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Abstract
Let F be a non-singular homogeneous polynomial of degree d in n variables. We
give an asymptotic formula of the pairs of integer points (x, y) with |x| ≤ X and
|y| ≤ Y which generate a line lying in the hypersurface defined by F , provided that
n > 2d−1d4(d + 1)(d + 2). In particular, by restricting to Zariski-open subsets we
are able to avoid imposing any conditions on the relative sizes of X and Y .
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1 Introduction

Questions concerning the number and distribution of rational points on hypersurfaces
have long attracted the interest of both number theorists and algebraic geometers.
Building on work by Davenport [15], Birch wrote an influential paper [6] in which
he provided a method to prove the analytic Hasse principle and establish asymptotic
formulæ for the number of integer points on projective hypersurfaces under moderate
non-singularity conditions, provided that the dimension of the hypersurface is suffi-
ciently large compared to its degree. In particular, suppose that F ∈ Z[x1, . . . , xn] is
a non-singular form of degree d defining a hypersurface V , and write N (X) for the
number of points x ∈ V(Z) with |xi | ≤ X for 1 ≤ i ≤ n. In this notation, Birch’s
main result [6, Theorem] states that whenever n > 2d(d − 1), there exists a positive
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192 J. Brandes

real number ν with the property that the number of integer points on V satisfies an
asymptotic formula of the shape

N (X) = cXn−d + O(Xn−d−ν).

The constant c is non-negative and has an interpretation in terms of the density of
Qv-points in V for all completions Qv of Q.

In the work at hand, we study a higher-dimensional generalisation of Birch’s result.
Denote by N (X ,Y ) the number of points x, y ∈ Z

n\{0} satisfying |xi | ≤ X and
|yi | ≤ Y for 1 ≤ i ≤ n, and having the property that

F(ux + vy) = 0 identically in u and v. (1.1)

This problem is related to that of counting rational lines contained in V , in that it
counts all possible sets of generating pairs (x, y) of suitably bounded height and with
the property that the line spanned by (x, y) is fully contained in V . Geometrically,
it is known that the Fano scheme of lines on a generic hypersurface V of degree d
has dimension 2n − d − 5 whenever that number is positive (Langer [21]; see also
the classical work by Altman and Kleiman [1]). More recent results by Harris, Mazur
and Pandharipande [18], Beheshti [3–5] and others explore under what circumstances
a similar statement holds for all smooth hypersurfaces. Unfortunately, these results
within algebraic geometry do not contain much arithmetic information and thus are
of limited use if one seeks to study rational lines.

When F is a cubic form, recent work of the author jointlywithDietmann [12] shows
that (1.1) has non-trivial rational solutions whenever n ≥ 29, but that there may not
be any rational solutions when n = 11 or lower. For more general settings, (1.1) has
been investigated in a series of papers by the present author [8–11]. We note at this
point that, in order to strictly count lines, we would have to exclude those solutions
of (1.1) where x and y are proportional. Fortunately, the contribution of such points
is of a smaller order of magnitude than our eventual main term, so we do not lose any
generality by omitting to explicitly exclude them.

A special role in problems of this flavour is played by certain points y ∈ V that
admit a disproportionate number of solutions x ∈ V satisfying (1.1). Typically, the
contribution arising from these solutions is counterbalanced by the relative sparsity of
such points y, but when Y is very small in comparison to X , such solutions might well
dominate the overall count. It is therefore natural to exclude the solutions that arise
from such special subvarieties. When U ⊆ V is a Zariski-open subset, we denote by
NU (X ,Y ) the number of integral x, y ∈ U with |xi | ≤ X and |yi | ≤ Y for 1 ≤ i ≤ n
that satisfy (1.1). We can now state the main result of this memoir.

Theorem 1.1 Let F ∈ Z[x1, . . . , xn] be a non-singular form of degree d ≥ 5 defining
a hypersurface V . Let further

n > 2d−1d4(d + 1)(d + 2).
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The density of rational lines on hypersurfaces: a… 193

Then there exists a non-empty Zariski-open subset U ⊆ V and a positive real number
ν with the property that

NU (X ,Y ) = (XY )n− 1
2 d(d+1)χ∞

∏

p prime

χp + O((XY )n− 1
2 d(d+1)−ν).

The Euler product converges absolutely, and its factors have an interpretation as the
density of solutions of (1.1) over the local fields R and Qp, respectively.

Note that Theorem 1.1 is a slightly simplified version of what our methods yield;
by a more thorough analysis it would be possible to obtain some improvements in the
lower-order terms at the expense of a significantly more complicated expression, but
no easy improvement of the order of growth 2dd6 in our result. In particular, we do
not expect our results to be competitive when d is small. For this reason, even though
a modification of our approach would provide results for d ∈ {2, 3, 4} also, we refrain
from including the analysis of those cases as the expected results would likely be quite
weak.

Clearly, the problem is symmetric in X and Y , so in our discussion we may assume
without loss of generality that Y ≤ X . In the special case when Y = X , the conclusion
of Theorem 1.1 follows from [8, Theorem 1.1] under the more lenient condition that
n > 3·2d(d−1)(d+2), and subsequentwork [9, Theorem2.1] establishes a conclusion
similar to that of Theorem 1.1 above under the additional condition that n should be
large enough in terms of log X/ log Y , which is acceptable if X is at most a bounded
power of Y . The main new input in our present work is therefore our treatment of the
situationwhen Y is vastly smaller than X . Unlike in our formerwork in [8,9], wherewe
allowed the variables x, y to vary independently, we pursue a slicing approach inspired
by [23] in which we fix a point y ∈ U(Z) and then investigate the number Ny(X;U)

of points x ∈ U(Z) ∩ [−X , X ]n for which (1.1) is satisfied with that particular value
y. We then have

NU (X ,Y ) =
∑

y∈U(Z)
|y|≤Y

Ny(X;U), (1.2)

and we aim to establish bounds of the shape

Ny(X;U) = cyX
n− 1

2 d(d+1) + Oy(X
n− 1

2 d(d+1)−ν)

for some constant cy and some positive number ν.
For generic y, the quantity Ny(X) = Ny(X;V) can be understood by applying the

methods of Browning and Heath-Brown [14] for systems of homogeneous equations
with differing degrees, although we need to be careful to track the dependence on the
coefficients as these will be polynomially dependent on y. Unfortunately, this strategy
breaks down if y fails to satisfy a certain second-order non-singularity condition.When
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194 J. Brandes

Hx denotes the Hessian of F at the point x, we set

V∗
2,ρ = {x ∈ V : rank Hx ≤ n − ρ},

and let V2,ρ = V\V∗
2,ρ . In particular, V2,ρ is Zariski-open in V for all 1 ≤ ρ ≤ n.

The set V∗
2,1 is defined by the zero set of the simultaneous equations F(x) = 0 and

det Hx = 0, and is thus of codimension one insideV . Here, the function�(x) = det Hx
is a form of degree (d −2)n in n variables, and one might hope that, unless the variety
defined by �(x) = 0 contains high-dimensional subvarieties of low degree, the set
V∗
2,1(Z) might not be too large. In particular, in the eventuality that V∗

2,1(Z) should
consist only of the origin for some function F , it would be permissible in Theorem 1.1
to take U = V\{0}. Unfortunately, our current understanding of the size of the set V∗

2,ρ
is quite weak. Nonetheless, by bounding the number of integral points in V∗

2,ρ we are
still able to establish asymptotic formulæ for our original counting function N (X ,Y )

that extend the admissible range of Y compared to what had previously been known
in [9, Theorem 2.1] without having to exclude an exceptional subvariety.

Theorem 1.2 Let F ∈ Z[x1, . . . , xn] be a non-singular form of degree d ≥ 5, and
suppose that Y = Xψ , where 0 < ψ < (2d4)−1. Furthermore, suppose that

n > 2d−1d4(d + 1)(d + 2) + 1
2d(d − 1)ψ−1.

Then there exists a positive real number ν with the property that

N (X ,Y ) = (XY )n− 1
2 d(d+1)χ∞

∏

p prime

χp + O((XY )n− 1
2 d(d+1)X−ν),

where the local factors are the same as in Theorem 1.1.

The reader may wonder how the lower bound on n compares with that which can be
extracted from [9, Theorem 2.1]. In that result, the bound on the number of variables
in the case when ψ is small can be written in terms of ψ as

n > 2d−2d(d + 1)(1 + ψ−1).

It is clear that for ψ 	 d−4 our new result is significantly stronger.
There are many questions of interest from a geometric point of view that use height

functions different from the naive one. In particular, the conjectures of Manin and
Manin–Peyre (see [2,17,22]) are phrased in terms of an anticanonical height function,
which reflects the dimension and degree of the varieties under consideration. In bi-
or multihomogeneous settings, this height forces the variables to lie in domains of a
hyperbolic shape, which it is hard to capture from an analytic point of view. Fortu-
nately, a very general method of transferring information between these settings has
been provided byBlomer and Brüdern [7] in the context of provingManin’s conjecture
for multihomogeneous diagonal equations. The same technology has later been used
by Schindler [23] in her analysis of Manin’s conjecture for bihomogeneous equations.
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The density of rational lines on hypersurfaces: a… 195

Here, the main criterion for the method of [7] to work is that one have a good under-
standing of the underlying counting function over lopsided boxes. The treatment of
boxes with sides of comparable length is usually tractable by some minor modifica-
tions of the strategy employed for homogeneous boxes, so a main challenge lies in
controlling the extreme cases when the boxes have very unequal sidelengths. In view
of such potential future applications we state two by-products of our strategy which
may be of independent interest and are simplified versions of Theorems 7.1 and 7.2
below, respectively.

Theorem 1.3 Let F ∈ Z[x1, . . . , xn] be a non-singular form of degree d ≥ 5 defining
a hypersurface V . Let further ψ ∈ (0, 1/(2d4)], and suppose that

n ≥ 2dd(d2 − 1) + ρ.

Then there exists a positive real number ν with the property that

Ny(X) = Xn− 1
2 d(d+1)SyJy + O(Xn− 1

2 d(d+1)−ν)

uniformly for all y ∈ V2,ρ(Z) satisfying |y| ≤ Xψ . Moreover, the local factors satisfy
0 ≤ Sy 	y 1 and 0 ≤ Jy 	y 1.

The set V∗
2,ρ is clearly algebraically defined for any ρ, and it is known (see e.g. [20,

Lemma 2]) that dim V∗
2,ρ ≤ n−ρ. Thus we have Ny(X;V2,ρ) = Ny(X)+ O(Xn−ρ),

and we see that when ρ > 1
2d(d + 1), the anticipated main term exceeds any error

that might arise if we replace Vρ,2 by V itself. This allows us to derive a bound on
NU (X ,Y ) from bounds on Ny(X).

Theorem 1.4 Let F and V be as before with d ≥ 5, and for some ψ ∈ (0, 1/(2d4)]
set Y = Xψ . Suppose that

n ≥ 2dd(d2 − 1)

and set U = V2, 12 d(d+1)+1. Then there exists a real number ν > 0 for which

NU (X ,Y ) = Xn− 1
2 d(d+1)

∑

y∈U(Z)
|y|≤Y

SyJy + O((XY )n− 1
2 d(d+1)−ν).

NotationThroughout the paper, the following notational conventions will be observed.
Any statements containing the letter ε are asserted to hold for all sufficiently small
values of ε, and we make no effort to track the precise ‘value’ of ε, which is con-
sequently allowed to change from one line to the next. We will be liberal in our use
of vector notation. In particular, equations and inequalities involving vectors should
always be understood entrywise. In this spirit, we write |x| = ‖x‖∞ = max |xi |, as
well as (a, b) = gcd(a1, . . . , an, b). For α ∈ R we write ‖α‖ = minz∈Z |α − z|.
Finally, the implicit constants in the Landau and Vinogradov notations are allowed to
depend on all parameters except X , Y and y.
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196 J. Brandes

2 Preliminarymanoevres

Let 	 denote the symmetric d-linear form associated to F , so that F can be written
as F(x) = 	(x, . . . , x). Then after expanding, the form F may be written as

F (ux + vy) =
d∑

j=0

(
d

j

)
u jvd− j	(x, . . . , x︸ ︷︷ ︸

j entries

, y, . . . , y︸ ︷︷ ︸
d− j entries

),

and our counting function NU (X ,Y ) counts integer solutions x, y ∈ U to the system
of equations

	(x, . . . , x︸ ︷︷ ︸
j entries

, y, . . . , y︸ ︷︷ ︸
d− j entries

) = 0 (0 ≤ j ≤ d), (2.1)

where |xi | ≤ X and |yi | ≤ Y for 1 ≤ i ≤ n.
In this and the following sections we fix a value of y and consider (2.1) as a system

of equations in x only. Eventually, we will have to consider only such choices for y
that lie in a suitable Zariski-open subset U . This allows us in particular to exclude the
value y = 0. For 1 ≤ j ≤ d wewrite	

( j)
y (x) for the form having j entries x and d− j

entries y. In this notation, Ny(X) denotes the number of points x ∈ Z
n ∩ [−X , X ]n

satisfying

	
( j)
y (x) = 0 (1 ≤ j ≤ d). (2.2)

The system (2.2) consists of forms of consecutive degrees 1, . . . , d. Asymptotic
formulæ for the number of solutions of such systems can be obtained by themachinery
of Browning and Heath-Brown [14]. However, before embarking on that argument, it
is convenient to eliminate one variable by solving the linear equation, so that all forms
explicitly occurring in the system have degree two or higher. To this end, observe that
the equation 	

(1)
y (x) = 0 can be expressed as

l1(y)x1 + . . . + ln(y)xn = 0, (2.3)

where the coefficients li = li (y) are given by li (y) = ∂
∂ yi

F(y), and are therefore
polynomials of degree d − 1 in y. Since F is non-singular by assumption, not all
li can vanish simultaneously, and thus the set of x ∈ Z

n satisfying (2.3) forms an
(n − 1)-dimensional lattice �y ⊆ Z

n . Denote by Ay(X) ⊆ Z
n the set of lattice points

x ∈ �y for which |x| ≤ X . Thus, we may equivalently consider the quantity Ny(X)

to be given by the number of points x ∈ Ay(X) satisfying the system of equations

	
( j)
y (x) = 0 (2 ≤ j ≤ d).
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The density of rational lines on hypersurfaces: a… 197

In order to understand the counting function Ny(X), we encode the summation
conditions in exponential sums. Let α = (α2, . . . , αd) ∈ [0, 1)d−1, then Ny(X) is
given by

Ny(X) =
∑

x∈Ay(X)

∫

[0,1)d−1
e

( d∑

j=2

α j	
( j)
y (x)

)
dα =

∫

[0,1)d−1
Ty(α; X) dα, (2.4)

where we introduced the exponential sum

Ty(α; P) =
∑

x∈Ay(P)

e

( d∑

j=2

α j	
( j)
y (x)

)
.

In our arguments below, we will omit the parameter P from the notation whenever
there is no danger of confusion. In particular, we drop it in most cases when P = X ,
highlighting it only when we consider exponential sums of size different from X .

For simpler notation below,wewrite s = n−1. The following facts are all contained
in [19, Lemma 1] or easy consequences thereof. By part (i) of that lemma, the lattice
�y has discriminant

d(�y) 	 |l(y)| 	 |y|d−1. (2.5)

Since we will require ψ ≤ (2d)−2 and thus d(�y) 	 Yd−1 	 X1/d , it follows
that CardAy(X) � Xs/d(�y). We denote the successive minima of the lattice �y by
μ1 ≤ . . . ≤ μs , setting μs = μmax, and recall that μ1 · · ·μs � d(�y). Fix a basis
B = {b1, . . . ,bs} ⊆ R

n of �y, which by part (iii) of the same lemma we are free to
choose in such a way that when x ∈ Ay(X) with x = ξ1b1 + . . . + ξsbs , we have
ξi 	 X/|bi | for 1 ≤ i ≤ s. We label the basis elements in increasing order, so that
|b1| ≤ |b2| ≤ . . . ≤ |bs |. With B thusly chosen, it then is an immediate consequence
of the second statement of part (iii) of the abovementioned lemma together with the
definition of the successive minima that |bi | � μi for 1 ≤ i ≤ s.

Set

By(X) =
s∏

i=1

[−cX/μi , cX/μi ],

where c 	 1 is chosen large enough so that the coordinate vector ξ of x lies inBy(X)

whenever x ∈ Ay(X). Moreover, for 2 ≤ j ≤ d set ( j)
y (ξ) = 	

( j)
y (x) and write

φy(α; ξ) =
d∑

j=2

α j
( j)
y (ξ).

By an argument along the lines of that of Lemma 5.2 in [8] one sees that

Ty(α) 	 XεUy(α), (2.6)
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198 J. Brandes

where

Uy(α) = sup
η∈[0,1]d−1

∣∣∣∣
∑

ξ∈By(X)

e(φy(α; ξ) + η · ξ)

∣∣∣∣.

This exponential sum is related to that considered by Schindler and Sofos [24] in their
treatment of forms in many variables over lopsided boxes. In comparison with their
result, however, our argument is more sensitive to the degree of the lopsidedness of
the box. Fortunately, the discriminant of our lattice is fairly small. Indeed, since our
methods will break down when ψ � 1/d2 (see (3.4) below), and for our theorems
we require even ψ 	 1/d4, we find ourselves in a situation where the discriminant
of our lattice satisfies the bound d(�y) 	 X (d−1)ψ 	 XO(1/d3).

3 Van der Corput differences

The discrete differencing operator ∂ is defined by its action on a polynomial F via the
relation ∂hF(x) = F(x + h) − F(x), and we write

∂hi ,...,h1F(x) = ∂hi · · · ∂h1F(x)

for its i-fold iteration. This allows us to state our basic differencing lemma, which is
fairly straightforward and essentially follows from [6, Lemma 2.1].

Lemma 3.1 Let 1 ≤ i ≤ d − 1. Then one has

|Uy(α)|2i 	
(

Xs

d(�y)

)(2i−i−1) ∑

hl∈By(X)

1≤l≤i

∣∣∣∣
∑

ξ∈C
e

(
∂hi ,...,h1φy(α; ξ)

)∣∣∣∣,

where the sets C = C(h1, . . . ,hi ) are boxes (possibly empty) contained insideBy(X).

Proof Upon recalling that CardBy(X) � Xs/d(�y), this is a straightforward refor-
mulation of the standard Weyl differencing procedure as for instance in Davenport’s
monograph [16, Chapter 13]. �

At this stage, the usual procedure would be to apply Lemma 3.1 with i = d − 1,
so that the argument of the exponential function becomes linear, thus yielding either a
non-trivial upper bound or good approximations to the coefficient αd . In the situation
at hand, however, this approach would lose all information connected to the forms


( j)
y with j < d. So instead we follow the approach by Browning and Heath-Brown

[14] and replace the last Weyl differencing step by a suitable van der Corput step. For
2 ≤ j ≤ d we define functions B( j)

y,m for 1 ≤ m ≤ s via the relation


( j)
y (ξ ,h1, . . . ,h j−1) =

s∑

m=1

ξmB
( j)
y,m(h1, . . . ,h j−1). (3.1)
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The density of rational lines on hypersurfaces: a… 199

Furthermore, let θ2, . . . , θd be parameters in the unit interval which will be fixed later,
and define

ν j = ( j − 1)θ j and ω j =
d∑

i= j

νi (2 ≤ j ≤ d). (3.2)

Set further Dj = 1
2 j( j + 1) for 1 ≤ j ≤ d, and for integers q j with 2 ≤ j ≤ d put

Q j =
d∏

i= j

qi . (3.3)

For notational reasons we write

D = Dd , D0 = 0, ωd+1 = 0 and Qd+1 = 1,

and we assume

ψ < 1/(2d2) (3.4)

throughout. For fixed θ j+1, . . . , θd set

R j = X1−ω j+1 |y|−Dd− j μ−(d− j)
max (3.5)

and

ϒ j =
∑

hl∈By(X)

1≤l≤ j−2

∑

w∈By(2R j )

s∏

m=1

min

{
X

μm
,

∥∥∥∥ j !Q j+1α j B
( j)
y,m(h1, . . . ,h j−2,w)

∥∥∥∥
−1}

.

(3.6)

We can now state one of our key iterative lemmas.

Lemma 3.2 Let j ∈ {2, . . . , d} be fixed. When j < d, suppose that θ j+1, . . . , θd are
fixed in such a way that, observing (3.2), one has

ω j+1 + ψ(Dd− j + (d − 1)(d − j)) < 1. (3.7)

Suppose that for any i with j < i ≤ d there exists a natural number qi satisfying
qi 	 Xνi |y|d−iμmax with the property that, in view of (3.3), one has

∥∥Qiαi
∥∥ 	 X−i+ωi |y|Dd−i μd−i+1

max .

123



200 J. Brandes

Then we have the bound

|Uy(α)|2 j−1 	
(

Xs

d(�y)

)2 j−1−( j−1)
(

Rs
j

d(�y)

)−1

ϒ j .

Proof Suppose first that j > 2. In this case, applying Lemma 3.1 with i = j − 2
followed by an application of Cauchy’s inequality gives

|Uy(α)|2 j−1 	
(

Xs

d(�y)

)2 j−1− j ∑

hl∈By(X)

1≤l≤ j−2

∣∣∣∣∣∣

∑

ξ∈C1

e(∂h1,...,h j−2φy(α; ξ))

∣∣∣∣∣∣

2

(3.8)

for suitable boxes C1 = C1(h1, . . . ,h j−2) ⊆ By(X). Let now h1, . . . ,h j−2 be tem-
porarily fixed, and observe that our hypothesis concerning the size of the qi implies
via (3.3) that R j Q j+1 	 X . Consequently, we have

Rs
j

d(�y)

∑

ξ∈C1

e(∂h1,...,h j−2φy(α; ξ))

	
∑

u∈By(R j )

∑

ξ
ξ+Q j+1u∈C1

e(∂h1,...,h j−2φy(α; ξ + Q j+1u)). (3.9)

We denote by C2 the set of ξ for which ξ +Q j+1u ∈ C1 for some u ∈ By(R j ); this
box has cardinality Card C2 � Xs/d(�y). Then with another application of Cauchy’s
inequality one obtains from (3.9) the bound

(
Rs
j

d(�y)

)2
∣∣∣∣∣∣

∑

ξ∈C1

e(∂h1,...,h j−2φy(α; ξ))

∣∣∣∣∣∣

2

	 Xs

d(�y)

∑

ξ∈C2

∣∣∣∣
∑

u∈By(R j )

ξ+Q j+1u∈C1

e(∂h1,...,h j−2φy(α; ξ + Q j+1u))

∣∣∣∣
2

	 Xs

d(�y)

∑

u,v∈By(R j )

∣∣∣∣∣∣

∑

ξ

e
(
∂h1,...,h j−2 (φy(α; ξ + Q j+1u) − φy(α; ξ + Q j+1v))

)
∣∣∣∣∣∣
,

where the inner sum runs over all ξ for which both ξ + Q j+1u and ξ + Q j+1v lie in
C1.

We now make the change of variables ξ ′ = ξ + Q j+1v and w = u − v, so that

φy(α; ξ + Q j+1u) − φy(α; ξ + Q j+1v) = ∂Q j+1wφy(α; ξ ′).
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The density of rational lines on hypersurfaces: a… 201

Thus, upon summing trivially over v, we have shown that

∣∣∣∣∣∣

∑

ξ∈C1

e(∂h1,...,h j−2φy(α; ξ))

∣∣∣∣∣∣

2

	
(

X

R j

)s ∑

w∈By(2R j )

sup
C⊆By(X)

∣∣∣∣∣∣

∑

ξ∈C
e(∂h1,...,h j−2,Q j+1wφy(α; ξ))

∣∣∣∣∣∣
,

where the supremum is over all coordinate-aligned boxes C insideBy(X). Thus, upon
combining this bound with (3.8), it follows that the exponential sum can be bounded
above via

|Uy(α)|2 j−1 	
(

Xs

d(�y)

)2 j−1−( j−1)
(

Rs
j

d(�y)

)−1

W j ,

where

W j =
∑

hl∈By(X)

1≤l≤ j−2

∑

w∈By(2R j )

sup
C⊆By(X)

∣∣∣∣
∑

ξ∈C
e

(
∂h1,...,h j−2,Q j+1w

d∑

i=2

αi
(i)
y (ξ)

)∣∣∣∣.

(3.10)

An analogous bound is also derived easily in the omitted case when j = 2 upon
interpreting the empty sum over hl and the concomitant differences as void, and
noting that the phase factor in Uy(α) disappears in the van der Corput step.

The size of the innermost exponential sum in (3.10) is dominated by the term
corresponding to i = j . In fact, observe that after j − 1 differences taken only the
terms 

(i)
y (ξ) with i ≥ j occur explicitly in the argument of the exponential, and

due to the last Q j+1-van der Corput step all of these contain a factor Q j+1. Hence
whenever j < d and 1 ≤ l ≤ s one has

∂

∂ξl
e

(
∂h1,...,h j−2,Q j+1w

d∑

i= j+1

αi
(i)
y (ξ)

)

	
d∑

i= j+1

∥∥Q j+1αi
∥∥ Xi−2R j |y|d−iμl

	
d∑

i= j+1

∣∣∣∣
Q j+1

Qi

∣∣∣∣ ‖Qiαi‖ Xi−1−ω j+1 |y|−Dd− j+d−iμ−(d− j)
max μl

	 X−1μl ,
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where in the last step we used the hypotheses of the lemma. Upon iterating this
procedure, one confirms for any subset {l1, . . . , lk} ⊆ {1, . . . , s} that

∂k

∂ξl1 · · · ∂ξlk
e

(
∂h1,...,h j−2,Q j+1w

d∑

i= j+1

αi
(i)
y (ξ)

)
	 X−kμl1 · · · μlk .

Suppose that C = ∏
i [Ci ,C ′

i ], recalling that C ⊆ B forces max{|Ci |, |C ′
i |} 	 X/μi

for 1 ≤ i ≤ s. Thus, it follows from multidimensional partial summation that

∑

ξ∈C
e

(
∂h1,...,h j−2,Q j+1w

d∑

i= j

αi
(i)
y (ξ)

)

	
∣∣∣∣
∑

ξ∈C
e(∂h1,...,h j−2,Q j+1wα j

( j)
y (ξ))

∣∣∣∣

+
s∑

l=1

μl

X

∫ C ′
l

Cl

∣∣∣∣
∑

ξ∈C
ξl≤t

e(∂h1,...,h j−2,Q j+1wα j
( j)
y (ξ))

∣∣∣∣ dt

+ . . . + μ1 · · · μs

Xs

∫

C

∣∣∣∣
∑

ξ∈C
ξl≤tl (1≤l≤s)

e(∂h1,...,h j−2,Q j+1wα j
( j)
y (ξ))

∣∣∣∣ dt

	 sup
C′⊆C

∣∣∣∣
∑

ξ∈C′
e(∂h1,...,h j−2,Q j+1wα j

( j)
y (ξ))

∣∣∣∣,

where the supremum is over all coordinate-aligned boxes C′ ⊆ C. Thus, we discern
that the dominant contribution arises indeed from the term of degree j , so that

W j 	
∑

hl∈By(X)

1≤l≤ j−2

∑

w∈By(2R j )

sup
C⊆By(X)

∣∣∣∣∣∣

∑

ξ∈C
e

(
α j∂h1,...,h j−2,Q j+1w

( j)
y (ξ)

)∣∣∣∣∣∣
.

The argument of the exponential is now linear in ξ . Since C ⊆ By(X) is a box
oriented along the coordinate axes, upon recalling the definition (3.1) the standard
estimate on linear exponential sums yields the bound

∣∣∣∣∣∣

∑

ξ∈C
e

(
α j∂h1,...,h j−2,Q j+1w

( j)
y (ξ)

)∣∣∣∣∣∣

	
s∏

m=1

min

{
X

μm
,

∥∥∥∥ j !Q j+1α j B
( j)
y,m(h1, . . . ,h j−2,w)

∥∥∥∥
−1}

.

Thus we have shown that W j 	 ϒ j and the proof of the lemma is complete. �
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4 Geometry of numbers and a nonsingularity condition

The next step is to estimate the quantity ϒ j . For positive real numbers U , V ,W set

N j,y(U , V ;W ) = Card

{
h1, . . . ,h j−2 ∈ By(U ), z ∈ By(V ),

∥∥∥ j !Q j+1α j B
( j)
y,m(h1, . . . ,h j−2, z)

∥∥∥ <
μm

W
(1 ≤ m ≤ s)

}
.

(4.1)

In this notation, standard arguments similar to those in the proof of [16,Lemma13.2]
show that for any fixed θ j+1, . . . , θd one has

ϒ j 	
(

Xs

d(�y)

)1+ε

N j,y(X , R j ; X). (4.2)

Our next goal is to bound the size of N j,y(X , R j ; X). For this purpose we need a gen-
eralisation of Davenport’s lemma on the geometry of numbers (see [16, Lemma 12.6]).
Let Ak,m > 1 be real numbers for 1 ≤ k ≤ j − 1, 1 ≤ m ≤ s, and write

Ak =
s∏

m=1

[−Ak,m, Ak,m] (1 ≤ k ≤ j − 1).

Let further 0 < Zk ≤ 1 for 1 ≤ k ≤ j − 1. For any l with 1 ≤ l ≤ j − 1 writeRl(Z)

for the number of ξ1, . . . , ξ j−1 ∈ Z
s such that ξ k ∈ ZkAk for all 1 ≤ k ≤ j − 1 with

k �= l and ξ l ∈ ZAl , having the property that

∥∥∥ j !Q j+1α j B
( j)
y,m(ξ1, . . . , ξ j−1)

∥∥∥ ≤ Z A−1
l,m (1 ≤ m ≤ s).

In this notation, Schindler and Sofos [24] give the following variant of Davenport’s
result.

Lemma 4.1 (Lemma 2.4 in [24]). Fix Z1, . . . , Z j−1 ∈ (0, 1] and l with 1 ≤ l ≤ j−1.
For any Z, Z ′ in the range 0 < Z ′ ≤ Z ≤ 1 one has

Rl(Z) 	 (Z/Z ′)sRl(Z
′).

Suppose that θ j+1, . . . , θd are fixed in such a way that (3.7) is satisfied. For any θ j

satisfying

0 < θ j ≤ 1 − ω j+1 − ψ(Dd− j + (d − 1)(d − j)) (4.3)

and all 1 ≤ m ≤ s we set

Ak,m = (X/μm)X
(1−θ j )(k−1)

2 , Zk = X− (1−θ j )(k−1)
2 , Z ′

k = X− (1−θ j )(k+1)
2
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for 1 ≤ k ≤ j − 2, and

A j−1,m = (R j X)1/2

μm
X

(1−θ j )( j−2)
2 , Z j−1 =

(
R j

X

)1/2

X− (1−θ j )( j−2)
2 ,

Z ′
j−1 =

(
X

R j

)1/2

X− (1−θ j ) j
2 .

Thus 0 < Z ′
k < Zk ≤ 1 for all k, and one has

Ak,m Zk = X/μm, Ak,m Z
′
k = X θ j /μm, Zk/Z

′
k = X1−θ j ,

Z ′
k/Ak,m = μmX−1−(1−θ j )k = Zk+1/Ak+1,m

for 1 ≤ k ≤ j − 2, and

A j−1,m Z j−1 = R j/μm, A j−1,m Z
′
j−1 = X θ j /μm, Z j−1/Z

′
j−1 = R j X

−θ j ,

Z j−1/A j−1,m = μmX
−1−(1−θ j )( j−2), Z ′

j−1/A j−1,m = μm

R j
X−( j−1)(1−θ j ).

Note here that (4.3) implies via (3.5) and (2.5) that R j > X θ j . Applying Lemma 4.1
consecutively for the indices k = 1, . . . , j − 1 shows that

N j,y(X , R j ; X) 	 X ( j−2)(1−θ j )s(R j X
−θ j )s N j,y(X

θ j , X θ j ; X ( j−1)(1−θ j )R j ),

and hence we infer from (4.2) that

ϒ j 	 X ( j−1)(1−θ j )s+εRs
j

d(�y)
N j,y(X

θ j , X θ j ; X ( j−1)(1−θ j )R j ). (4.4)

Ifwenowmake the assumption that |Ty(α)| � (Xs/d(�y))X−k j θ j for some k j > 0
and some θ j satisfying (4.3), we obtain from Lemma 3.2 together with (2.6) and (4.4)
the bound

N j,y(X
θ j , X θ j ; X−( j−1)(1−θ j )R j ) �

(
X θ j s

d(�y)

) j−1

X−2 j−1k j θ j−ε.

The diophantine approximation condition that is implicit in (4.1) is satisfied
either if the functions B( j)

y,m (1 ≤ m ≤ s) tend to vanish for geometric rea-
sons, or if α j has a good approximation in the rational numbers. Suppose that

j !B( j)
y,m(h1, . . . ,h j−1) is non-zero for some m and some choice of h1, . . . ,h j−1

counted by N j,y(X θ j , X θ j ; X ( j−1)(1−θ j )R j ), and denote its absolute value by q j . Then
q j 	 Xν j |y|d− jμmax, and the approximation condition implied by the definition (4.1)
takes the shape

‖α j q j Q j+1‖ 	 μmaxX
( j−1)(θ j−1)R−1

j 	 X− j+ω j |y|Dd− j μd− j+1
max .
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We summarise the conclusions of our arguments in a lemma.

Lemma 4.2 Let j ∈ {2, . . . , d} be fixed. Recalling (3.2), when j < d assume that
θ j+1, . . . , θd are such that (3.7) is satisfied. Suppose that for any i with j < i ≤ d
there are positive integers qi 	 Xνi |y|d−iμmax with the property that, in view of (3.3),
one has

∥∥Qiαi
∥∥ 	 X−i+ωi |y|Dd−i μd−i+1

max .

Finally, take k j > 0 and θ j > 0 to be parameters, where θ j satisfies (4.3). For any
α ∈ [0, 1)d−1 one of the following holds.

(A) The exponential sum is bounded by

|Ty(α)| 	 Xs

d(�y)
X−k j θ j+ε.

(B) There exist integers a j and q j satisfying 1 ≤ q j 	 Xν j |y|d− jμmax as well as
0 ≤ a j ≤ Q j such that

|Q jα j − a j | 	 X− j+ω j |y|Dd− j μd− j+1
max .

(C) The number of ξ1, . . . , ξ j−1 ∈ By(X θ j ) for which B( j)
y,m(ξ1, . . . , ξ j−1) = 0 for

1 ≤ m ≤ s is at least of order (X θ j s/d(�y))
j−1X−2 j−1k j θ j−ε.

Our next goal is to interpret the third case geometrically. Write M j (y) for the

variety containing all (ξ1, . . . , ξ j−1) ∈ A
( j−1)s
C

that satisfy

B( j)
y,m(ξ1, . . . , ξ j−1) = 0 (1 ≤ m ≤ s).

It is clear (for instance from Theorem 3.1 in [13]) that for any positive real number Z
one has

Card
{
(h1, . . . ,h j−1) ∈ Z

( j−1)s ∩ M j (y) : |hi |≤ Z (1≤ i ≤ j − 1)
}

	 ZdimM j (y).

As in the work of Schindler and Sofos [24] we cover the domain (By(X θ j )) j−1 by at

most O(μ
s( j−1)
max /d(�y)

j−1) translates of the box [−X θ j /μmax, X θ j /μmax]s( j−1). In
particular, since d(�y) � μ1 · · · μs 	 μs

max, the number of boxes in the covering is
positive. Suppose now that

ψ < �k jθ j (4.5)
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for all j and a suitably small parameter � , so that μmax 	 X (d−1)�k j θ j . Since [13,
Theorem 3.1] allows for translations, we infer that

Card
{
(ξ1, . . . , ξ j−1) ∈ (By(X

θ j )) j−1 ∩ M j (y)
}

	
(

μs
max

d(�y)

) j−1 (
X θ j

μmax

)dimM j (y)

	
(
X (d−1)�k j θ j s

d(�y)

) j−1 (
X θ j (1−(d−1)�k j )

)dimM j (y)
,

where in the second step we used that ( j − 1)s − dimM j (y) ≥ 0 trivially by the
definition ofM j (y) as a variety insideA( j−1)s . We thus discern that whenever we are
in case (C) of Lemma 4.2, we must have the bound

(
X θ j s

d(�y)

) j−1

X−2 j−1k j θ j−ε 	
(
X (d−1)�k j θ j s

d(�y)

) j−1 (
X θ j (1−(d−1)�k j )

)dimM j (y)
,

which simplifies to

(X θ j (1−(d−1)�k j ))( j−1)s−dimM j (y) 	 X2 j−1k j θ j−ε.

It follows that for any j , the case (C) of Lemma 4.2 is excluded when

( j − 1)s − dimM j (y) >
2 j−1k j

1 − (d − 1)�k j
. (4.6)

We thuswant to choose our parameters in such away that (4.6) holds for all 2 ≤ j ≤ d.
We begin by observing that M j−1(y) is obtained from M j (y) by intersect-

ing with the s hyperplanes defined by h j−1 = y. This gives the inequality
dimM j−1(y) ≥ dimM j (y) − s for all j with 3 ≤ j ≤ d, and upon solving the
recursion we deduce that

dimM j (y) ≤ ( j − 2)s + dimM2(y) (2 ≤ j ≤ d). (4.7)

It thus suffices to understand the set M2(y).

Lemma 4.3 Let y ∈ V . We have M2(y) = 〈ker Hy, y〉 and thus

dimM2(y) ≤ dim ker Hy + 1.

Proof It follows from the definition of (2) that M2(y) is given by the set of all
h ∈ A

n
C
satisfying 	

(1)
y (h) = 0 and (Hyh) · x = 0 for all x having 	

(1)
y (x) = 0. In

particular, h has to be such that (Hyh) · x = 0 whenever (Hyy) · x = 0. This is clearly
satisfied if h ∈ ker Hy, as then the first equation holds trivially. On the other hand, if
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h /∈ ker Hy, both equations define hyperplanes which coincide precisely if the vectors
Hyh and Hyy are proportional, or in other words, h− αy ∈ ker Hy for some scalar α.
Rewriting gives h ∈ 〈ker Hy, y〉, and the statement follows. �

We now quantify the set of points y for which ker Hy is large. For a natural number
ρ set

A(ρ) = {y ∈ A
n
C

: dim ker Hy ≤ ρ − 1}

and

B(ρ) = {y ∈ A
n
C

: dim ker Hy ≥ ρ},

so that the setsA(ρ) andB(ρ) are complementary.Observe also thatwith this definition
we have V∗

2,ρ = B(ρ) ∩ V and V2,ρ = A(ρ) ∩ V . Suppose that y ∈ A(ρ) for some
natural number ρ. It then follows from (4.6) and (4.7) via Lemma 4.3 that case (C) of
Lemma 4.2 is excluded whenever the inequalities

s − ρ >
2 j−1k j

1 − (d − 1)�k j
(2 ≤ j ≤ d) (4.8)

are satisfied.
To conclude the section, we record the bound

Card{y ∈ V∗
2,ρ(Z) : |y| ≤ Y } ≤ Card{y ∈ B(ρ) ∩ Z

n : |y| ≤ Y } 	 Yn−ρ, (4.9)

which follows from the argument of [20, Lemma 2] via Theorem 3.1 in [13].

5 Major andminor arcs

Lemma 4.2 is designed to inductively define a partition into major and minor arcs
for the entries α j of α as j runs from d to 2. The size of the major arcs obtained in
this way is controlled by the parameters θ j and k j which it is now our job to choose
optimally. Throughout this section and the next we will assume that y ∈ A(ρ) for
some parameter ρ. Also, we will work on the assumption that (4.8) is satisfied, so that
the singular case in Lemma 4.2 is excluded.

Given an index j and parameters θ j , . . . , θd ∈ (0, 1], we define the major arcs
My(X; θ j , . . . , θd) to be the set of all α ∈ [0, 1)d−1 for which there exist integers
q j , . . . , qd and a j , . . . , ad having the property that for all i ∈ { j, j + 1, . . . , d} one
has

1 ≤ qi ≤ c j X
νi |y|d−iμmax, 0 ≤ ai ≤ Qi ,

|αi Qi − ai | ≤ c j X
−i+ωi |y|Dd−i μd−i+1

max (5.1)
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for some suitable constant c j . Here, we implicitly used the notation (3.2) and (3.3).
Let

my(X; θ j , . . . , θd) = [0, 1)d−1\My(X; θ j , . . . , θd)

be the corresponding minor arcs. One checks that the major arcs are disjoint as soon
as X is sufficiently large and

ω j < j/2 − ψ(Dd− j + (d − 1)(d − j + 1)).

The definition of the major arcs as given above is iterative in nature in that the approx-
imation of α j involves the denominators qi for all i > j , and this reflects the fact that
our work of the previous section generates an approximation for α j only in the case
when all αi with i > j have already been approximated. In a sense, therefore, the
major arcs My(X; θ j , . . . , θd) are only defined inside the setMy(X; θ j+1, . . . , θd).

At this point, we observe that the size of Ty(α) is well defined for any particular α.
In the light of Lemma 4.2, this means that we lose nothing by making the choice

k jθ j = kiθi (2 ≤ i, j ≤ d). (5.2)

With this assumption, as a consequence of our nested definition of the major arcs we
have

|Ty(α)| 	 Xs

d(�y)
X−k j θ j+ε whenever α ∈ my(X , θ j , . . . , θd),

where the ε absorbs any possible dependence on the constants c j . As the convention
(5.2) renders much of the information in our above notation superfluous, we put

M
( j)
y (X; θ j ) = My(X; θ j , (k j/k j+1)θ j , . . . , (k j/kd)θ j ),

and we adopt an analogous convention for the minor arcs.
It is useful to make the definition

� j =
d∑

i= j

ωi =
d∑

i= j

(i − j + 1)νi (2 ≤ j ≤ d).

Write further

σ j =
d∑

i= j

(i − 1)

ki
and � j =

d∑

i= j

σ j =
d∑

i= j

(i − j + 1)(i − 1)

ki
, (5.3)

then (5.2) implies that

ω j = σ j k jθ j and � j = � j k jθ j . (5.4)
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When there is no danger of confusion, we will employ the convention that

� = �2, σ = σ2, ω = ω2.

Also, define

� j =
d∑

i= j

Dd−i = 1
6 (d − j)(d − j + 1)(d − j + 2),

noting that �d = 0 and

� j ≤ �2 = 1
6d(d2 − 3d + 2) for all j .

We then have the following simple lemma.

Lemma 5.1 For any j with 2 ≤ j ≤ d the volume of the multi-dimensional major arcs
is bounded by

volMy(X; θ j , . . . , θd) 	 X−(D−Dj−1)+� j+ω j |y|� j+Dd− j μ
Dd− j+2−1
max .

Proof Recall the notation (3.2) and (3.3). The condition (5.1) implies that

volMy(X; θ j , . . . , θd)

	
c j X

ν j |y|d− jμmax∑

q j=1

Q j∑

a j=0

(
X− j+ω j |y|Dd− j μ

d− j+1
max

Q j

)
× . . .

×
c j Xνd μmax∑

qd=1

Qd∑

ad=0

(
X−d+ωdμmax

Qd

)
.

We can perform the summations over all a j . After that, the sums disentangle, and we
obtain

volMy(X; θ j , . . . , θd) 	
d∏

i= j

⎛

⎝
ci Xνi |y|d−iμmax∑

qi=1

X−i+ωi |y|Dd−i μd−i+1
max

⎞

⎠

	
d∏

i= j

X−i+ωi+νi |y|Dd−i+d−iμd−i+2
max

	 X−(D−Dj−1)+� j+ω j |y|� j+Dd− j μ
Dd− j+2−1
max

as claimed. �
Our next task is to analyse under which conditions the contribution of the minor

arcs is under control. We first consider the one-dimensional minor arcs m(d)
y (X; θd).
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Lemma 5.2 For any choice of positive parameters θd ∈ (0, 1], kd and δd suppose that

kd > D − 1 + δd (5.5)

and

(1 − �d − σd)kdθd > Dd−1 − 1 + δd . (5.6)

Then for some ν > 0 we have the bound

∫

m
(d)
y (X;θd )

|Ty(α)| dα 	 Xs−(D−1)−δd−νμmax.

Proof Let θd be given. We can find a sequence θ
(i)
d with the property

1 = θ
(0)
d > θ

(1)
d > . . . > θ

(M)
d = θd > 0

and subject to the condition

(
θ

(i−1)
d − θ

(i)
d

)
kd < (1 − �d − σd)kdθd − (Dd−1 − 1) − δd (1 ≤ i ≤ M).

(5.7)

Thanks to (5.6), this is always possiblewithM = O(1).We now infer fromLemma4.2
and (5.5) that

∫

m
(d)
y (X;θ(0)

d )

|Ty(α)| dα 	 sup
α∈m(d)

y (X;θ(0)
d )

|Ty(α)|	 Xs

d(�y)
X−kd+ε 	 Xs−(D−1)−δd−ν,

provided that ν is small enough in terms of the other parameters. Further, if we write

m
(d)
y,i = m(d)

y (X; θ
(i)
d ) ∩ M(d)

y (X; θ
(i−1)
d ) (1 ≤ i ≤ M),

one obtains via Lemma 5.1, (5.4) and Lemma 4.2 that

∫

m
(d)
y,i

|Ty(α)| dα 	 volM(d)
y (X; θ

(i−1)
d ) sup

α∈m(d)
y (X;θ(i)

d )

|Ty(α)|

	 Xs

d(�y)
X−(D−Dd−1)+(�d+σd )kdθ

(i−1)
d −kdθ

(i)
d +εμ2

max,

and (5.7) ensures that in the exponent one has for every i = 1, . . . , M the relation

−kdθ
(i)
d + (�d + σd)kdθ

(i−1)
d ≤ (

θ
(i−1)
d − θ

(i)
d

)
kd − (

1 − (�d + σd)
)
kdθd

< −(Dd−1 − 1) − δd − ν
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for some sufficiently small ν > 0. Since μmax 	 d(�y) and

∫

m
(d)
y (X;θd )

|Ty(α)| dα =
∫

m
(d)
y (X;θ(0)

d )

|Ty(α)| dα +
M∑

i=1

∫

m
(d)
y,i

|Ty(α)| dα

with M = O(1), this completes the proof. �

We now employ an iterative argument in order to control the contribution from the
nested sets of minor arcs. Fix some j in the range 2 ≤ j ≤ d − 1, and suppose that
the contribution arising from the setsm(i)

y (X; θi ) is already bounded for all i > j and
some suitable parameter θ∗

j+1, where the θi with i > j + 1 are determined by θ∗
j+1

via (5.2).

Lemma 5.3 Fix an index j with 2 ≤ j ≤ d − 1. Suppose that the parameters ki with
j + 1 ≤ i ≤ d as well as θ∗

j+1 are given in accordance with (3.7). For some δ j+1 ≥ 0
assume that

(1 − � j+1 − σ j+1)k j+1θ
∗
j+1 > Dj − 1 + δ j+1. (5.8)

Furthermore, for non-negative parameters δ j and k j suppose that θ j satisfies (4.3) as
well as the inequalities

0 < θ j < θ
(0)
j = k j+1

k j
θ∗
j+1 (5.9)

and

(1 − (� j + σ j ))k jθ j > Dj−1 − 1 + δ j . (5.10)

Then the j-th minor arcs contribution is bounded by

∫

m( j)(X;θ j )
|Ty(α)| dα 	 Xs−(D−1)

d∑

i= j

X−δi−ν |y|�i+Dd−i μ
Dd−i+2−2
max ,

where ν is some suitably small real number.

Proof Observe first that with our notation in (5.9) we have the decomposition

m
( j)
y (X; θ

(0)
j ) = m

( j+1)
y (X; θ∗

j+1) ∪
(
m

( j)
y (X; θ

(0)
j ) ∩ M

( j+1)
y (X; θ∗

j+1)
)

.
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Suppose that the lemma has been established for j replaced by j + 1, and recall (2.5)
and (5.4). We infer from the inductive hypothesis and Lemmata 5.1 and 4.2 that

∫

m
( j)
y (X;θ(0)

j )

|Ty(α)| dα

	
∫

m
( j+1)
y (X;θ∗

j+1)

|Ty(α)| dα + volM( j+1)
y (X; θ∗

j+1) sup
α∈m( j)

y (X;θ(0)
j )

|Ty(α)|

	
d∑

i= j+1

Xs−(D−1)−δi−ν |y|�i+Dd−i μ
Dd−i+2−2
max

+ Xs

d(�y)
X−(D−Dj )+(� j+1+σ j+1)k j+1θ

∗
j+1−k j θ

(0)
j +ε|y|� j+1+Dd− j−1μ

Dd− j+1−1
max .

Recall (5.9). Thus the above bound implies via (5.8) and the relation μmax 	 d(�y)

that

∫

m
( j)
y (X;θ(0)

j )

|Ty(α)| dα 	 Xs−(D−1)
d∑

i= j+1

X−δi−ν |y|�i+Dd−i μ
Dd−i+2−2
max ,

provided that ν is small enough in terms of the other parameters.
Let now θ j be given according to (5.9) and (5.10). We can find a sequence θ

(i)
j

satisfying

θ
(0)
j > θ

(1)
j > . . . > θ

(M)
j = θ j > 0,

and subject to the condition

(
θ

(i−1)
j − θ

(i)
j

)
k j < (1 − (� j + σ j ))k jθ j − (Dj−1 − 1) − δ j (1 ≤ i ≤ M).

(5.11)

This is always possible with M = O(1). For i ≥ 1 set

m
( j)
y,i = m

( j)
y (X; θ

(i)
j ) ∩ M

( j)
y (X; θ

(i−1)
j ).

Then one deduces from Lemma 5.1, Lemma 4.2, (5.4) and (5.11) that

∫

m
( j)
y,i

|Ty(α)| dα 	 volM( j)
y (X; θ

(i−1)
j ) sup

α∈m( j)
y (X;θ(i)

j )

|Ty(α)|

	 Xs

d(�y)
X−(D−Dj−1)+(� j+σ j )k j θ

(i−1)
j −k j θ

(i)
j +ε|y|� j+Dd− j μ

Dd−i+2−1
max

	 Xs−(D−1)−δ j−ν |y|� j+Dd− j μ
Dd− j+2−2
max
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for each i ≥ 1, and thus altogether

∫

m
( j)
y (X;θ j )

|Ty(α)| dα =
∫

m
( j)
y (X;θ(0)

j )

|Ty(α)| dα +
M∑

i=1

∫

m
( j)
y,i

|Ty(α)| dα

	 MXs−(D−1)
d∑

i= j

X−δi−ν |y|�i+Dd−i μ
Dd−i+2−2
max .

Since M = O(1), this completes the proof. �

We may now apply first Lemma 5.2 and then Lemma 5.3 successively to each
of the θ j . Thus, for the initial step we need to ensure that the condition (5.5) is
satisfied, and after that we have to satisfy the requirements described by (5.10) for all
2 ≤ j ≤ d. On the other hand, we have to be careful to ensure that in each iteration
we can take θ∗

j+1 small enough for Lemma 4.2 to be applicable within Lemma 5.3.

The crucial requirement here is for the bound (4.3) to be satisfied for θ
(0)
j for all j

with 2 ≤ j ≤ d − 1. Using (5.4) and our convention (5.2), the bound of (4.3) can be
re-written in the form

(σ j + 1/k j−1)k jθ j < 1 − (Dd− j+1 + (d − 1)(d − j + 1))ψ (3 ≤ j ≤ d).

(5.12)

For 3 ≤ j ≤ d, the condition (5.12) is compatible with the hypotheses (5.6) and (5.10)
of Lemmata 5.2 and 5.3, respectively, only if

(
σ j + k−1

j−1

) Dj−1 − 1 + δ j

1 − (Dd− j+1 + (d − 1)(d − j + 1))ψ
+ � j + σ j < 1. (5.13)

At the same time, a comparison of (5.12) with (4.5) shows that we also require

σ j + 1

k j−1
<

(1 − (Dd− j+1 + (d − 1)(d − j + 1))ψ)�

ψ
. (5.14)

Meanwhile, when j = 2, the bound of (5.12) does not apply, and we only have the
constraints stemming from (4.5) and (5.10), which can be rewritten as

k2θ2 > max

{
δ2

1 − (�2 + σ2)
, ψ�−1

}
. (5.15)

We will attend to this bound later, but in the meanwhile we remark that regardless of
the specific values θ2 > 0 and δ2 ≥ 0, it implies that we must have �2 + σ2 < 1.
Summarising, we obtain the following intermediate result.
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Proposition 5.4 Assume (4.8). Suppose that (5.13) and (5.14) are satisfied for all
j ≥ 3, and that furthermore (5.5) and (5.15) hold. Then for some ν > 0 we have

Ny(X) =
∫

M
(2)
y (X;θ)

Ty(α) dα + O

⎛

⎝Xs−(D−1)−ν
d∑

j=2

X−δ j |y|� j+Dd− j μ
Dd− j+2−2
max

⎞

⎠ .

(5.16)

Proof This follows from (2.4) upon applying Lemmata 5.2 and 5.3, and the discussion
preceding the statement of the proposition. �

6 Understanding themain term

In order to show that the main term of (5.16) is indeed of the expected shape, it is
necessary for the approximations of all components ofα to have the same denominator.
Recall that we wrote ω = ω2, and set

q = Q2 and b j = (q/Q j )a j (2 ≤ j ≤ d).

For some positive constant c set W = cXω|y|Dd−2+(d−1)2 , where ω is as obtained in
Proposition 5.4. Our final set Py(X;ω) of major arcs is now the set of all α with an
approximation of the shape

1 ≤ q ≤ W and |α j − b j/q| ≤ X− jW (2 ≤ j ≤ d). (6.1)

Recall (2.5). When c is sufficiently large, the set Py(X;ω) is slightly larger than

M
(2)
y (X; θ), so the corresponding minor arcs py(X;ω) = [0, 1)d−1\Py(X;ω) are

contained inm(2)
y (X; θ). In the statement of Proposition 5.4, we may therefore replace

the major arcs M(2)
y (X; θ) by the larger set Py(X;ω).

Let Ly denote the s-dimensional subspace of Rn containing �y. Furthermore, we
define Ly(X) = Ly ∩ [−X , X ]n , and we let �y(q) denote the set of residue classes
modulo q of lattice points x ∈ �y. Also, set

ϑy(α; x) =
d∑

j=2

α j	
( j)
y (x)

for the analogue of φy in terms of the original variables x ∈ �y. In this notation, we
can now define

Sy(q, a) =
∑

x∈�y(q)

e(ϑy(a/q; x)) and vy(β, X) =
∫

Ly(X)

e(ϑy(β; ξ)) dξ . (6.2)

These functions allow us to approximate the exponential sum Ty(α) on the major arcs.
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Lemma 6.1 Suppose that α = a/q + β with q ≤ X1−ψ(d−1). We have

∣∣∣∣Ty(α) − Sy(q, a)
qs

vy(β, X)

d(�y)

∣∣∣∣ 	 Xs−1q

⎛

⎝1 + 1

d(�y)

d∑

j=2

|β j |X j |y|d− j

⎞

⎠ . (6.3)

Proof This is essentially standard, but due to our specific setting over a lattice we
prefer to provide a full proof. Sorting the terms into arithmetic progressions modulo
q, we find that

Ty(α) =
∑

z∈�y(q)

e(ϑy(a/q; z))
∑

w∈�y
qw+z∈Ay(X)

e(ϑy(β; qw + z)),

and hence

∣∣∣∣Ty(α) − Sy(q, a)
qs

vy(β, X)

d(�y)

∣∣∣∣ 	
∑

z∈�y(q)

e(ϑy(a/q; z))H(q, z,β),

where

H(q, z,β) =
∑

w∈�y
qw+z∈Ay(X)

e(ϑy(β; qw + z)) − 1

qsd(�y)

∫

ξ∈Ly(X)

e(ϑy(β; ξ)) dξ .

Denote the fundamental domain of�y byF , and forw ∈ �y writeF(w) = w+F
for the fundamental domain located atw. Moreover, wewriteFq,z(w) = q(w+F)+z
for the domain, stretched by a factor q, that is located at qw + z. We want to replace
H(q, z,β) by the related quantity

H∗(q, z,β) =
∑

w∈�y
qw+z∈Ay(X)

{
e(ϑy(β; qw + z)) − 1

qsd(�y)

∫

Fq,z(w)

e(ϑy(α; ξ)) dξ

}
.

Clearly, we have volF = d(�y) and volFq,z(w) = qsd(�y). Thus, Ly(X) may
be covered by O(Xs/(qsd(�y))) domains Fq,z(w) as w varies over �y, and the
boundary intersects at most roughly (X/q)s−1μmax/d(�y) 	 (X/q)s−1 of these.
Thus, the defect is of size at most O(Xs−1qd(�y)). With this information, we find
upon partitioning the integrating domain that H(q, z,β)− H∗(q, z,β) 	 (X/q)s−1,
and thus

∣∣∣∣Ty(α) − Sy(q, a)
qs

vy(β, X)

d(�y)

∣∣∣∣ 	
∑

z∈�y(q)

e(ϑy(a/q; z))H∗(q, z,β) + O(Xs−1q).
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Rewriting

H∗(q, z,β) =
∑

w∈�y
qw+z∈Ay(X)

1

d(�y)

∫

F(w)

e(ϑy(β; qw + z)) − e(ϑy(β; qξ + z)) dξ

puts us into a position where we can apply the mean value theorem, whereupon we
see that

H∗(q, z,β) 	
∑

w∈�y
qw+z∈Ay(X)

q
d∑

j=2

|β j |X j−1|y|d− j

	
(

Xs

qsd(�y)
+ 1

)
q

d∑

j=2

|β j |X j−1|y|d− j .

The desired bound follows now upon applying the trivial bound Sy(q, a) 	 qs . �

In particular, when α ∈ Py(X;ω), inserting the conditions (6.1) into (6.3) shows
that

∣∣∣∣Ty(α) − Sy(q, a)
qs

vy(β, X)

d(�y)

∣∣∣∣ 	 Xs−1W 2.

Since

volPy(X;ω) 	
W∑

q=1

d∏

j=2

qX− jW 	 X−(D−1)W 2d−1,

it follows that

∫

Py(X;ω)

Ty(α) dα =
W∑

q=1

q−1∑

a=0
(a,q)=1

Sy(q, a)
qs

∫

|β j |≤X− j W
(2≤ j≤d)

vy(β, X)

d(�y)
dβ

+ O
(
Xs−DW 2d+1

)
. (6.4)

As usual, the growth rate of the main term in the asymptotic formula comes from
the contribution of vy(β, X). Setting γ j = X jβ j for 2 ≤ j ≤ d, the identity

vy(β, X) = Xsvy(γ , 1) (6.5)
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follows from (6.2) by applying integration by parts, and in the same manner one finds
further that

∫

|β j |≤X− j W
(2≤ j≤d)

vy(β, X) dβ = Xs−(D−1)
∫

|β|≤W
vy(β, 1) dβ.

Let

Jy(W ) =
∫

[−W ,W ]d−1

vy(β, 1)

d(�y)
dβ and Sy(W ) =

W∑

q=1

q−s
q−1∑

a=0
(a,q)=1

Sy(q, a),

then we can rewrite (6.4) in the shape

∫

Py(X;ω)

Ty(α) dα = Xs−D+1Sy(W )Jy(W ) + O
(
Xs−DW 2d+1

)
. (6.6)

In order to understand the main term in (6.6), we extend the truncated singular
integral Jy(W ) and the truncated singular series Sy(W ) to infinity by taking the
limits X → ∞ in both expressions. In our analysis of these limits, the notations
β j = (β j , . . . , βd) and a j = (a j , . . . , ad) (2 ≤ j ≤ d) will prove useful.

We start by considering the singular integral.

Lemma 6.2 We have

|vy(β, 1)| 	 min
2≤ j≤d

|y|Dd− j /σ j μ
(d− j+1)/σ j
max (1 + |β j |)−1/σ j+ε.

Proof Fix j with 2 ≤ j ≤ d. For |β j | ≤ 1 the claim is trivial, so we may assume that
|β j | > 1. Choose P = |β|A for some large parameter A to be fixed later, and write
γ = (P−2β2, . . . , P−dβd) and γ j = (γ j , . . . , γd). Recalling (5.4), we fix θ j such
that

max
j≤i≤d

|β i |
c j Pωi |y|Dd−iμd−i+1

max
= 1,

so that

P−k j θ j 	 |β j |−1/σ j |y|Dd− j /σ j μ
(d− j+1)/σ j
max . (6.7)

With this choice, γ j lies in the major arcs M( j)
y (P; θ j ). Clearly, the major arcs are

disjoint when A is sufficiently large, so γ j is best approximated by q = 1 and a j = 0.
We therefore have from Lemma 6.1 and (6.5) that

|vy(β, 1)| 	
(

Ps

d(�y)

)−1

|Ty(γ ; P)| + P−1|β|. (6.8)
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On the other hand, γ lies just on the boundary of the major arcs and thus by
continuity the minor arcs bound continues to apply. Consequently, we obtain from
Lemma 4.2 and (6.7) the complementary estimate

|Ty(γ ; P)| 	
(

Ps

d(�y)

)
P−k j θ j+ε 	

(
Ps

d(�y)

)
Pε|β j |−1/σ j |y|Dd− j /σ j μ

(d− j+1)/σ j
max .

Inserting this into (6.8) leads to

|vy(β, 1)| 	 Pε|β j |−1/σ j+ε|y|Dd− j /σ j μ
(d− j+1)/σ j
max + P−1|β|,

and upon recalling that P = |β|A ≥ |β j |A, this reproduces the desired estimate
whenever A is sufficiently large. �

It follows from Lemma 6.2 that for any tuple λ2, . . . , λd ∈ [0, 1] satisfying the
relation λ2 + . . . + λd = 1 we have

∫

β∈Rd−1

|β|>W

|vy(β, 1)|
d(�y)

dβ

	 1

d(�y)

∫

β∈Rd−1

|β|>W

d∏

j=2

(
|y|Dd− j /σ j μ

(d− j+1)/σ j
max (1 + |β|)−1/σ j+ε

)λ j
dβ.

The set of all β ∈ R
d−1 having |β| = r has volume O(rd−2). Recalling that we have

μmax 	 d(�y), it follows that the above integral is bounded by

∫

β∈Rd−1

|β|>W

|vy(β, 1)|
d(�y)

dβ 	 |y|κ1μ−1+κ2
max

∫

r>W
(1 + r)−κ3+d−2+ε dr ,

where

κ1 =
d∑

j=2

Dd− jλ j

σ j
, κ2 =

d∑

j=2

(d − j + 1)λ j

σ j
, κ3 =

d∑

j=2

λ j

σ j
.

The integral converges if we can pick λ2, . . . , λd in such a way that κ3 > d − 1. We
take λ j = σ j for j ≥ 3, so that λ2 = 1 − �3 = σ2 + (1 − �2). With this choice, the
desired inequality κ3 > d − 1 is satisfied if � < 1, and we have

κ3 = d − 1 + 1 − �2

σ2
= d + 1 − � − σ

σ
.

Moreover, using these values in our expression for κ1 and κ2 we obtain

κ1 = �2 + Dd−2 + Dd−2
1 − σ − �

σ
and κ2 = D − 1 + (d − 1)

1 − σ − �

σ
.
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Upon referring to (2.5), this allows us to conclude that

Jy − Jy(W ) 	 |y|�2+Dd−2+(d−1)(D−2)+(Dd−2+(d−1)2) 1−σ−�
σ W−1− 1−σ−�

σ
+ε

	 |y| 13 (2d3−11d+9)+ 1
2 (3d2−7d+4) 1−σ−�

σ W−1− 1−σ−�
σ

+ε
, (6.9)

and we have the bound

Jy(W ) 	 |y| 13 (2d3−11d+9)+ 1
2 (3d2−7d+4) 1−σ−�

σ (6.10)

uniformly in W .
The next step is to complete the truncated singular series.

Lemma 6.3 The terms of the singular series are bounded by

|q−s Sy(q, a)| 	 min
2≤ j≤d

qε

(
q

(q, a j )

)−1/σ j

|y|Dd− j /σ j μ
(d− j+1)/σ j
max .

Proof For q = 1 the estimate is trivial, so we may suppose that q > 1. Fix P = q A

for some large A to be determined later. For any j with 2 ≤ j ≤ d fix θ j such that

max
j≤i≤d

q/(q, ai )

cd−i
j Pωi |y|Dd−i μd−i+1

max
= 1,

so that in particular

P−k j θ j 	
(

q

(q, a j )

)−1/σ j

|y|Dd− j /σ j μ
(d− j+1)/σ j
max (6.11)

and a j/q ∈ M
( j)
y (P; θ j ). Note that by taking A sufficiently large we may ensure

that the major arcs M( j)
y (P; θ j ) are disjoint, so a j/q is best approximated by itself.

Applying Lemma 6.1 and (6.5) with β = 0 and observing that vy(0, 1) � 1, it follows
that

q−s Sy(q, a) 	
(

Ps

d(�y)

)−1

|Ty(q−1a; P)| + P−1q. (6.12)

At the same time, a j/q can be viewed as lying just on the boundary of themajor arcs in
the q-aspect. As before, this implies that Lemma 4.2 and (6.11) furnish the additional
minor arcs bound

|Ty(q−1a; P)| 	 d(�y)
−1Ps−k j θ j+ε

	 Ps+ε

d(�y)

(
q

(q, a j )

)−1/σ j

|y|Dd− j /σ j μ
(d− j+1)/σ j
max ,
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and on substituting this into (6.12) we discern that

q−s Sy(q, a) 	 Pε

(
q

(q, a j )

)−1/σ j

|y|Dd− j /σ j μ
(d− j+1)/σ j
max + P−1q (2 ≤ j ≤ d).

Recalling that P = q A, it is clear that for A sufficiently large the first term dominates.
�

Lemma 6.3 implies that the singular series may be extended to infinity. Let
τ2, . . . , τd be natural numbers with the property that τ j |τ j+1 for 2 ≤ j ≤ d − 1
and τd |q. For any j the number of choices of a (mod q) satisfying (q, a j ) = τ j is

O(qd−1/τ
d− j+1
j ). It thus follows that we have

W∑

q=1

q−1∑

a=0
(a,q)=1

q−s |Sy(q, a)|

	
W∑

q=1

∑

τ2|...|τd |q
min

2≤ j≤d
q j−2+ε

(
q

τ j

)d− j+1−1/σ j

|y|Dd− j /σ j μ
(d− j+1)/σ j
max

	
W∑

q=1

qd−1+ε
d∏

j=2

(
q−1/σ j |y|Dd− j /σ j μ

(d− j+1)/σ j
max

)λ j

for any choice of λ2, . . . , λd ∈ [0, 1]with λ2+ . . .+λd = 1. Just like in the treatment
of the singular integral, we can take λ j = σ j for 3 ≤ j ≤ d, and λ2 = 1 − �3. This
choice yields the bound

Sy − Sy(W ) 	 |y|�2+Dd−2+(d−1)(D−1)+ 1−σ−�
σ

(Dd−2+(d−1)2)
∑

q≥W

q−1− 1−σ−�
σ

+ε

	 |y| 23 (d3−4d+3)+ 1
2 (3d2−7d+4) 1−σ−�

σ W− 1−σ−�
σ

+ε (6.13)

whenever we have � + σ < 1. Again, we recall that this last inequality is satisfied as
a consequence of the more stringent condition (5.15). In particular, we have the bound

Sy(W ) 	 |y| 23 (d3−4d+3)+ 1
2 (3d2−7d+4) 1−σ−�

σ , (6.14)

which holds uniformly in W .
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We can now complete the singular series and integral. Here, from (6.9), (6.10),
(6.13) and (6.14) and upon inserting our value W = cXω|y|Dd−2+(d−1)2 , we find that

|JySy − Jy(W )Sy(W )| 	 |y| 13 (4d3−19d+15)+(3d2−7d+4) 1−σ−�
σ W− 1−σ−�

σ
+ε

	 X−ω
1−σ−�

σ
+ε|y| 13 (4d3−19d+15)+ 1

2 (3d2−7d+4) 1−σ−�
σ .

(6.15)

It remains to collect our estimates.

Proposition 6.4 Make the assumption (3.4) and suppose that the conditions (5.5),
(5.13), (5.14) and (5.15) are satisfied. Moreover, assume (4.8). In this case we have
the asymptotic formula

Ny(X) = Xn−D (
SyJy + O(E(y, θ))

)
,

where

E(y, θ) =
d∑

j=2

X−δ j−ν |y|� j+Dd− j+(Dd− j+1+d− j)(d−1)

+ X−1+(2d+1)ω|y| 12 (6d3−11d2+d+4)

+ X−ω
1−σ−�

σ
+ε|y| 13 (4d3−19d+15)+ 1

2 (3d2−7d+4) 1−σ−�
σ . (6.16)

Proof Recall that we had n = s + 1. The statement now follows from Proposition 5.4
together with (6.6) and (6.15). �

Before concluding the section, we remark that the singular series and integral can
be expressed in terms of solution densities of the system (2.2) over the real and p-adic
numbers. Indeed, since under the hypotheses of the proposition the singular series
is absolutely convergent, by standard arguments it can be written as an absolutely
convergent Euler product Sy = ∏

p χp, where

χp =
∞∑

h=0

p−hs
ph∑

a=1
(a,p)=1

Sy(p
h, a)

= lim
H→∞ pH(D−1−s)#{x ∈ �y(p

H ) : 	
( j)
y (x) ≡ 0 (mod pH ) for 2 ≤ j ≤ d}.

Upon recalling that �y(q) denotes the set of all x ∈ (Z/qZ)n that satisfy the congru-

ence 	
(1)
y (x) ≡ 0 (mod q), we see that the above can be re-written as

χp = lim
H→∞ pH(D−n)#{x ∈ (Z/pHZ)n : 	

( j)
y (x) ≡ 0 (mod pH ) for 1 ≤ j ≤ d}.
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Thus, each factor χp reflects the solution density of (2.2) in Qp.

For the singular integral we proceed in a similar manner. Recall that 	
(1)
y is an

invertible linear transformation. Consider the manifold

M(h) = {ξ ∈ [−1, 1]n : 	(1)
y (ξ) = h}

with associated measure μ, normalised such that μ(M(0)) = d(�y)
−1. Let now

g(ξ) =
∫

Rd−1
e

⎛

⎝
d∑

j=2

η j	
( j)
y (ξ)

⎞

⎠ dη and f (h) =
∫

M(h)

g(ξ) dμ(ξ),

so that f (0) = Jy. The inverse Fourier transform of f is given by

F−1 f (α) =
∫

[−1,1]n
g(ξ)e(α	(1)

y (ξ)) dξ ,

and upon taking the (regular) Fourier transform it follows from the Fourier inversion
formula that

f (N ) =
∫

R

∫

[−1,1]n
g(ξ)e(α(	(1)

y (ξ) − N )) dξ dα.

Thus we conclude that

Jy = f (0) =
∫

[−1,1]n

∫

Rd
e

⎛

⎝
d∑

j=1

η j	
( j)
y (ξ)

⎞

⎠ dη dξ .

One can now show by standard arguments (for instance Lemma 2 and §11 in [25])
that this expression indeed describes the solution density of (2.2) over the real unit
hypercube.

7 Endgame

The quantities σ j and � j can be expressed in terms of s itself. It is a straightforward
exercise to confirm the identities

N∑

n=1

n2n = 2N+1(N − 1) + 2 and
N∑

n=1

n22n = 2N+1(N 2 − 2N + 3) − 6.

(7.1)
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Note that (4.8) transforms into

1

k j
>

2 j−1

s − ρ
+ (d − 1)�.

Using this within (5.3), an application of (7.1) produces the bounds

σ j >
2d(d − 2) − 2 j−1( j − 3)

s − ρ
+ �(d − 1)

d(d − 1) − ( j − 1)( j − 2)

2

and

� j >
2d(d2 − 2d + 2 − j(d − 2)) + 2 j−1( j − 5)

s − ρ

+ �
(d − 1)(d − j + 1)(d − j + 2)(2d + j − 3)

6
,

which we require to hold for all indices j in our range 2 ≤ j ≤ d. For the sake of
simplicity we replace all these bounds by

1

k j
>

2d−1

s − ρ
+ (d − 1)�, σ j >

2d(d − 1)

s − ρ
+ �d(d − 1)2

2
,

� j >
2d(d2 − 4d + 6)

s − ρ
+ �(2d − 1)d(d − 1)2

6
. (7.2)

This allows us to state a first result.

Theorem 7.1 Let F ∈ Z[x1, . . . , xn] be a non-singular form of degree d ≥ 5 defining
a hypersurface V . Let further ψ > 0 be a parameter satisfying

ψ−1 > d4 + 3
2d

3 − 11
2 d

2 + d + 2, (7.3)

and set

n1(ψ) = 2d−1
(
d3 + 1

2d
2 − 11

2 d + 10 − ψ p6(d)
)

1 − (d4 + 3
2d

3 − 11
2 d

2 + d + 2)ψ
,

where p6(d) = 1
12 (50d

6 − 171d5 + 88d4 + 517d3 − 732d2 + 8d − 120). For some
integer ρ ∈ [1, n] suppose that n − ρ > n1(ψ). Then there exists a real positive
number ν with the property that

Ny(X) = Xn− 1
2 d(d+1)SyJy + O(Xn− 1

2 d(d+1)−ν)

uniformly for all y ∈ V2,ρ(Z) satisfying |y| ≤ Xψ , and the factors Sy and Jy satisfy
0 ≤ Sy 	y 1 and 0 ≤ Jy 	y 1.
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Proof Ourmain taskhere is to bound the error termsgivenby (6.16) in the conclusionof
Proposition 6.4, while at the same time ensuring that the hypotheses of said proposition
are satisfied. In order to control the first term in (6.16) we choose

δ j = ψ(� j + Dd− j + (Dd− j+2 − 2)(d − 1))

for 2 ≤ j ≤ d. Thus, we have δd = (d − 1)ψ . With this choice, and recalling (3.4),
the bound in (5.5) is certainly majorised by kd > D. In a similar manner, upon taking
into account the uniform bounds (7.2) as well as the relations Dj ≤ D and

δ j ≤ δ2 = 1
3 (2d

3 − 11d + 9)ψ

for all j , a modicum of computation reveals that for all ψ satisfying (7.3) one has

Dj−1 − 1 + δ j

1 − (Dd− j+1 + (d − 1)(d − j + 1))ψ
≤ d(d − 1)

2
,

and hence the condition (5.13) may be simplified to

1
2d(d − 1)

(
σ j + k−1

j−1

)
+ � j + σ j < 1. (7.4)

Upon inserting (7.2), we see that the conditions (5.5), (5.13) (as simplified to (7.4))
and (5.14) of Proposition 6.4 are satisfied whenever

s − ρ > max{a0(�), a1(�), a2(�,ψ)},

where

a0(�) = 2d−2d(d + 1)

1 − 1
2d(d2 − 1)�

,

a1(�) = 2d−2(2d3 + d2 − 11d + 20)

1 − 1
12 (d − 1)2d(3d2 + d + 10)�

,

a2(�,ψ) = 2d−1(2d − 1)ψ

�(1 − 1
2d(d2 + d − 2)ψ)

.

For this to be defined, we require in particular that

�−1 > 1
12 (d − 1)2d(3d2 + d + 10), (7.5)

which we will assume henceforth.
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Meanwhile, to control the second and third term in (6.16) we require that

1
3 (4d

3 − 19d + 15)ψ

1 − � − σ
+

1
2 (3d

2 − 7d + 4)ψ

σ

< k2θ2 <
1 − 1

2 (6d
3 − 11d2 + d + 4)ψ

(2d + 1)σ
, (7.6)

while simultaneously the bound (5.15) should be satisfied. Upon re-writing, we see
that the interval in (7.6) is non-empty when

(
1 +

1
3 (8d

4 + 4d3 − 38d2 + 11d + 15)ψ

1 − (6d3 − 11d2 + d + 4)ψ

)
σ + � < 1. (7.7)

When ψ satisfies (7.3) one can show for d ≥ 5 that

1
3 (8d

4 + 4d3 − 38d2 + 11d + 15)ψ

1 − (6d3 − 11d2 + d + 4)ψ
≤ 8,

and hence (7.7) may be simplified to 9σ + � < 1. In combination with (7.2) this
delivers the bound s − ρ > b1(�) where

b1(�) = 2d(d2 + 5d − 3)

1 − 1
3d(d − 1)2(d + 13)�

.

In order to handle the bound (5.15) one confirms that δ2/(1 − σ − �) is smaller
than the first term on the left hand side of (7.6), and hence (5.15) is compatible with
the right hand side of (7.6) if the inequality

ψ�−1 <
1 − 1

2 (6d
3 − 11d2 + d + 4)ψ

(2d + 1)σ

is satisfied. Re-arranging yields

ψ(2d + 1)�−1

1 − 1
2 (6d

3 − 11d2 + d + 4)ψ
σ < 1,

which upon inserting (7.2) delivers the bound s − ρ > b2(�,ψ) where

b2(�,ψ) = 2d(d − 1)(2d + 1)ψ

�(1 − (d4 + 3
2d

3 − 11
2 d

2 + d + 2)ψ)
.

Thus, altogether we have shown that the conclusion of the theorem follows if for
some suitable value of � one has

s − ρ > max{a0(�), a1(�), a2(�,ψ), b1(�), b2(�,ψ)}.
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We see that b2(�,ψ) > a2(�,ψ) for all admissible values of ψ and � . In a similar
manner, when d ≥ 5 we have the inequalities a1(�) ≥ max{a0(�), b1(�)} for all
admissible values of � . One can compute (for instance with the help of a computer
algebra programme) that a1(�) = b2(�,ψ) when � = �0(ψ), where

�0(ψ) = (d − 1)(2d + 1)ψ

d3 + 1
2d

2 − 11
2 d + 10 − ψ p6(d)

,

where p6(d) is as in the statement of the theorem. The quantity �0(ψ) is increasing
in ψ , and a final computation confirms that it is admissible within (7.5) for all values
of ψ satisfying (7.3). Thus, for any given value of ψ within the admissible range the
bound s − ρ > b2(ψ,�0(ψ)) dominates overall. Setting n1(ψ) = b2(ψ,�0(ψ))

concludes the proof of Theorem 7.1.

Theorem 1.3 is a simplification of Theorem 7.1. Indeed, upon choosing ψ = ψ1
with ψ−1

1 = 2d4 we find that

n1(ψ1) = 2d(24d7 − 38d6 + 39d5 + 152d4 − 517d3 + 732d2 − 8d − 240)

24d4 − 36d3 + 132d2 − 24d − 48

< 2dd(d2 − 1)

for all admissible values of d. Since the function n1(ψ) is increasing in ψ , this bound
is sufficient for all ψ < ψ1 also. This completes the proof of Theorem 1.3.

In order to obtain an estimate for NU (X , Xψ) and thus complete the proof of
Theorems 1.4 and 1.2, we need to sum over all values of y ∈ U(Z) satisfying |y| ≤ Xψ

and F(y) = 0.

Theorem 7.2 Let F ∈ Z[x1, . . . , xn] be a non-singular form of degree d ≥ 5 defining
a hypersurface V . Let further ψ > 0 be a parameter satisfying

ψ−1 > d4 + 3
2d

3 − 5d2 + 1
2d + 2. (7.8)

Set

n2(ψ) = 2d−1
(
d3 + 1

2d
2 − 11

2 d + 10 − q6(d)ψ
)

1 − (d4 + 1
2d

3 − 5
2d

2 − 2d + 2)ψ

where q6(d) = 1
12 (50d

6 − 165d5 + 85d4 + 481d3 − 639d2 − 52d + 240). For some
integer ρ in the range 1

2d(d + 1) + 1 < ρ < n suppose that n − ρ > n2(ψ). Then
there exists a positive real number ν for which we have the asymptotic formula

NV2,ρ (X ,Y ) = Xn−D
∑

y∈V2,ρ (Z)
|y|≤Y

SyJy + O((XY )n−DX−ν), (7.9)

and the factors satisfy 0 ≤ Sy 	y 1 and 0 ≤ Jy 	y 1.
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Proof Recall from Birch’s theorem [6] that for n > 2d(d − 1) the number of points
z ∈ Z

n with |z| ≤ Z and F(z) = 0 is given by N (Z) 	 Zn−d . Upon combining (1.2)
and Proposition 6.4, we find that

NU (X , Xψ) = Xn−D
∑

y∈U(Z)∩A(ρ)

|y|≤Xψ

F(y)=0

SyJy + O (EA(ψ) + EB(ψ) + EU (ψ)) ,

(7.10)

where

EA(ψ) = Xn−D
∑

y∈U(Z)∩A(ρ)

|y|≤Xψ

F(y)=0

E(y, θ), EB(ψ) =
∑

y∈U(Z)∩B(ρ)

0<|y|≤Xψ

F(y)=0

∑

x∈U(Z)
|x|≤X
F(x)=0

1

and

EU (ψ) =
∑

|y|≤Xψ

F(y)=0

∑

x∈V(Z)\U(Z)
|x|≤X

1 	 XdimV\U+ψ(n−d).

The choice U = A(ρ) ∩ V = V2,ρ entails that dim V\V2,ρ = dim V∗
2,ρ ≤ n − ρ, and

we conclude that the error EU (ψ) is acceptable within (7.10) if ρ > D + ψ(D − d).
In particular, it follows from (3.4) that the choice ρ = D + 1 is permissible. Clearly,
with this choice of U the set B(ρ) ∩ U is empty and we can disregard the error term
EB(ψ). Thus, it suffices to bound the error EA(ψ). We have

EA(ψ) 	 Xn−DN (Xψ) sup
|y|≤Xψ

E(y, θ) 	 (X1+ψ)n−D(U1 +U2 +U3),

where

U1 =
d∑

j=2

X−δ j+ψ(� j+Dd− j+(Dd− j+2−2)(d−1)+D−d)−ν,

U2 = X−1+(2d+1)ω+(3d3−5d2+2)ψ ,

U3 = X
1−σ−�

σ
(−ω+ 1

2 (3d2−7d+4)ψ)+ 1
6 (8d3+3d2−41d+30)ψ

.

Assuming that

δ j = ψ(� j + Dd− j + (Dd− j+2 − 2)(d − 1) + D − d) (2 ≤ j ≤ d),
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the exponent in the first term is negative. With this choice we have δd = (D − 1)ψ
and

δ j ≤ δ2 = 1
6 (4d

3 + 3d2 − 25d + 18)ψ.

As before, this choice allows us to simplify the conditions (5.5) and (5.13), and we see
that they and (5.14) are satisfied whenever s − ρ > max{a0(�), a1(�), a2(�,ψ)},
with the same values as in the proof of Theorem 7.1.

Meanwhile, the error termsU2 andU3 are acceptable if we can choose θ2 such that

1
6 (8d

3 + 3d2 − 41d + 30)ψ

1 − σ − �
+

1
2 (3d

2 − 7d + 4)ψ

σ

< k2θ2 <
1 − (3d3 − 5d2 + 2)ψ

(2d + 1)σ
, (7.11)

and this interval can be seen to be non-empty if (7.8) is satisfied and further

(
1 +

1
6 (16d

4 + 14d3 − 79d2 + 19d + 30)ψ

1 − 1
2 (12d

3 − 21d2 + d + 8)ψ

)
σ + � < 1. (7.12)

When ψ satisfies (7.8) one can show for d ≥ 5 that

1
6 (16d

4 + 14d3 − 79d2 + 19d + 30)ψ

1 − 1
2 (12d

3 − 21d2 + d + 8)ψ
≤ 25

3
,

and hence (7.12) can be simplified to 28
3 σ + � < 1. Upon recalling (7.2) this gives

s − ρ > β1(�), where

β1(�) = 2d(d2 + 16
3 d − 10

3 )

1 − 1
6d(d − 1)2(2d + 27)�

.

It remains to compare the right hand side of (7.11) with the bound of (5.15). As
before, with our choice of δ2 we find that the first term in the maximum in (5.15)
is bounded above by the left hand side of (7.11). Thus, it suffices to ensure that the
interval

ψ�−1 < k2θ2 <
1 − (3d3 − 5d2 + 2)ψ

(2d + 1)σ

is non-empty. Such is the case when

(2d + 1)ψ

�(1 − (3d3 − 5d2 + 2)ψ)
σ < 1,
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and on inserting (7.2) we obtain the bound s − ρ > β2(�,ψ) where

β2(�,ψ) = 2d(d − 1)(2d + 1)ψ

�(1 − (d4 + 3
2d

3 − 5d2 + 1
2d + 2)ψ)

.

When d ≥ 5 one checks by a modicum of computation that β2(�,ψ) ≥ a2(�,ψ)

and that a1(�) exceeds both β1(�) and a0(�) in the appropriate ranges for � and
ψ . Just as before, we see that a1(�) = β2(�,ψ) when � = �1(ψ), where

�1(ψ) = 2(1 + 2d)(d − 1)ψ

d3 + 1
2d

2 − 11
2 d + 10 − q6(d)ψ

,

and q6(d) is the polynomial defined in the statement of the theorem. This is in accor-
dance with (7.5), so that just as before we obtain our final bound s−ρ > n2(ψ)where
we put n2(ψ) = β2(�1(ψ), ψ). This completes the proof of the theorem. �

As before, one can show that n2(ψ) is increasing in ψ , and by taking ψ = ψ1 with
ψ−1
1 = 2d4 we see after some calculations that

n2(ψ1) = 2d(24d7 − 38d6 + 33d5 + 155d4 − 481d3 + 639d2 + 52d − 240)

24d4 − 36d3 + 120d2 − 12d − 48

≤ 2dd(d2 − 1) − 1
2d(d + 1) − 1.

The conclusion of Theorem 1.4 now follows upon choosing ρ = 1
2d(d + 1) + 1.

It thus remains to evaluate the sumover the singular integral and singular series. This
task can be absolved swiftly by invoking Theorem 2.1 in [9] and imitating arguments
from [23, Section 8]. For fixed Y we set ψ0 = (d3(d + 3

2 ) − 1)−1 and X0 = Y 1/ψ0 .
Now assume that

n − ρ > 2d−1d(d + 1)(1 + ψ−1
0 ). (7.13)

Then by [9, Theorem 2.1] we have the alternative asymptotic formula

N (X0,Y ) = (X0Y )n−Dχ∞
∏

p prime

χp + O((X0Y )n−DY−ν).

On the other hand, one can check that the condition in (7.13) is stricter than the
hypothesis of Theorem 7.2, so we may compare this bound with (7.9) and deduce that

∑

y∈U(Z)
|y|≤Y
F(y)=0

SyJy = Yn−Dχ∞
∏

p prime

χp + O(Yn−D−ν). (7.14)

Note in particular that (7.14) does not depend on X0 any longer. Thus, if (7.13)
is satisfied, we are able to replace the sum over the singular series and integral in
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Theorem 1.4 by a product of local densities as in (7.14). This establishes Theorem 1.1
for all ψ ≤ ψ0, while for ψ0 ≤ ψ ≤ 1 the corresponding result follows from
Theorem 2.1 in [9]. Finally, we recall that we need ρ ≥ 1

2d(d + 1) + 1 and note that

2d−1d4(d + 1)(d + 3
2 ) + 1

2d(d + 1) + 1 ≤ 2d−1d4(d + 1)(d + 2)

for all admissible values d. This completes the proof of Theorem 1.1.
In order to complete the proof of our final result in Theorem 1.2, we note that in this

case U = V\{0}. Thus, the error EU (ψ) 	 Xψ(n−d) is under control, and it remains
to understand the error arising from any singular set B(ρ). From (4.9) we infer that
EB(ψ) 	 Xn−d Xψ(n−ρ),which is acceptablewithin (7.10) ifρ > D+d(d−1)/(2ψ).
Picking ρ minimal in this way, we can now proceed precisely as in the proof of
Theorem 1.1.
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