψp) for π ∼= ⊗′

pπp. In particular the function Wϕ , defined
by (18), factorises directly as a product of local ones

Wϕ = ⊗p≤∞Wp (24)

whichwenormalise here by choosingWp(1) = 1 for all p < ∞. UsingProposition 3.1
this pins down W∞ on A(R) to be

W∞(a(y)) = W∞(a(y))
∏

p<∞
Wp(1) = Wϕ(a(y)) = yk/2κ f (y). (25)

and thus on all ofG(R) by the Iwasawa decomposition. In particular, we findWϕ(1) =
κ f (1). At the finite primes p � N , right invariance by Kp determines the normalised
spherical vectorWp uniquely: by the Iwasawa decomposition it is enough to determine
Wp on A(Qp) which is described by the well-known formula

Wp(a(n)) = |n|
1
2
pλ f (p

vp(n)) (26)

for any n ∈ N (see [4, Th. 4.6.5]). In fact (26) this holds more generally for all p < ∞
(see [19, Section 2.4]).

The theme of the present article is to understand the new vectors Wp when p | N .
By a generalisation of Atkin–Lehner theory [5] the new vector is uniquely determined
by the property that Wp|K1,p(vp(N )) = 1. However, the interesting twist in such ram-
ification problems is that a complete description of Wp is not obtained by its values
(26) on A(Qp), alone.

By Proposition 3.1, (25) and (26) we recover the well known identity

a f (n) = W∞(a(n))

κ f (n)

∏

p<∞
Wp(a(n)) = n

k
2

∏

p<∞
|n|

1
2
pλ f (a(pvp(n))) = n

k−1
2 λ f (n)

(27)

for n > 0. Implicit in (27) is the well-known fact that the Fourier coefficients of
f at the cusp ∞ are multiplicative. The main result of this section, Proposition 4.1,
depicts explicitly the degeneracy in the multiplicative property in a f (n, a) at other
cusps a �= ∞.
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4.2 A product formula for Fourier coefficients

Now let us derive the product formula for the coefficients a f (n; a), as a generalisation
to (27). To highlight the ramified behaviour, let us factorise an arbitrary non-zero
integer

n = ±n0
∏

p|N
pnp

where n0 ≥ 1 with (n0, N ) = 1. We extend Proposition 3.1 here, alongside (25) and
(26), to allow for n < 0. If f is holomorphic, we intend the archimedean component
κ f to account for the vanishing on n < 0. We obtain

a f (n; a) = W∞(a(n/δ(a)))

κ f (n/δ(a))

∏

p<∞
Wp(a(n/δ(a))σ )

=
( |n|

δ(a)

)k/2 ∏

p|n0
Wp(a(n0))

∏

p|N
Wp(a(n/δ(a))σ ). (28)

We evaluate the p | n0 sum via (26) as before so that

a f (n; a) = a f (n0)

nk/20

( |n|
δ(a)

)k/2 ∏

p|N
Wp(a(n/δ(a))σ ).

To handle the terms Wp(a(n/δ(a))σ ) for p | N – and to suggest how one might
go about evaluating them – we invoke the Bruhat decomposition of σ which, with
notation as in Sect. 2.3, is given by

σ =
(

d −b
−q a

)

= z(q)n(−d/q)a(1/q2)wn(−a/q) (29)

so that

Wp

(

a

(
n

δ(a)

)

σ

)

= ωχ,p(q) ψp

( −nd

δ(a)q

)

Wp

(

a

(
n

q2δ(a)

)

w n

(−a

q

))

.

We now consider the expression prime-by-prime; to this end write q = ∏
p|N pqp ,

M = ∏
p|N pMp , N = ∏

p|N pNp and recall that3

δ(a) = [q2, Mq, N ]
q2

=
∏

p|N pdπp (qp)

q2

3 While δ(a) depends only on (N , q), the exponent dπp (qp) depends on q in its full.
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where we define

dπp (qp) := max{2qp, Mp + qp, Np}. (30)

Then, for some p | N , the right-Kp,1(N ) invariance of Wp implies

Wp

(

a

(
n

q2δ(a)

)

w n

(−a

q

))

= ωχ,p

(
n(q2δ(a), p∞)

(n, p∞)q2δ(a)

)

Wp

(
a(pnp−dπp (qp))wn

(
u p p

−qp
))

(31)

where u p = −a
(n, p∞)δ(a)q

n(δ(a)q, p∞)
∈ Z

×
p . A convenient notation for us now shall be

gt,l,v =: a(pt )wn(vp−l) =
(
pt

1

) (
1

−1

)(
1 vp−l

1

)

(32)

for t, l ∈ Z and v ∈ Z
×
p . This notation is in accordance with [1,2,7,17,18] and we use

it here to summarise our computations with the following proposition.

Proposition 4.1 Fix a cusp a = σ−1∞ of denominator q = ∏
p|q pqp , writing σ−1 =

(
a b
q d

)
with (a, N ) = 1. Let M = ∏

p|N pMp denote the conductor of a Dirichlet

character χ let the level of f be denoted by N = ∏
p|N pNp . Consider an arbitrary

integer n = n0
∏

p|N pnp , where (n0, N ) = 1, and for each p | N define

u p := −a × pnp

n
× qδ(a)

pdπp (qp)−qp
∈ Z

×
p

with dπp (qp) as in (30). Then the n-th Fourier coefficient a f (n; a) in the expansion of
a Hecke newform f at the cusp a is given by the formula

a f (n; a)
nk/2

= �χ,q,δ(a)

a f (n0)

nk/20

e

(
nd q/(q, N∞)

δ(a)(q, N∞)

) ∏
p|N ωχ,p(n0)Wp(gnp−dπp (qp),qp,u p )

δ(a)k/2

where

�χ,q,δ(a) :=
∏

p|N
ω−1

χ,p

(
qδ(a)

(q2δ(a), p∞)

)

(33)

and Wp are the normalised local Whittaker new vectors associated to f as in (24).
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Proof After the deduction of (31), the proof now follows from the observation that, as
−nd[q/(q, N∞)]−1/δ(a)(q, N∞) ∈ Q

×, we trivially have

∏

p|N
ψp

(

−n
d[q/(q, N∞)]−1

δ(a)(q, N∞)

)

= e

(
nd q/(q, N∞)

δ(a)(q, N∞)

)

since ψp is trivial on Zp. Moreover we have d ≡ a−1 (mod q). ��
Remark 4.2 By Proposition 4.1, we reduce the problem of understanding the coeffi-
cients a f (n; a) to the local problem of evaluating the terms Wp(gt,l,v) for p | N .
There is a quite beautiful method to do so via taking the Fourier expansion of the
function v �→ Wp(gt,l,v) on Z

×
p /(1+ pNpZp) and computing the Fourier coefficients

via the Jacquet–Langlands’ local functional equation for GL2 (see [18, Sect. 2]). These
computations were performed to some extent in [1] and then in greater detail in the
(University of Bristol) PhD thesis of the first named author.

Remark 4.3 The twist of f by a primitive Dirichlet character ξ is given by

[ξ f ](z) :=
∑

n≥1

ξ(n)a f (n)e(nz).

Whilst ξ f may not be a newform itself (even if f is), there exists a unique newform
f ξ which generates the automorphic representation ωξπ . From the identification of
the associated local Whittaker newforms Wp as in (24), the Fourier expansion of f ξ

at the cusp infinity is easily determined by means of (27), say. However, at other cusps
a �= ∞ this is not the case. Proposition 4.1 shows that a f ξ (n; a) can be expressed
in terms of the Whittaker new vectors in W(ωξ,pπp, ψp), however at least when ωξ

ramifies at p, there is no uniform formula relating Wp and ξ f .

4.3 Bounds for Fourier coefficients on average

We now explore some amusing corollaries to Proposition 4.1.

Corollary 4.4 Let 0 ≤ θ ≤ 7
64 + ε be an exponent towards the Ramanujan conjecture

for Hecke eigenvalues (see [3]). Then we have

∑

0<n≤X

|a f (n; a)|2 � (k + 1)2

δ(a)k

(
Xk+2θ + Xk− 1

2 (q, N/q)k+2θ
)

.

Proof According to Proposition 4.1 we have to bound

∑

0<n≤X

|a f (n; a)|2 =
∑

n1|N∞

(
n1

δ(a)

)k ∑

0<n0≤ X
n1

(n0,N )=1

|a f (n0)|2
∏

p|N
|Wp(gn1,p−dπp (qp),qp,n

−1
0 u′

p
)|2.
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Observe that the function

n0 →
∏

p|N
|Wp(gn1,p−dπp (qp),qp,n

−1
0 u′

p
)|

is (q, N/q) periodic, see also [17, Lemma 3.12]. Thus, by the Chinese reminder
theorem and [17, Proposition 2.10] we have

(r+1)(q, Nq )−1
∑

n0=r(q,N/q)

∏

p|N
|Wp(gn1,p−dπp (qp),qp,n

−1
0 u′

p
)|2

= (q, N/q)
∏

p|N

∫

Z
×
p

|Wp(a(v)gn1,p−dπp (qp),qp,u′
p
)|2d×v � (q, N/q)

n
1
2
1

.

for any r ∈ N0. Thus, applying the bound a f (n0) � nθ
0 yields

∑

0<n≤X

|a f (n; a)|2 = (q, N/q)k+2θ

δ(a)k

∑

n1|N∞,
n1�X

n
k− 1

2
1

∑

0≤r≤� X
n1(q,N/q)


(r + 1)k−1+2θ .

The result follows after estimating the remaining sums, in particular the n1-sum using
the Rankin trick. ��
Remark 4.5 While this bound is satisfactory for holomorphic modular forms, in the
Maaß case, where the Ramanujan conjecture is still open, this fails to provide the
expected upper bound for a second moment. Another approach to bounding averages
of Fourier coefficients is to use the bound [18, Corollary 2.35] and estimate the ramified
coefficients globally. This approach yields

∑

0<n≤X

|a f (n; a)|2 � N
1
2+ε

∑

n1|N∞

(
n1

δ(a)

)k ∑

n0≤ X
n1

(n0,N )=1

|a f (n0)|2 � C( f )ε
N

1
2 Xk+ε

δ(a)k
.

4.4 A worked example: principal series

Let f be a holomorphic modular form of nebentypus χ . Furthermore, assume that
M = N = ph for even h. Thus, πp is the irreducible principal series ωχ,p| · |s � | · |−s

in the sense of [11] (see also [7, Sect. 2.1.6] for notation). In this specific case one can
extract a precise expression forWp from [1, Lemma 5.8] for the sake of completeness
we will give a proof here.

Lemma 4.6 We have

Wp(g− 3h
2 , h2 ,u p

) = ωχ,p(−u p)ψ(−u−1
p p−h)p

h
4− sh

2 δ(u p ∈ −b−1
χ + p

h
2 Zp).
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Proof For the proof of this lemma we will temporarily introduce some notation from
[1,18]. Indeed, letWπp be the unique K1,p(N )′-fixed vector normalised byWπp (1) =
1. Using [18, Lemma 2.18, Propositon 2.28] we find that

Wp(g− 3h
2 , h2 ,u p

) = ε(1/2, πp)ωχ,p(u p)ψ(−u−1
p p−h)Wπp (g− 3h

2 , h2 ,−u p
).

Furthermore according to [18, (11)] we expand

Wπp (g− 3h
2 , h2 ,−u p

) =
∑

a(μ)≤ h
2 ,

μ(p)=1

c− 3h
2 , h2

(μ)μ(−u p).

Fortunately the finite Fourier coefficients have been computed in [1, Lemma 2.3].With
this at hand we obtain

Wπp (g− 3h
2 , h2 ,−u p

) = ε(1/2, πp)ψ(−u−1
p p−h)

p
sh
2 − h

4

1 − p−1

∑

a(μ)≤ h
2 ,

μ(p)=1

[ωχ,pμ](u p)ε(1/2, μ
−1ω−1

χ,p).

We now apply [18, Lemma 2.37] to find bχ ∈ Z
×
p such that

Wπp (g− 3h
2 , h2 ,−u p

) = ωχ,p(−u p)ψ(−u−1
p p−h)

p
−sh
2 − h

4

1 − p−1

∑

a(μ)≤ h
2 ,

μ(p)=1

μ(−u pbχ ).

The claimed statement now follows directly from orthogonality of characters. ��

Together with Proposition 4.1, Lemma 4.6 implies

a f (n, a/p
h
2 ) =

{
χ(a)p− sh

2 a f (n)N− k−1
4 if (n, p) = 1 and n ≡ abχ mod p

h
2 ,

0 else

(34)

remarking that |χ(a)p− sh
2 | = 1. Furthermore, Corollary 4.4 gives the bound

∑

0<n≤X

|a f (n; a/p
h
2 )|2 � N εk2Xk+ε

(
N− k

2 + X− 1
2

)
.

Note that individually |a f (n, a/p
h
2 )|2 �ε nk−1+εN− k

2+ 1
2 . Thus for large X the aver-

age bound above exploits the narrow support of the coefficients a f (n, a/p
h
2 ).
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5 Generalised Atkin–Lehner relations

In this section we will show how to relate the Fourier coefficients at different cusps.
Classically, this corresponds to the Atkin–Lehner involution. From our point of view it
will appear in terms of certain ‘functional equations’ of the local Whittaker functions
Wp. The upshot is that we get a large variety of relations between the cusps. Even
though these relations become combinatorially quite involved and require a bit of
notation we will maintain a description of the complete picture.

We start byproviding the key identities. Indeed, this section is basedon the following
three lemmata. The first one is a local incarnation of the fact that cusps of the form
a/q with N | q are equivalent to the cusp ∞.

Lemma 5.1 Let l ≥ Np, then we have

Wp(gt,l,v) = ψp(−v−1 pt+l)ωχ,p(−vp−l)p− t+2l
2 λ f (p

t+2l)

for all v ∈ Z
×
p and all t ∈ Z.

This is a reformulation of [2, Lemma 2.3]. We include a shorter more instructive proof
here.

Proof Note that

gt,l,v =
(

0 pt

−1 −vp−l

)

=
(
pt+l −v−1 pt

0 p−l

)(−v−1 0
−pl −v

)

= z(−vp−l)n(−v−1 pt+l)a(pt+2l)

(
v−2 0

v−1 pl 1

)

.

Since l ≥ Np, in K1,p(N ). Thus, exploiting the transformation behaviour of Wp and
(26) yields the result at once. ��

The next result is a local take on switching the cusps 0 and ∞ using the classical
Atkin–Lehner involution.

Lemma 5.2 For all v ∈ Z
×
p we have

Wp(gt,0,v) = ε(1/2, πp)p
− t+Np

2 λπ̃ (pt+Np ),

The result can be derived from [2, Sect. 2.2.2] together with [18, Corollary 2.26]. Let
us give a slightly more direct proof here.

Proof We put W ′ = πp(w)Wp and define

Z p(W
′, s, μ) =

∫

Q
×
p

W ′(a(y))μ(y)|y|s−
1
2

p d×y. (35)

123



676 E. Assing, A. Corbett

The local functional equation for this zeta integral is given by

Z p(W
′, 1/2 + i t, μ) = L( 12 + i t, μπp)Z p(πp(w)W ′, 1

2 − i t, μ−1ω−1
χ,p)

ε(1/2 + i t, μπp)L(1/2 − i t, μ−1π̃p)
.

We can rewrite this as

Z p(W
′, 1/2 + is, μ) = L( 12 + is, μπp)Z p(πp(z(−1))Wp, 1/2 − is, μ−1ω−1

χ,p)

ε(1/2 + is, μπp)L(1/2 − is, μ−1π̃p)

= δ(μ|
Z

×
p

= ωχ,p|Z×
p
)ε(1/2 − is, πp)L(1/2 + is, π̃p).

By p-adic Mellin inversion we find

Wp(gt,0,v) = W ′(a(pt )) = log(p)

2π

∑

μ

∫ π
log(p)

− π
log(p)

Z(W ′, 1
2

+ is, μ)pist ds

= ε(1/2, πp)
log(p)

2π

∫ π
log(p)

− π
log(p)

L(
1

2
+ is, π̃p)p

is(t+Np)ds.

The statement follows after evaluating the remaining archimedean integral. ��
The final lemma lies at the heart of the generalised Atkin–Lehner involution.

Lemma 5.3 Let 0 ≤ l ≤ vp(N ). Then we have

Wp(gt,l,v) = ε(1/2, πp)ψp(−pt+lv−1)ωχ,p(vp
t+l)W̃p(gt+2l−Np,Np−l,−v).

Here W̃p is the normalised new vector in π̃p.

This is exactly [18, Proposition 2.28] after accounting for an unramified twist to remove
the assumption ωχ,p(p) = 1. To avoid shuffling around the unramified twist we give
a self-contained proof.

Proof Let W ′
p be the unique K ′

1,p(N )-fixed vector normalised by W ′
p = 1. We write

wNp := z(pNp )a(p−Np )w

and check that, according to Lemma 5.2, we have

Wp(wNp ) = ωχ,p(p
Np )ε(1/2, πp).

In particular, after checking the right transformation behaviour, we find that

πp(wn)Wp = ωχ,p(p
Np )ε(1/2, πp)W

′
p.
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For 0 ≤ l ≤ Np we have the matrix identity

gt,l,v = n(−v−1 pl+t )z(vp−l)gt+2l−Np,Np−l,−v

(
1 0
0 v−2

)

wNp .

We compute

Wp(gt,l,v) = ε(1/2, πp)ωχ,p(vp
Np−l)ψp(−v−1 pt+l)W ′

p(gt+2l−Np,Np−l,−v).

To conclude the proof we must identify W ′
p in terms of W̃p. But given the isomor-

phism

� : W(πp, ψp) → W(π̃p, ψp), W �→ [ω−1
χ,p ◦ det] · W

and since

�(W ′
p)|K1,p = 1,

the uniqueness of the new vector in π̃p implies that

ωχ,p(det(g))
−1W ′

p(g) = W̃p(g).

��
We now piece together these local results. Given a cusp a/q, we can flip the sign

of vp(q) according to the lemmata above at any place p | N . Let us moreover assume
the cusp to be in standard form; that is, q | N . For a set S ⊂ {p | N } define

qS :=
∏

p∈S
pNp−qp

∏

p|N ,
p�S

pqp and MS :=
∏

p∈S
pMp . (36)

Factorise the global characterωχ = ∏
p|M ω

(p)
χ . Here, theω

(p)
χ areHecke characters of

conductor pMp , so that their pth-component restricted toZ
×
p equals the pth-component

of ωχ restricted to Z
×
p and ω

(p)
χ,p(p) = 1. (This is an elaborate way of stating that, if

χ factors into a product of primitive Dirichlet characters χ(p) of conductor pvp(M),
then ω

(p)
χ is the adelisation of χ(p).) With this at hand we define

ωS
χ =

∏

p|MS

[ω(p)
χ ]−1 and π S = ωS

χπ.

The idea above is to replace πp (up to unramified twist) with π̃p at each place p |
MS . Note that the conductor of ωS

π is MS , while the conductor of π S remains N .
Finally, let f S be the newform associated to π S . This turns out to be the correct
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678 E. Assing, A. Corbett

(generalised) Atkin–Lehner partner of f for given S. The generalised (pseudo)-Atkin–
Lehner eigenvalue will turn out to be related to

ηa( f , S) :=
∏

p∈S
ε(1/2, πp)ωχ,p(−a).

We are now ready to establish the following proposition.

Proposition 5.4 Let S be as above. Then we have

a f (n; a) = ηa( f , S)

⎡

⎣
∏

p∈S
ψp

(
aSn

qSδ(aS)

)

ω−1
χ,p(q

S)

⎤

⎦

⎛

⎝
∏

p∈S
pq

S
p−qp

⎞

⎠

k
2

a f S (n, aS).

The cusp aS = aS/qS, where aS is uniquely determined modulo δ(a)q = δ(aS)qS

defined by

aS ≡
{
a mod pdπp (qp)−qp if p | N and p /∈ S,

−a mod pdπp (qSp )−qSp if p ∈ S.

Proof We start with Proposition 4.1 and inspect the product of local Whittaker func-
tions piece by piece. At each place p ∈ S we apply Lemma 5.3 and find

Wp(gnp−dπp (qp),qp,u p ) = ε(1/2, πp)ψp

(
a−1nq

[q2, qM, N ]
)

ωχ,p

(
u p p

np−dπp (qp)+qp
)

× W̃p(gnp−dπp (Np−qp),Np−qp,−u p ).

At the remaining places, p /∈ S, we leave the value of Wp as it is. Note that qp −
max(2qp, Mp + qp, Np) is invariant under changing qp to Np − qp. We arrive at

a f (n; a) = ηa( f , S)�χ,q,δ(a)a f (n0)

(
n1

δ(a)

) k
2 ∏

p/∈S
ψp

(

− a−1nq

[q2, qM, N ]
)

×
∏

p/∈S,p|N
ωχ,p

(
n

pnp

)

Wp(gnp−dπp (qp),qp,u p )

×
∏

p∈S
ωχ,p

(
qδ(a)

p2dπ (qp)−2qp−n p

)

W̃p(gnp−dπp (Np−qp),Np−qp,−u p ).

We make two observations. Firstly, δ(a)−1 = q
qSδ(aS)

. Secondly,

a f (n0)
∏

p∈S
ωχ,p(n0) = a f S (n0).
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Voronoï summation via... 679

Finally, writing WS
p for the p-Whittaker new vector of π S , we have

WS
p (gnp−dπp (qp),qp,u p ) = Wp(gnp−dπp (qp),qp,u p )

∏

l∈S
ωχ,l(p

np−dπp (qp))

for p | N and p /∈ S. On the other hand, if p ∈ S, then

WS
p (gnp−dπp (Np−qp),Np−qp,−u p )

= W̃p(gnp−dπp (Np−qp),Np−qp,−u p )
∏

l∈S
ωχ,l(p

np−dπp (Np−qp)).

Summing up what we have observed so far,

a f (n; a) = ηa( f , S)�χ,q,δ(a)

(
q

qS

) k
2 ∏

p∈S
ωχ,p

(
q2qSδ(a)2

p2dπp (qp)−2qp

) ∏

p/∈S
ψp

(

− a−1nq

[q2, qM, N ]
)

× a f S (n0)

(
n1

δ(aS)

) k
2 ∏

p|N
[ωχ,p(ω

S
χ,p)

2]
(

n

pnp

)

WS
p (gnp−dπp (qSp ),qSp ,uSp

).

Finally, we have

εqε
−1
qS

=
∏

p∈S
ω−1

χ,p

(
q2(qS)2δ(a)2

p2dπp (qp)−2qp

)

.

Thus, using Proposition 4.1 for a f S (n; aS), yields the desired result. ��

6 The Voronoï summation formulae

Wenowdiscuss some variants of theVoronoï summation formula forGL2.Our starting
point is the following pre-Voronoï formula.

Lemma 6.1 Let ζ ∈ A and let φ be a cuspidal automorphic form in the representation
space of π . Then we have

∑

ξ∈Q×
ψ(ξζ )Wφ

((
ξ 0
0 1

))

=
∑

ξ∈Q×
Ŵφ

((
ξ 0
0 1

) (
1 0

−ζ 1

))

(37)

where Ŵφ(g) := Wφ(wt g−1).

The trick used alongside the pre-Voronï summation formula is to choose the cuspidal
function in various ways φ to determine a variety of Voronoï summation formulae.
The following one is our take on a commonly used classical formula. This previously
appeared in [2, Lemma 2.1] and is based on [20, Theorem 3.1].
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680 E. Assing, A. Corbett

Theorem 6.2 Let f be amodular form and let F : R>0 → R be a compactly supported
smooth function and a = p/q be a cusp given by scaling matrix

σa =
(

r −s
−q p

)

.

Then

∑

n∈N

e
(
n
a

b

)
a f (n; a)

(
n

δ(a)

)− k−1
2

F

(
n

δ(a)

)

= δ(a)
1
2

b

∑

n∈Z�=0

e

(

−n
aδ(a)/(δ(a), b)

δ(b)b(δ(a), b)−1

)

a f (n; b)
(

n

δ(b)

)− k−1
2 [H f F]

(
n

δ(b)b2

)

where the cusp b := (apδ(a) + bs)/(qaδ(a) + rb) is not written in lowest terms,
(a, bδ(b)) = 1, and the Hankel transformH f F of F is defined by

H f F(y) := δy>02π i
k
∫ ∞

0
Jk−1

(
4π

√
yx

)
F(x)dx (38)

if f is holomorphic and by

H f F(y) :=
{

π i
sinh(π t f )

∫ ∞
0 (J2i t f

(
4π

√
yx

) − J−2i t f

(
4π

√
yx

)
)F(x)dx if y > 0

4 cosh(π t f )
∫ ∞
0 K2i t f

(
4π

√|y|x) F(x)dx if y < 0.

(39)

if f is Maaß form.

Proof We will start by setting up the left hand side of (37) accordingly. We choose ζ

to be − a
b embedded into A via

Q ↪−→ Af ↪−→ A.

Furthermore we pick φ as follows. Write φ = (vφ,f , vφ,∞) under the isomor-
phism π = πf ⊗ π∞. Then φ will be uniquely determined by assuming that
vφ,f = πf(a(δ(a)−1)σa)vϕ,f and that in the Kirillov model of π∞ we have vφ,∞ =
π∞(a(δ(a)−1)[|·| 12 · F]. With this at hand we find that

Wφ(a(ξ)) = Wφ,∞(a(ξ)) ·
∏

p<∞
Wφ,p(a(ξ)).
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Voronoï summation via... 681

Furthermore φ is chosen such that W∞,φ(a(ξ)) = |ξδ(a)−1| 12 F(ξδ(a)−1) and

∏

p<∞
Wφ,p(a(ξ)) =

∏

p<∞
Wp(a(ξδ(a)−1)σa) =

⎧
⎨

⎩

(
n

δ(a)

)− k
2
a f (n; a) if ξ = n ∈ N,

0 else.

(40)

as in (28). These choices imply that

∑

ξ∈Q×
ψ(ξζ )Wφ (a(ξ)) =

∑

n∈N

e
(
n
a

b

)
a f (n; a)(nδ(a)−1)−

k−1
2 F(nδ(a)−1).

We now evaluate the right-hand side of (37). We do so by treating archimedean and
finite places separately. This is possible as

Ŵφ

((
ξ 0
0 1

)(
1 0

−ζ 1

))

=
∏

p≤∞
Wφ,p

((
ξ 0
0 1

)

w

(
1 ζ

0 1

))

.

At p = ∞ we find that

Wφ,∞(a(ξ)wn(ζ∞)) = √
ξδ(a)[H f F](ξδ(a)).

This holds since the action of w in the Kirillov model is precisely described by this
Hankel transform. See [6] for details.

In order to deal with the finite places we artificially write

δ =
(
aδ(a)(δ(a), b)−1 1−aδ(a)(δ(a),b)−1aδ(a)(δ(a),b)−1

b(δ(a),b)−1

− b
(δ(a),b)

aδ(a)
(δ(a),b)

)

∈ SL2(Z)

and define b = (δσa)
−1∞. Note that b = apδ(a)+bs

qaδ(a)+rb in non-lowest terms. We have set
things up so that

a(ξ)wn
(
−a

b

)
a(δ(a)−1)σa

= z([δ(a), b]−1)a

(

ξ [δ(a), b] b

(δ(a), b)

)

n

(
aδ(a)(δ(a), b)−1

b(δ(a), b)−1

)

δσa.

Thus we find that

∏

p<∞
Wφ,p (a(ξ)wn(ζf)) = ωπ,f([δ(a), b]−1)ψf

(
ξ [δ(a), b]aδ(a)(δ(a), b)−1

)

×
∏

p<∞
Wϕ,p

(

a

(

ξ
[δ(a), b]b
(δ(a), b)

)

ιf(δσa)

)

.
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At this stage we use (28) and obtain that

∏

p<∞
Wϕ,p

(

a

(

ξ
[δ(a), b]b
(δ(a), b)

)

ιf(δσa)

)

=
⎧
⎨

⎩

(
δ(b)
n

) k
2
a f (n; b) if ξ = n(δ(a),b)

δ(b)[δ(a),b]b
0 else.

(41)

Finally, we have all the ingredients together. We find that

∑

ξ∈Q×
W̃φ

((
ξ 0
0 1

)(
1 0

−ζ 1

))

= δ(a)

(
(δ(a), b)

b[δ(a), b]
) k

2 ∑

ξ∈ (δ(a),b)
δ(b)[δ(a),b]bN

e(−ξ [δ(a), b]aδ(a)(δ(a), b)−1)

× a f

(

ξδ(b)
[δ(a), b]b
(δ(a), b)

; b
)

ξ− k−1
2 [H f F](ξδ(a)).

The statement follows in a straightforward manner after shifting the summation. ��
Corollary 6.3 Let f be a classical cusp form and let F : R>0 → R be a compactly
supported smooth function. Then

∑

n∈N

e
(
n
a

b

)
a f (n)n− k−1

2 F (n) = b−1
∑

0 �=n∈Z

e

(

−n
a

bδ(b)

)

a f (n; b)
(

n

δ(b)

)− k−1
2

[H f F]
(

n

[b2, Mb, N ]
)

.

where b = a/b, (a, bδ(b)) = 1, and a is the inverse of a modulo bδ(b).

Proof This is a direct consequence of Theorem 6.2 with a = ∞. In particular we have
σa = 1 and δ(a) = 1. ��

It is a nice exercise to apply Corollary 6.3 with F(x) = x
k−1
2 e(i xy) when f is

a holomorphic modular form of weight k. Note that even though the result is stated
for compactly supported F it is possible to extend its validity to the F in question.
According to [10, 6.631.(4)] we find that

2π i k
√

ξ

∫ ∞

0
Jk−1(2π

√
xξ)F(x)dx = i kξ

k−1
2 y−ke−2π ξ

y .

Thus, the right-hand side of our Voronoï summation formula becomes

f
(a

b
+ iy

)
=

∑

n∈N
a f (n)e

(
n

(a

b
+ iy

))
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= (−iby)−k
∑

n∈N
a f (n; b)e

(
n

δ(b)

(−a

b
+ i

yb2

))

= j(σ,
a

b
+ iy)−k f |kσ−1

(
σ

(a

b
+ iy

))

= f |kσσ−1
(a

b
+ iy

)
= f

(a

b
+ iy

)
.

The last equality follows from j(σ, a
b + iy) = −iby and σ( ab + iy) = − a

b + i
yb2

.

Remark 6.4 This example shows that Voronoï summation is precisely the transition
between the Fourier expansions of f at different cusps. While classically it is a very
subtle matter to include an archimedean test function, it is straightforward adelically.

A reasonable generalisation of Corollary 6.3 would be to replace the cusp a = ∞
on the left-hand side with an arbitrary cusp. One obtains the following extension of
our theorem given in Corollary 6.5. We end this note by reproducing two of the most
classical Voronoï formula from Corollary 6.3. These agree with the formula given in
[13], for instance.

Corollary 6.5 If (a, bN ) = 1 then

∑

n∈N

e
(
n
a

b

)
a f (n)n− k−1

2 F (n) =

χ(b)
η( f )

b
√
N

∑

n∈Z�=0

e

(

−n
aN

b

)

a f̃ (n)n− k−1
2 [H f F]

( n

b2N

)

where ikη( f ) is the root number of the L-function associated to f and f̃ is the dual
newform determined by the functional equation �( f , s) = i kη( f )�( f̃ , 1− s) of the
completed L-function.

Proof Our corollary provides us with the formulae

∑

n∈N

e
(
n
a

b

)
a f (n)n− k−1

2 F (n)

= b−1
∑

n∈Z�=0

e

(

−n
a

bN

)

a f (n; a/b)
( n

N

)− k−1
2 [H f F]

( n

b2N

)
.

Without loss of generality we can assume that (a, N ) = 1 and use Proposition 4.1 to
obtain

a f (n; a/b) = �χ,b,δ(a)a f (n0) e

(
ndb

N

)(
(n, N∞)

N

) k
2

×
∏

p|N
ωχ,p(n p

−n p )Wp(gnp−dπp (bp),0,u p ) (42)
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Note that

e

(

−n
a

bN

)

e

(

n
ab

N

)

= e

(

−n
aN

b

)

and

�χ,b,δ(a) =
∏

p|N
ω−1

χ,p

(
bN

(N , p∞)

)

= χ(b).

The statement then follows by using Lemma 5.2 and using the additional characters
to twist a f (n0) to a f̃ (n0). ��

Of course this corollary exploits that if (a, N ) = 1 then the cusp b = a/b is equivalent
to 0, which switches to ∞ under the classical Atkin–Lehner involution. Lastly we
consider the other extreme case N | b. In this case b = a/b is in fact equivalent to ∞.

Corollary 6.6 Suppose N | b. Then

∑

n∈N

e
(
n
a

b

)
a f (n)n− k−1

2 F (n) = χ(a)

b

∑

n∈Z�=0

e

(

−n
a

b

)

a f (n)n− k−1
2 [H f F]

( n

b2

)
.

Once again, this result would follow from the application of Corollary 6.3 together
with Proposition 4.1 and Lemma 5.1, but this would be like shooting pigeons with
canons. We give a much simpler proof here.

Proof In this situation δ(a) = 1 so that by Corollary 6.3 we have that

∑

n∈N

e
(
n
a

b

)
a f (n)n− k−1

2 F (n) = b−1
∑

n∈Z�=0

e

(

−n
a

b

)

a f (n; a)n− k−1
2 [H f F]

( n

b2

)
.

Furthermore, because N | b the scaling matrix for a is in �0(N ). Thus according to
(10) we find that a f (n, a) = χ(a)−1a f (n). This concludes the proof. ��
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