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Abstract
Niederreiter and Halton sequences are two prominent classes of higher-dimensional
sequenceswhich arewidely used in practice for numerical integrationmethods because
of their excellent distribution qualities. In this paper we show that these sequences—
even though they are uniformly distributed—fail to satisfy the stronger property
of Poissonian pair correlations. This extends already established results for one-
dimensional sequences and confirms a conjecture of Larcher and Stockinger who
hypothesized that the Halton sequences are not Poissonian. The proofs rely on a gen-
eral tool which identifies a specific regularity of a sequence to be sufficient for not
having Poissonian pair correlations.
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1 Introduction

Let ‖ ·‖ denote the distance to the nearest integer. A sequence (xn)n≥0 of real numbers
in [0, 1) has Poissonian pair correlations if

1

N
#
{
0 ≤ n �= l ≤ N − 1 : ‖xn − xl‖ ≤ s

N

}
→ 2s (1)

for every real number s ≥ 0 as N → ∞.
The investigation of pair correlations of sequences was originally motivated by

problems in quantum chaos, see e.g. [1] and the references therein. In the last few years
pair correlations have also been studied from a purely mathematical point of view as
the property of Poissonian pair correlations is natural for a sequence of independently
chosen random numbers drawn from the uniform distribution. Extensive research
recently has been done in terms of metrical theory as well as for concrete sequences.
An introduction to this topic and a collection of results is provided by [13].

For example, it is known that any sequence (xn)n≥0 in [0, 1) which has Poissonian
pair correlations is also uniformly distributed, i.e.

lim
N→∞

1

N
#{0 ≤ n ≤ N − 1 : xn ∈ [a, b)} = b − a

for all 0 ≤ a < b ≤ 1 (this was independently proven in [2,7,21]). However, the
converse is not true since for many explicit examples of classical uniformly distributed
sequences, such as the Kronecker sequence ({nα})n≥0, the van der Corput sequence
and certain digital (t, 1)-sequences, it has been shown that they do not have Poissonian
pair correlations (see e.g. [14]).

A generalization of Poissonian pair correlations to a higher-dimensional setting has
recently been established in [9] as well as in [22] (see also [16] for a more general
analysis of higher-dimensional pair correlations). In this work, we refer to the concept
in [9]. To this end, let ‖ · ‖∞ denote a combination of the supremum-norm of a d-
dimensional vector x = (x (1), . . . , x (d)) ∈ R

d with the distance to the nearest integer
function ‖ · ‖ defined by

‖x‖∞ := max(‖x (1)‖, . . . , ‖x (d)‖). (2)

A d-dimensional sequence (xn)n≥0 ∈ [0, 1)d has Poissonian pair correlations if

1

N
#
{
0 ≤ n �= l ≤ N − 1 : ‖xn − xl‖∞ ≤ s

N 1/d

}
→ (2s)d (3)

for every real number s ≥ 0 as N → ∞.
The alternative higher-dimensional concept that was introduced in [22] is based

on the Euclidean norm instead of the maximum in (2). The specific form on the left
hand side in (3) can be explained by regarding the one-dimensional case (1) first. For
a regular grid with N points on the one-dimensional torus together with the setting
s = 1, we know that every point counts exactly the two neighboring points in its closed
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Pair Correlations of Halton and Niederreiter Sequences… 791

1/N -neighborhood and therefore the left hand side of (1) equals 2, which equals the
right hand side of (1) for s = 1. Now a one-dimensional sequence with Poissonian
pair correlations has to satisfy for each s that the expected number of points in a
closed s/N -neighborhood equals 2s in the limit. In the higher-dimensional definition
the neighborhood is the closed ball with diameter 2s/N 1/d and the expected number
of points in such a closed neighborhood has to be equal to the volume of the ball with
diameter 2s.

Any sequencewhich fulfills (3) gives the impression of being very evenly distributed
on the torus. In fact, in analogy to the one-dimensional case, it could be shown that
sequences with the Poissonian pair correlation property in the sense of [9] as well
as [22] are uniformly distributed in [0, 1)d . Again in analogy to the one-dimensional
case, the converse is not true for higher-dimensional sequences. For example, the
d-dimensional Kronecker sequence ({nα})n≥0 does not have Poissonian pair corre-
lations in the sense of (3) for any α ∈ R

d (see [9]) in consistency with the fact that
the one-dimensional Kronecker sequence ({nα})n≥0 does not have Poissonian pair
correlations for any α ∈ R. However, whether the higher-dimensional analogues of
other well-distributed one-dimensional point sequences—such as Halton or digital
(t, d)-sequences—have Poissonian pair correlations remained unanswered although
it is not so hard to disprove Poissonian pair correlations for their one-dimensional
versions (see e.g. [14]).

Onemight conjecture that for Poissonian pair correlations in the higher-dimensional
setting it may be a necessary condition that all its component sequences do have
Poissonian pair correlations. In other words, is the fact that a single component
is not Poissonian sufficient to disprove Poissonian pair correlations for the higher-
dimensional sequence? We are not aware of an argument that leads to a transfer of the
non-Poissonian pair correlation property from one or more components to the higher-
dimensional sequence. The higher-dimensional version of uniform distribution that
conditions for a sequence (xn)n≥0 in [0, 1)d ,

lim
N→∞

1

N
#

⎧⎨
⎩0 ≤ n ≤ N − 1 : xn ∈

d∏
j=1

[a j , b j )

⎫⎬
⎭ =

d∏
j=1

(b j − a j )

for all 0 ≤ a j < b j ≤ 1 and j ∈ {1, . . . , d} includes uniform distribution for every
component sequence.

Themotivation behind the present paperwas to prove that both theHalton sequences
and the Niederreiter sequences do not have Poissonian pair correlations in the sense
of (3). We emphasize that it is not ad hoc clear whether the two higher-dimensional
concepts of Poissonian pair correlations in [9] and [22] are equivalent or not. Therefore
the first task for the investigation is to choose one of the concepts in higher dimensions.
We use (3), because it has been used for the investigation of the higher-dimensional
Kronecker sequence and it appears more suitable for the investigations of the Halton
as well as digital (t, d)-sequences, because in the proof we can reduce the study of
the distances between points to one single component.

Before the presentation of our results, let us briefly review the construction of the
considered sequences.
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792 R. Hofer, L. Kaltenböck

1.1 Digital (t, d)-sequences

A widely used class of low-discrepancy sequences for numerical integration methods
are digital (t, d)-sequences that are generated via the digital method:

Let d ∈ N, let Fq be a finite field with q elements and characteristic p and let
φ : Fq → {0, 1, . . . , q − 1} be a bijection satisfying φ(0) = 0. The main ingredi-
ents are the N × N0 generating matrices C (1), . . . ,C (d) over the finite field Fq with
row index range N and column index range N0. We construct a sequence (xn)n≥0,
xn = (x (1)

n , . . . , x (d)
n ), by generating the j-th component of the n-th point, x ( j)

n ,
as follows. We represent n = n0 + n1q + n2q2 + · · · in base q, build the vector
(φ−1(n0), φ−1(n1), . . . )	 ∈ F

N0
q with infinitely many entries, set

C ( j) · (φ−1(n0), φ
−1(n1), . . . )

	 =: (y( j)
1 , y( j)

2 , . . . )	 ∈ F
N

q

and

x ( j)
n :=

∑
i≥1

φ(y( j)
i )

qi
.

Note that the matrix vector multiplication above is well defined, since the vector
(φ−1(n0), φ−1(n1), . . . )	 contains only finitely many nonzero entries.

The distribution properties of the constructed sequence (xn)n≥0 strongly depend
on the generating matrices C (1), . . . ,C (d). For the sake of simplicity we assume that
all matrices have finite columns, i.e., each column contains only a finite number of
non-zero entries.

If there exists a number t ∈ N0 such that for every m ∈ N with m > t and for all
r1, . . . , rd ∈ N0 with r1 + · · · + rd = m − t , the set of row vectors

{
(c( j)

r ,k)0≤k<m : j ∈ {1, . . . , d}, r ∈ {1, . . . , r j }
}

is linearly independent over Fq , then (xn)n≥0 is a (t, d)-sequence in base q, i.e. for
all integers m > t and s ∈ N0 the point set (xn)sqm≤n<(s+1)qm has the property that
any elementary interval of order m − t , that is an interval of the form

I (v1, . . . , vd) :=
d∏
j=1

[ a j

qv j
,
a j + 1

qv j

)

with v1, . . . , vd ∈ N0 such that v1+· · ·+vd = m−t andwith a j ∈ {0, 1, . . . , qv j −1}
for every j ∈ {1, . . . , d}, contains exactly qt points. For more detailed information on
(t, d)-sequences and their construction we refer to [3,19] and the references therein.

In order to reflect a deeper regularity in the single components the more specific
notion of (u, e, d)-sequences, where u ∈ N0 and e = (e1, . . . , ed) ∈ N

d
0 , was intro-

duced byTezuka in [24] and analyzed e.g. in [11]. For constructing a (u, e, d)-sequence
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the generatingmatricesC (1), . . . ,C (d) ∈ F
N×N0
q have to satisfy for all r1, . . . , rd ∈ N0

such that e1r1 + · · · + edrd ≤ m − u, the set of row vectors

{
(c( j)

r ,k)0≤k<u+∑d
j=1 e j r j

: j ∈ {1, . . . , d}, r ∈ {1, . . . , e jr j }
}

has to be linearly independent over Fq . Then, for all integers m > u and s ∈ N0
the point set (xn)sqm≤n<(s+1)qm satisfies that for any v1, . . . , vd ∈ N0 with e1v1 +
· · · + edvd ≤ m − u, the elementary interval I (e1v1, . . . , edvd) contains exactly
qm−(e1v1+···+edvd ) points.

It is known that any (u, e, d)-sequence in base q is a (t, d)-sequence in base q with
t = u+∑d

j=1(e j −1). Tezuka [24] showed that for the Niederreiter sequences [18] an
appropriate choice of e allows smallest possible quality parameter u = 0 and stresses
a deeper regularity of the Niederreiter sequences that will come in handy for the study
of their pair correlations.

It is a non-trivial task to find or construct matrices satisfying such strict conditions
on their rank structure. The known methods are either constructions that determine
the generating matrices row by row (as e.g. the generating matrices of Niederreiter
sequences [18] and of Xing-Niederreiter sequences [26]) or column-by-column con-
struction algorithms (as e.g. the generating matrices introduced in [10,11]).

For the question whether any digital (t, d)-sequence can have Poissonian pair cor-
relations or not the investigation of both concepts is relevant. In this paper we study
the most prominent example of the row-by-row concept by Niederreiter [18] and the
most basic form of the column-by-column concept [10]. This two classes of digital
sequences are generated by non-singular upper triangular (NUT ) matrices and satisfy
u = 0 for appropriate e. Both properties, NUT and u = 0, are used in our method of
proof.

The generating matrices of Niederreiter [18]: for a given dimension d ∈ N

we choose q1(x), . . . , qd(x) ∈ Fq [x] to be monic non-constant pairwise co-prime
polynomials over Fq of degrees e j := deg q j (x) ≥ 1 for j ∈ {1, . . . , d}. Set
e = (e1, . . . , ed). Now the i-th row of the j-th generating matrix C ( j), denoted by
ρ

( j)
i , is constructed as follows. We choose s ∈ N and r ∈ {0, . . . , e j − 1} such that

i = e j s − r , consider the expansion

xr

q j (x)s
=
∑
k≥0

a( j)(s, r , k)x−k−1 ∈ Fq((x
−1))

and set ρ
( j)
i = (a( j)(s, r , k))k≥0.

It is easy to check that these generating matrices are NUT matrices over Fq .
Furthermore, they generate a digital (0, e, d)-sequence over Fq (see e.g. [24]).

The analog generating matrices that are constructed column-by-column [10]: for a
given dimension d ∈ N we choose d pairwise co-prime, monic non-constant polyno-
mials q1(x), . . . , qd(x) ∈ Fq [x] and denote their degrees, which are all positive, by
e1, . . . , ed . For k ∈ N0, we construct the k-th column of the j-th generating matrix
C ( j), denoted by σ

( j)
k = (σ

( j)
t,k )t≥1, by using the representation of xk in terms of powers
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794 R. Hofer, L. Kaltenböck

of q j (x), i.e., xk =∑s≥0 bs(x)q
s
j (x) with bs(x) ∈ Fq [x] satisfying deg(bs(x)) < e j .

This representation can be computed as follows:

xk = a0(x)q j (x) + b0(x), where a0(x), b0(x) ∈ Fq [x] such that deg b0(x) < e j ,

a0(x) = a1(x)q j (x) + b1(x), where a1(x), b1(x) ∈ Fq [x] such that deg b1(x) < e j ,

... .

Note that there are just finitely many nonzero remainder polynomials bs(x). Now we
consider the representation of the remainder polynomial bs(x) in terms of powers of
x , i.e. bs(x) = bs,0 + bs,1x + · · · + bs,e j−1xe j−1, and set

(σ
( j)
e j s+1,k, σ

( j)
e j s+2,k, . . . , σ

( j)
e j s+e j ,k

) := (bs,0, bs,1, . . . , bs,e j−1).

The matrices C (1), . . . ,C (d) are NUT matrices and generate a (0, e, d)-sequence
in base q (cf. [10, proof of Theorem 1]).

For both methods—the Niederreiter construction as well as the column-by-column
construction—we strongly focus on analyzing the left hand side of (3) in order to
obtain our first main result.

Theorem 1 The digital (0, e, d)-sequences with generating matrices C (1), . . . ,C (d)

obtained via the Niederreiter construction or the alternative column-by-column
approach do not have Poissonian pair correlations.

Note that both methods of constructing generating matrices based on the specific
choice of distinct monic linear polynomials q1(x), . . . , qd(x) result in the generating
matrices of the Faure sequences [4]. Hence, we know that Faure sequences do not
have Poissonian pair correlations. Moreover, we would like to note that the proof of
Theorem 1 utilizes the NUT property of the generatingmatrices as well as polynomial
arithmetic overFq . It is a non trivial task to generalize themethodof proof ofTheorem1
to more general not necessarily upper triangular generating matrices, i.e. to cover the
generalizedNiederreiter sequences aswell as the Sobol sequences, and also theHofer–
Niederreiter sequences [11] and Xing–Niederreiter sequences [26].

1.2 Halton sequences

Other higher-dimensional point sequences which are of wide interest and which can
be seen as the extension of the van der Corput sequence to higher dimensions are
Halton sequences [8].

Let d ∈ N, b1, . . . , bd ≥ 2 be pairwise relatively prime integers and for b ≥ 2 let
φb : N0 → [0, 1) be the b-adic radical inverse function, defined as

φb(n) := n0
b

+ n1
b2

+ · · ·
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where n = n0 + n1b + . . . with ni ∈ {0, . . . , b − 1} for i ∈ N0 is the unique base b
representation of n. The Halton sequence in pairwise relatively prime integer bases
b1, . . . , bd ≥ 2 is the sequence (xn)n≥0 in [0, 1)d whose elements are given by

xn = (φb1(n), . . . , φbd (n)).

Again, see e.g. [3] for more details. The question whether Halton sequences have
Poissonian pair correlations or not was posed in [9] and also stated as Problem 5 in
[13], although it was suggested that this is most likely not the case. It turns out that
this conjecture indeed is true.

Theorem 2 The Halton sequence (xn)n≥0 in pairwise relatively prime integer bases
b1, . . . , bd ≥ 2, d ∈ N, does not have Poissonian pair correlations.

Of course, it typically is expected that higher-dimensional versions of sequences
have similar qualities as their one-dimensional analogues. However, it should be men-
tioned that an exceptional behavior of Halton sequences has been announced for the
instance of the L p-discrepancy for p < ∞ by Levin in [15]. In this unpublished
manuscript he claimed that higher-dimensional Halton sequences have optimal order
of L p-discrepancy, even though the one-dimensional van der Corput sequence does
not satisfy optimal L p-discrepancy bounds. (For the result on the L p-discrepancy
of the one-dimensional van der Corput sequence cf. e.g. [20]. The interested reader
is referred to [5], which gives an overview over different generalizations of van der
Corput sequences and some of their properties.)

The rest of the paper is organized as follows. The key ingredient for the proofs of
Theorem 1 and Theorem 2 is a general tool stated as Proposition 1 at the beginning
of the next section. It identifies a specific high regularity for sequences which is
sufficient for failing Poissonian pair correlations. In more detail, if there are too many
points sharing similar distances from each other then the pair correlations cannot
be Poissonian. Verifying such a high regularity for both, Niederreiter and Halton
sequences, is not trivial and therefore takes the majority of Sect. 2. The final Sect. 3
gives an outlook to future research tasks and discusses a problem in algebraic number
theory andDiophantine approximation that occurred during the investigation ofHalton
sequences.

2 Proofs

The following proposition, which serves as one of our key tools for the proofs of
Theorems1 and2,works out that any sequence that contains a sufficiently large number
of pairs of points with similar distances fails to have Poissonian pair correlations.

Proposition 1 Let (xn)n≥0 be a sequence in [0, 1)d . If there exist real numbers
a, b, c > 0 satisfying

c > (2b)d − (2a)d > 0, (4)
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796 R. Hofer, L. Kaltenböck

and a strictly increasing sequence of positive integers (Nk)k∈N such that (xn)0≤n<Nk

fulfills

#

{
0 ≤ n �= l ≤ Nk − 1 : ‖xn − xl‖∞ ∈

(
a

N 1/d
k

,
b

N 1/d
k

]}
≥ cNk (5)

for all k larger than some index k0, then (xn)n≥0 does not have Poissonian pair
correlation.

Proof Let a, b, c > 0 be real numbers satisfying (4). Let (xn)n≥0 be a sequences in
[0, 1)d and (Nk)k∈N a strictly increasing sequence in N0 such that (5) holds for every
k large enough.

Assume that (xn)n≥0 has Poissonian pair correlations. We use (3) for s = b and
obtain

1

Nk
#
{
0 ≤ n �= l ≤ Nk − 1 : ‖xn − xl‖∞ ≤ b

N 1/d
k

}
→ (2b)d

as k → ∞. It holds that

#
{
0 ≤ n �= l ≤ Nk − 1 : ‖xn − xl‖∞ ≤ b

N 1/d
k

}

= #
{
0 ≤ n �= l ≤ Nk − 1 : ‖xn − xl‖∞ ≤ a

N 1/d
k

}

+ #
{
0 ≤ n �= l ≤ Nk − 1 : ‖xn − xl‖∞ ∈

( a

N 1/d
k

,
b

N 1/d
k

]}

=: Ak + Bk .

Therefore, for any ε1 > 0 there exists an index k(ε1) such that for all k > k(ε1) we
have

Ak

Nk
+ Bk

Nk
≤ (2b)d + ε1.

For sufficiently large k we can use the assumption (5) and obtain

Ak

Nk
≤ (2b)d + ε1 − Bk

Nk
≤ (2b)d + ε1 − c.

Now consider Ak/Nk which tends to (2a)d as k → ∞ by the property of Poissonian
pair correlations for s = a. Again this implies that for any ε2 > 0 there is an index
k(ε2) such that for all k > k(ε2) it holds that

Ak

Nk
≥ (2a)d − ε2.
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By assumption (4), there exists κ > 0 such that

c = (2b)d − (2a)d + κ.

However, if ε1 and ε2 are chosen such that ε1+ε2 < κ and provided that k is sufficiently
large we have

(2a)d − ε2 ≤ Ak

Nk
≤ (2b)d + ε1 − c

and

c ≤ (2b)d − (2a)d + ε1 + ε2 < (2b)d − (2a)d + κ = c,

which yields the desired contradiction to our assumption that (xn)n≥0 has Poissonian
pair correlations. 
�

In the light of Proposition 1, the key ingredient for proving that Niederreiter and
Halton sequences do not have Poissonian pair correlations therefore is to find enough
pairs of points for which the distances between those points can be suitably well
calculated and lie in a rather small interval. Note that the larger |b− a|, the larger c in
(4) and the more pairs of points (xn, xl) satisfying the counting condition in (5) have
to be identified.

2.1 Application to digital sequences

For the proof of Theorem 1 we need some preliminary results.

Lemma 1 [6, Prop.1] Let C (1), . . . ,C (d) be the generating matrices of a digital
(u, e, d)-sequence overFq and S be a NUT matrix inFN0×N0

q . ThenC (1)S, . . . ,C (d)S
are generating matrices of a digital (u, e, d)-sequence over Fq .

In the following the quantity L f denotes the maximal row length considering the first
f rows of all generating matrices. More precisely, taking the matrix consisting of the
first f rows of each of the generating matrices, L f −1 is the index of the last non-zero
column (or ∞, if none exists).

Lemma 2 Let C (1), . . . ,C (d) be the generating matrices associated to the distinct
monic non-constant pairwise co-prime polynomials q1(x), . . . , qd(x) with degrees
e1, . . . , ed using one of the two constructions given in Sect. 1.1. We set v :=
lcm(e1, . . . , ed) and define the matrix S ∈ F

N0×N0
q as follows. For k ∈ N0, the

k-th column σk of S, is given by σk = (b0, b1, . . . , bk−1, bk, . . . )	 where the bn,
0 ≤ n ≤ k, are the coefficients of the following monic polynomial of degree k,

pk(x) = xr1
d∏

i=1

qi (x)
(si+si+1+···+sd )v/ei =

∑
n≥0

bnx
n .
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798 R. Hofer, L. Kaltenböck

Here the si and ri are defined as follows

k = dvsd + rd , rd ∈ {0, . . . , vd − 1}
rd = (d − 1)vsd−1 + rd−1, rd−1 ∈ {0, . . . , v(d − 1) − 1}

...
...

r2 = vs1 + r1, r1 ∈ {0, . . . , v − 1}.

Then the matrices C (1)S, . . . ,C (d)S generate a digital (0, e, d)-sequence and satisfy
L f ≤ d f provided that v| f .
Proof For theNiederreiter construction see [12,Theorem1]. For the columnby column
construction note the linearity of the construction algorithm and the fact that the set of
polynomials (1, p1(x), p2(x), . . . , pk(x)) forms a basis of {p ∈ Fq [x] : deg(p) ≤ k}.
Moreover, note that q(si+si+1+···+sd )v/ei

i (x) divides pk(x) and that for k ≥ d f we have
vsd ≥ f . Thus for such k at least d f zero entries in the k-th columns ofC (1), . . . ,C (d)

are guaranteed. 
�
The matrix S, which was introduced in Lemma 2, will prove to be extremely use-

ful for the sharp estimating of the distances between specific pairs of points in the
following proof of Theorem 1.

Proof of Theorem 1 We may assume d ≥ 2 as the one-dimensional case was treated
already in [14]. Let q j (x), j ∈ {1, . . . , d} be monic non-constant pairwise co-prime
polynomials over Fq of degrees e j ≥ 1 and let C ( j) denote the corresponding gener-
ating matrices constructed via the Niederreiter or the alternative column by column
approach. Moreover, letm be a multiple of v = lcm(e1, . . . , ed) times d, i.e.m = kvd
with k ∈ N,.

The sequence (xn)n≥0 constructed via the digital method is a (0, e, d)-sequence,
therefore any elementary interval with volume q−m of the form

I (vk, . . . , vk) =
d∏
j=1

[
a j

qvk
,
a j + 1

qvk

)

where 0 ≤ a j < qvk , contains exactly one point xn with n ∈ {0, 1, . . . , qm − 1} and
one point xl with l ∈ {qm, qm + 1, . . . , 2qm − 1}. The idea of the proof then is to find
infinitely many suitable values of m such that the distances between the elements xn
and xl are similar for many n and l, respectively, in order to apply Proposition 1.

To begin with, for arbitrary n = n0 + n1q + . . . and l = l0 + l1q + . . . we define

Δn,l := (φ−1(l0), φ
−1(l1), . . . , φ

−1(lm))	 − (φ−1(n0), φ
−1(n1), . . . , φ

−1(nm))	 ∈ F
m+1
q .

Note that nm = 0 and lm = 1.
The elements xn and xl lie in the same elementary interval I (vk, . . . , vk) if

Dm×(m+1)Δn,l = (0, . . . , 0)	, (6)
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where Dm×(m+1) ∈ F
m×(m+1)
q is the (m × (m + 1))-matrix whose rows consist of

the rows of each upper left (kv × (m + 1))-submatrix of C ( j), j ∈ {1, . . . , d}. Note
using the fact that both the Niederreiter construction as well as the column by column
approach yield digital (0, e, d)-sequences, we easily derive from the definition of a
digital (u, e, d)-sequences that the matrix Dm×(m+1) has rank m.

Furthermore, let Sm+1 be the upper left ((m+1)× (m+1))-submatrix of S defined
in Lemma 2. Since Sm+1 is non-singular we can rewrite

Dm×(m+1)Δn,l = Dm×(m+1)Sm+1S
−1
m+1Δn,l .

Since 0 ≤ n < qm , qm ≤ l < 2qm and both, Sm+1 and S−1
m+1 are NUT matrices with

ones in the diagonal, we have

S−1
m+1Δn,l =

(
d

φ−1(1)

)

with d ∈ F
m
q and where φ is the bijection from the construction of digital (t, d)-

sequences (cf. Sect. 1.1). Moreover, from Lemma 2 with f = kv it follows that the
last column of the product Dm×(m+1)Sm+1 consists of zeros exclusively. From (6) it
therefore follows that d is the zero vector in Fm

q , i.e.

S−1
m+1Δn,l =

(
0

φ−1(1)

)
,

or equivalently after multiplying with Sm+1 from the left, and hence the m + 1-st
component of Δn,l equals φ−1(1) times the (m + 1)-st column of Sm+1, which is
determined by the representation of the polynomial

pm(x) =
d∏

i=1

qvk/ei
i (x)

in terms of powers of x .
We now have to find specific choices of m or k, respectively, such that we obtain

special Δn,l in order to apply Proposition 1. Therefore, let

τi := min
{
r ∈ N : qrv/ei

i (x) ≡ 1 (mod q
v/e j
j (x)) for every j �= i

}
.

Then we use the characteristic p of the finite field Fq and the fact that for all k ∈ N and

1 ≤ l < pk we have
(pk
l

) ≡ 0 (mod p). So whenever u is a power of the characteristic
of Fq we have for all f (x), g(x) ∈ Fq [x] that

( f (x) + g(x))u = f u(x) + gu(x).

123



800 R. Hofer, L. Kaltenböck

If we set θ := lcm(τ1, . . . , τd), we therefore have

qθv/ei
i (x) ≡ 1 (mod q

v/e j
j (x))

and
d∏

i=1
i �= j

quvθ/ei
i (x) ≡ 1 (mod q

uv/e j
j (x)). (7)

Then let m = uvθd and consider C ( j)
(m+1)×(m+1)Δn,l .

1. If the matrix C ( j) is constructed via the Niederreiter approach, then the k-th entry
of C ( j)

(m+1)×(m+1)Δn,l is the coefficient of x−1 in the Laurent series expansion of

φ−1(1)
xr

qsj (x)

d∏
i=1

quvθ/ei
i (x),

with k = e j s − r and r ∈ {0, 1, . . . , e j − 1}. For s ≤ uvθ/e j and any admissible
value of r , the expression above is a polynomial and therefore the coefficient of
x−1 in its Laurent series expansion is 0. For uvθ/e j < s ≤ uvθ/e j + uv/e j we
use (7) to get

xr

qsj (x)

d∏
i=1

quvθ/ei
i (x) = xrb(x) + xr

q
s−uvθ/e j
j (x)

,

for some polynomial b(x) ∈ Fq [x]. Remember that xrq
−(s−uvθ/e j )
j (x) exactly

determines row e j (s − uvθ/e j ) − r of C ( j) and that the coefficient of x−1 of this
expression is the entry in the first column. Since C ( j) is a NUT matrix with 1s in
the diagonal we obtain

C ( j)
m+1×m+1Δn,l =

⎛
⎝0, . . . , 0︸ ︷︷ ︸

uvθ

, φ−1(1), 0, . . . , 0︸ ︷︷ ︸
uv−1

, a, . . .

⎞
⎠

	
,

with a ∈ Fq .
2. In case that the matrixC ( j) is constructed via the column by column approach, the

entries of C ( j)
(m+1)×(m+1)Δn,l are given by the coefficients of the representation of

φ−1(1)pm(x) in terms of powers of q j (x). Using (7) we get

pm(x) =
d∏

i=1

quvθ/ei
i (x)
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= q
uvθ/e j
j (x)

⎛
⎜⎜⎝

d∏
i=1
i �= j

quvθ/ei
i (x)

⎞
⎟⎟⎠

= q
uvθ/e j
j (x)

(
1 + b(x)q

uv/e j
j (x)

)

for some polynomial b(x) ∈ Fq [x]. Thus, here we also have

C ( j)
(m+1)×(m+1)Δn,l =

⎛
⎝0, . . . , 0︸ ︷︷ ︸

uvθ

, φ−1(1), 0, . . . , 0︸ ︷︷ ︸
uv−1

, a, . . .

⎞
⎠

	
,

with a ∈ Fq .

Assume now that the (uvθ + 1)-st entry y(1)
uvθ+1 of C (1) · (φ−1(n0), φ−1(n1), . . . )	

fulfills

|φ(y(1)
uvθ+1 + φ−1(1)) − φ(y(1)

uvθ+1)|
= max{|φ(α + φ−1(1)) − φ(α)| : for α ∈ Fq} =: w ≥ 1,

which is the case for at least qm−1 many values of n ∈ {0, 1, . . . , qm − 1}. Then, for
such n it holds that

‖xn − xl‖∞ ∈
[ w

quvθ+1 − 1

quvθ+uv
,

w

quvθ+1 + 1

quvθ+uv

)
. (8)

Finally, let ε > 0 and set

a = 21/d
w

q
− ε, b = 21/d

w

q
+ ε, c = 1

q
.

Thus, for m = uvθd, where u is a power of the characteristic of Fq , we have

#
{
0 ≤ n �= l ≤ 2qm − 1 : ‖xn − xl‖∞ ∈

( a

(2qm)1/d
,

b

(2qm)1/d

]}
≥ c2qm

provided that u is chosen large enough. However, since ε can be chosen such that

(2b)d − (2a)d = 2d
((

21/d
w

q
+ ε

)d

−
(
21/d

w

q
− ε

)d
)

<
1

q
= c,

the assumptions of Proposition 1 are fulfilled and the considered sequences therefore
do not have Poissonian pair correlations. 
�
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2.2 Application to Halton sequences

In order to be able to apply Proposition 1 to Halton sequences, we need a preliminary
result, formulated as Lemma 3 below.

However, this lemma makes use ofMinkowski’s Theorem (see [17]) that states that
if C ⊆ R

d is a convex set that is symmetric about the origin (i.e., x ∈ C if and only if
−x ∈ C) and with vol(C) > 2dm, then there are at leastm different points z1, . . . , zm
such that ±z1, . . . ,±zm ∈ C ∩ Z

d\{0}.
Lemma 3 Let d ∈ N and α1, . . . , αd be irrational. Then the sequence ({nα})n≥0 in
[0, 1)d with {nα} = ({nα1}, . . . , {nαd}) has an accumulation point in

D := {(δ1, . . . , δd) : δ j ∈ {0, 1}, j ∈ {1, . . . , d}}.

Proof For N ∈ N and arbitrary ε j > 0, j ∈ {1, . . . , d}, define CN ∈ R
d+1,

CN := {(x0, x1, . . . , xd) ∈ R
d+1 : |α j x0 − x j | ≤ ε j , j ∈ {1, . . . , d}, |x0| ≤ N }.

The set C is convex and symmetric about the origin with

vol(C) = 2d+1N
d∏
j=1

ε j .

Therefore, if N > m/(
∏d

j=1 ε j ), we have vol(C) > 2d+1m and, by Minkowski’s

Theorem, there exist m different elements zi = (z(0)i , z(1)i , . . . , z(d)
i ), i ∈ {1, . . . ,m}

with zi ∈ C ∩ Z
d+1\{0} and z(0)i ≥ 0. Moreover, for those elements it holds that

|α j z
(0)
i − z( j)i | ≤ ε j , thus {α j z

(0)
i } ∈ (0, ε j ] ∪ [1− ε j , 1) for all j ∈ {1, . . . , d}. Note

that, if ε j are chosen small enough the integers z(0)i will be distinct. 
�
Proof of Theorem 2 For d = 1 we have to consider the van der Corput sequence for
which it is well-known that it does not have Poissonian pair correlations. Hence we
assume d ≥ 2 in the following. Let b1, . . . , bd be pairwise relatively prime integers and
let (xn)n≥0 denote the Halton sequence in bases b1, . . . , bd . Without loss of generality
we assume b1 < b j for all j ∈ {2, . . . , d}.

Let u ∈ N \ {1} and define

P1 :=
d∏
j=2

b2j , Pi := bu1

⎛
⎜⎜⎝

d∏
j=2
j �=i

b2j

⎞
⎟⎟⎠ ,

τ1 := min{1 ≤ l ≤ P1 : bul1 ≡ 1 (mod P1)},
τi := min{1 ≤ l ≤ Pi : b2li ≡ 1 (mod Pi )}

for all i ∈ {2, . . . , d}. Such τ1, τi exist as gcd(P1, b1) = gcd(Pi , bi ) = 1 and d ≥ 2.
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Similar as in the proof of Theorem 1 we define for k = (k1, . . . , kd) ∈ N
d
0 numbers

Nk ∈ N and corresponding subintervals

I := I (uτ1k1, 2τ2k2, . . . , 2τdkd) =
[

a1

buτ1k1
1

,
a1 + 1

buτ1k1
1

)
×

d∏
j=2

⎡
⎣ a j

b
2τ j k j
j

,
a j + 1

b
2τ j k j
j

⎞
⎠ ,

where 0 ≤ a1 < buτ1k1
1 and 0 ≤ a j < b

2τ j k j
j for j ∈ {2, . . . , d}, and study the

distances between the points xn that lie in the same subinterval I .
Now let

M = M(k) := buτ1k1
1

⎛
⎝

d∏
j=2

b
2τ j k j
j

⎞
⎠ ,

L = L(k) := buτ1k1+1
1

⎛
⎝

d∏
j=2

b
2τ j k j+1
j

⎞
⎠ .

By a special regularity of the sequence, which is an easy consequence of the Chinese
Remainder Theorem, we have that exactly

∏d
j=1 b j points of the first L points and

exactly one point of the subsequent M points of the sequence lie in I . Moreover,
xn+M ∈ I if and only if xn ∈ I .

We set Nk := L + M and study ‖xn − xn+M‖∞ for 0 ≤ n < L .
By (n)b j we denote the digit representation of n in base b j , i.e. for n = n0 +

n1b j + n2b2j + . . . we have (n)b j = (n0, n1, n2, . . . ). Note that obviously buτ1k1
1 |M

and b
2τ j k j
j |M . By the choice of τ1 and τ j we have

buτ1
1 ≡ 1 (mod b2j )

and also for i �= j ,

b2τii ≡ 1 (mod b2j ) and b2τii ≡ 1 (mod bu1).

Therefore,

d∏
i=2

b2τi kii ≡ 1 (mod bu1) and buτ1k1
1

d∏
i=2,i �= j

b2τi kii ≡ 1 (mod b2j ).
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Hence,

(M)b1 =
⎛
⎜⎝0, . . . , 0︸ ︷︷ ︸

uτ1k1

, 1, 0, . . . , 0︸ ︷︷ ︸
u−1

,muτ1k1+u, . . .

⎞
⎟⎠ ,

(M)b j =
⎛
⎜⎝0, . . . , 0︸ ︷︷ ︸

2τ j k j

, 1, 0,m2τ j k j+2, . . .

⎞
⎟⎠ , j ∈ {2, . . . , d}.

(9)

Now consider ‖xn − xn+M‖∞ = sup j∈{1,...,d} ‖x ( j)
n − x ( j)

n+M‖. If for (n)b1 it holds
that if nuτ1k1 �= b1 − 1 then by (9) the first uτ1k1 + u entries except of (uτ1k1 + 1)-st
entry of (n + M)b1 and (n)b1 coincide. As

∑∞
i=m+1

b1−1
bi1

= 1
bm1

we have in the case

where nuτ1k1 �= b1 − 1,

‖x (1)
n − x (1)

n+M‖ ∈
( 1

buτ1k1+1
1

− 1

buτ1k1+u
1

,
1

buτ1k1+1
1

+ 1

buτ1k1+u
1

)
.

Similarly, for the other coordinates j ∈ {2, . . . , d} we obtain in the case where in
(n)b j we have n2τ j k j �= b j − 1,

‖x ( j)
n − x ( j)

n+M‖ ∈
( 1

b
2τ j k j+1
j

− 1

b
2τ j k j+2
j

,
1

b
2τ j k j+1
j

+ 1

b
2τ j k j+2
j

)
.

Next, we want to find constants ξ j ≥ 1, j ∈ {2, . . . , d}, such that

ξ j ≤ b
2τ j k j+1
j

buτ1k1+1
1

≤ ξ j f (u) (10)

with

f (u) :=
(
1 + b1−u

1

1 − b1−u
1

) d
d−1

is simultaneously fulfilled for infinitely many k = (k1, k2, . . . , kd) ∈ N
d
0 and thus also

for infinitely many Nk = M + L . Therefore, we define β1 := buτ1
1 and β j := b

2τ j
j for

j ∈ {2, . . . , d}. The inequalities in (10) are then equivalent to

logβ j

(
ξ j

b1
b j

)
+ k1 logβ j

(β1) ≤ k j ≤ logβ j

(
ξ j f (u)

b1
b j

)
+ k1 logβ j

(β1). (11)

Moreover,we consider the sequence ({nα})n≥0 ∈ [0, 1)d−1 with {nα} = ({nα2}, . . . , {nαd})
and α j = logβ j

(β1) ∈ R\Q. Let now (δ2, . . . , δd) ∈ {0, 1}d−1 denote an accumula-
tion point of this sequence which exists by Lemma 3.
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We want to distinguish two cases: If δ j = 0 we set

ξ j := b j

b1

1

f (u)
and k j := �k1 logβ j

(β1)�.

Note that ξ j > 1 if u is large enough. The inequalities (11) are then equivalent to

{k1 logβ j
(β1)} − logβ j

( f (u)) ≤ 0 ≤ {k1 logβ j
(β1)},

which is fulfilled if
{k1 logβ j

(β1)} ∈ [0, logβ j
( f (u))

]
. (12)

If δ j = 1 we set

ξ j := b j

b1
and k j := �k1 logβ j

(β1)� + 1.

Again, ξ j > 1 and (11) is equivalent to

{k1 logβ j
(β1)} ≤ 1 ≤ {k1 logβ j

(β1)} + logβ j
( f (u)),

which is fulfilled if

{k1 logβ j
(β1)} ∈ [1 − logβ j

( f (u)), 1
]
. (13)

By the fact that (δ2, . . . , δd) is an accumulation point of ({nα})n≥0 with α =
(logβ2

(β1), . . . , logβd
(β1)), conditions (12) and (13), respectively, are fulfilled simul-

taneously for each j = 2, . . . , d for infinitely many k1. Since k j ≥ 0 for all
j ∈ {2, . . . , d}, we know that there are also infinitely many Nk such that (10) is
fulfilled.

Now we can use (10) to deduce that

1

buτ1k1+1
1

− 1

buτ1k1+u
1

>
1

b
2τ j k j+1
j

+ 1

b
2τ j k j+2
j

for all j ∈ {2, . . . , d} and u large enough. This can be seen since

b
2τ j k j+1
j

buτ1k1+1
1

(
1 − 1

bu−1
1

)
≥ ξ j

(
1 − 1

bu−1
1

)

≥ b j

b1

1

f (u)

(
1 − 1

bu−1
1

)

>
(
1 + 1

b j

)
,
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where in the last stepweused that (1−1/bu−1
1 )/ f (u) → 1 asu → ∞, andb j−1 ≥ b1.

Therefore, if in (n)b1 we have that nuτk1 �= b1 − 1 and in (n)b j , j ∈ {2, . . . , d} we
have that n2τ j k j �= b j − 1, then

‖xn − xn+M‖∞ = ‖x (1)
n − x (1)

n+M‖ ∈
(1 − b1−u

1

buτ1k1+1
1

,
1 + b1−u

1

buτ1k1+1
1

)
. (14)

As next step, we want to establish suitable bounds for ‖xn − xn+M‖∞ in order to
be able to apply Proposition 1, i.e. we want to show that there exist a and b such that

a

(L + M)1/d
≤ 1 − b1−u

1

buτ1k1+1
1

<
1 + b1−u

1

buτ1k1+1
1

≤ b

(L + M)1/d
,

which is equivalent to

ad ≤ (1 − b1−u
1 )d(L + M)

(buτ1k1+1
1 )d

<
(1 + b1−u

1 )d(L + M)

(buτ1k1+1
1 )d

≤ bd . (15)

Note that

L + M = buτ1k1+1
1

⎛
⎝

d∏
j=2

b
2τ j k j+1
j

⎞
⎠
⎛
⎝1 +

d∏
j=1

b−1
j

⎞
⎠

︸ ︷︷ ︸
:=γ d

= Lγ d .

Using the estimate (10) we find that (15) is fulfilled if we choose

ad := (1 − b1−u
1 )d

⎛
⎝

d∏
j=2

ξ j

⎞
⎠ γ d ,

bd := (1 + b1−u
1 )2d

(1 − b1−u
1 )d

⎛
⎝

d∏
j=2

ξ j

⎞
⎠ γ d .

Hence we have shown that

‖xn − xn+M‖∞ ∈
( a

(L + M)1/d
,

b

(L + M)1/d

)

for n ∈ {0, . . . , L − 1} whenever in (n)b1 we have nuτk1 �= b1 − 1 and in (n)b j , j ∈
{2, . . . , d} we have n2τ j k j �= b j − 1. Since this is the case for exactly

(∏d
j=1

b j−1
b j

)
L

values of n and each pair has to be counted twice in the pair correlation function, we
obtain
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#
{
0 ≤ n �= l ≤ L + M − 1 : ‖xn − xl‖∞ ∈

( a

(L + M)1/d
,

b

(L + M)1/d

]}

≥ #
{
0 ≤ n ≤ L − 1 : ‖xn − xn+M‖∞ ∈

( a

(L + M)1/d
,

b

(L + M)1/d

]}

≥ 2
( d∏

j=1

b j − 1

b j

) L

L + M
(L + M)

= 2
( d∏

j=1

b j − 1

b j

) 1

γ d
(L + M) =: c · (L + M).

In order to apply Proposition 1 it therefore has to hold that

(2b)d − (2a)d < 2

⎛
⎝

d∏
j=1

b j − 1

b j

⎞
⎠ 1

γ d
= c. (16)

Using the definition of a and b and the fact that ξ j ≤ b j/b1 we obtain

(2b)d − (2a)d = 2d

⎛
⎝

d∏
j=2

ξ j

⎞
⎠ γ d

( (1 + b1−u
1 )2d

(1 − b1−u
1 )d

− (1 − b1−u
1 )d

)

≤ 2d

⎛
⎝

d∏
j=2

b j

b1

⎞
⎠ γ d

( (1 + b1−u
1 )2d − (1 − b1−u

1 )2d

(1 − b1−u
1 )d

)

︸ ︷︷ ︸
tends to 0 for u→∞

.

Thus, if u is chosen large enough, condition (16) is true and the Halton sequence in
bases b1, . . . , bd does not have Poissonian pair correlations. 
�

3 Discussion and further research

It is an interesting task for future research to figure out whether the Halton and the
Niederreiter sequence do have Poissonian pair correlations in the sense of [22] or not.
Of course we conjecture that both do not have this type of Poissonian pair correlations.
Both proofs of our Theorems 1 and 2 use specific pairs of points (xn, xl) such that
‖xn − xl‖∞ can be estimated very well (cf. (8) and (14)). A possible generalization
of our Theorems 1 and 2 to the notion of Poissonian pair correlation in [22], based on
our method of proof will rely on sharp estimates of ‖xn − xl‖2 on a sufficiently large
number of pairs (xn, xl).

However, we suggest the following alternative general approach that is to answer
the basic question whether Poissonian pair correlation based on the supremum norm
implies Poissonian pair correlation based on the Euclidean norm and vice versa.

Theorem 1 of the present paper deals with very prominent classes of (t, s)-
sequences, as a consequence of this result, of course a further research question is,
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whether other classes of (t, s)-sequences, as for example generalized Niederreiter
sequences [23], Niederreiter–Xing sequences [26] or any digital or even non-digital
(t, s)-sequences in general, have the property of Poissonian pair correlation or not.

Furthermore, we would like to note an interesting relation of our method of proof
to a conjecture in algebraic and transcendental number theory. During the search for
a proof of Theorem 2 we faced the problem to simultaneously satisfy the inequalities
(11) with ξ j ≥ 1 for infinitely many (k1, k2, . . . , kd) ∈ N

d
0 .

Note that if 1, logβ2
β1, . . . , logβd

β1 were linearly independent over Q then the
sequence ({n(logβ2

β1, . . . , logβd
β1)})n≥0 ∈ [0, 1)d−1 would be uniformly dis-

tributed in [0, 1)d−1. Such a statement would considerably shorten the proof of
Theorem 2. Unfortunately, it is not known whether for example the three numbers
1/ log 2, 1/ log 3, 1/ log 5 are linearly independent overQ or not. The algebraic inde-
pendence of the logarithm of the prime numbers would be one consequence of the
so-called Schanuel’s conjecture in algebraic and transcendental number theory. We
refer the interested reader to [25] for more details on this conjecture and its related
problems.
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