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Abstract
We discuss concepts and review results about the Cauchy problem for the Fornberg–
Whitham equation, which has also been called Burgers–Poisson equation in the
literature. Our focus is on a comparison of various strong and weak solution con-
cepts as well as on blow-up of strong solutions in the form of wave breaking. Along
the way we add aspects regarding semiboundedness at blow-up, from semigroups of
nonlinear operators to the Cauchy problem, and about continuous traveling waves as
weak solutions.

Keywords Fornberg–Whitham equation · Wave breaking · Weak entropy solutions ·
Mild solutions

Mathematics Subject Classification 35L65 · 35B99

1 Introduction and basic set-up

The intention of this review-type article is to put some of the keymathematical notions
and solution results regarding the Fornberg–Whitham equation in a perspective with
respect to each other and we will thereby also strive to connect two so far largely
parallel threads of research, because the same equation has also been studied under
the name of Burgers–Poisson equation. Neither do we attempt here to elaborate on
the history and physics behind this model equation nor can we come anywhere near a
complete overview of mathematical results from themore than 50 years of its analysis.
Moreover, our attention was restricted to results from work published at the time of
writing and no systematic search of preprints was undertaken.
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422 G. Hörmann

We discuss here the Fornberg–Whitham equation as it was introduced byWhitham
in [31, Eq. (67)] as the integro-differential equation at the center of a shallow water
wave model that is comparably simple and yet showed indications of wave breaking
(see also [29]). It featured later in Whitham’s book [32] in a section dedicated to
breaking and peaking of waves and a first systematic numerical study was published
by Fornberg and Whitham in [13, Sect. 6].

Let us describe the formal set-up of the Cauchy problem. The wave height is
described by a function of one-dimensional space and time u : R × [0,∞[→ R,
(x, t) �→ u(x, t). We will occasionally write u(t) to denote the function x �→ u(x, t).
Upon rescaling (cf. Remark 1.1 below) we may write the equation without explicitly
occurring additional model parameters in the form

ut + uux + K ∗ ux = 0, (1)

where the convolution is in the x variable only and t > 0. The convolution kernel is

K (x) = e−|x |
2 and satisfies

K − K ′′ = δ, (2)

which means that K is a fundamental solution of the operator 1 − ∂2x . In fact, we
will occasionally have to interpret Eq. (1) in various weak forms—with distributional,
entropy, or mild semigroup solution concepts—which stem from rewriting the left-
hand side either as in

∂t u + ∂x

(
u2

2
+ K ∗ u

)
= 0 (3)

or also in the form

∂t u + ∂x

(
u2

2

)
+ K ′ ∗ u = 0. (4)

Based on the property (2), Eq. (1) emerged in [11] instead from a system of
equations, which can be approached here in reverse direction upon rewriting (1) as
ut + uux = −K ∗ ux and putting v := −K ∗ u. Noting that vx = −K ∗ ux and
(1− ∂2x )v = −u we then obtain the following system of nonlinear partial differential
equations

ut + uux = vx ,

vxx = v + u.

It was the starting point of the model in [11] and called Burgers–Poisson system, while
the analog of Eq. (1) derived from it got named Burgers–Poisson equation. This name
was also used in the key publication about global weak solutions in [15]. In the context
of the current review article we prefer to stay with the notion of Fornberg–Whitham
equation referring to (1).
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Solution concepts, well-posedness, and wave breaking... 423

We will usually suppose an initial wave profile u0 : R → R to be given and require
in addition

u|t=0 = u0. (5)

Remark 1.1 (Rescaled and periodic variants of the Fornberg–Whitham equation)

(i) Note that we followed here in (1) the sign convention for the convolution term
as in [13, Equation (4)]1 and [32, Sect. 13.14], but have applied a rescaling of
the solution values in order to get rid of any additional constant factor in the
nonlinear term. Replacing u(x, t) by −u(x,−t) transforms solutions of either
sign variant of the equation into solutions for the other convention. Moreover, if
u solves (1) and λ > 0 is a constant, then v := u/λ is a solution to

vt + λvvx + K ∗ vx = 0,

which shows why we could bring the original model equation from [31] into the
form (1). Such scalings and sign conventions have to be taken into account when
comparing results about wave breaking that typically involve also quantitative
aspects of the initial wave profile.

(ii) Formally applying 1 − ∂2x to (1) produces the third order partial differential
equation

ut − utxx − 3ux uxx − uuxxx + uux + ux = 0.

Instead we will stay with the non-local integro-differential equation (1) or (3),
because it corresponds to the original model and is also more suitable for the
various solution concepts to be discussed.

(iii) To study spatially periodicwaveswe change the x-domain to the one-dimensional
torus group T = R/Z and may identify functions on T with 1-periodic functions
on R. This also requires an adaptation of the convolution kernel K (cf. [21,
Sect. 3]), which is then given as the 1-periodic function on R with K (x) =
(ex + e1−x )/(2(e − 1)) =

√
e

e−1 cosh(x − 1
2 ) for 0 ≤ x < 1. Note that K is

continuous but not C1 and the derivative K ′ is not continuous but in L∞.

To simplify the presentation in the context of this review, we will give detailed
formulations only for the Fornberg–Whitham equation in the form (1) and without
periodicity assumptions. However, we will occasionally add remarks on the periodic
case.

Before discussing in the following section the main solution concepts that have
been employed for the Cauchy problem consisting of (1) and (5), let us remark that
there are not many conserved quantities for solutions u (of sufficient regularity and
with suitable integrability properties). The most obvious one is

∀t ≥ 0 :
∫
R

u(t, x) dx =
∫
R

u0(x) dx,

1 It does not agree with all signs in Eq. (29) of [13], since that equation contains a sign error with the linear
term involving ux .
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424 G. Hörmann

since integrating (1) with respect to x gives

d

dt

∫
u(x, t) dx =

∫
∂t u(x, t) dx = −

∫ (
u(x, t)∂x u(x, t) + (K ∗ ∂x u(., t))(x)

)
dx

= −1

2

∫
∂x (u(x, t)2) dx −

∫
∂x (K ∗ u(., t))(x) dx = −1

2
· 0 − 0 = 0.

A second conserved quantity is the spatial (real) L2 norm and stems from the skew-
symmetry2 of the operator v �→ K ′ ∗ v = (K ∗ v)′ on L2(R): Multiplying (1) by
u, integrating with respect to x , and writing uut = d

dt (u
2/2), u2ux = d

dx (u3/3) we
obtain

0 = 1

2

d

dt

∫
u(x, t)2 dx + 1

3

∫
d

dx
(u(x, t)3) dx + 〈K ′ ∗ u, u〉

= 1

2

d

dt
‖u(t)‖L2 + 1

3
0 + 0 = 1

2

d

dt
‖u(t)‖L2 ,

and thus (see also [14, Lemma 1])

∀t ≥ 0 :
∫

u(x, t)2 dx =
∫

u0(x)2 dx .

However, thanks to the analysis in [23], the Fornberg–Whitham equation is known
to belong to those equations among a class of 3rd order nonlinear dispersive wave
equations that are definitely not completely integrable. Therefore, the key methods
from geometric theories of infinite-dimensional dynamical systems that are available,
e.g., for the Camassa–Holm equation, are not applicable in case of the Fornberg–
Whitham equation.

The structure of this article is as follows: Sect. 2 is devoted to a discussion and
comparison of various strong and weak solution concepts for the Cauchy problem
consisting of (1) and (5). In Sect. 3 we summarize the key well-posedness results for
strong solutions and on blow-up in finite time in the form of wave breaking, where
we also add one aspect of semi-boundedness at blow-up time. Section 4 discusses
key results on weak entropy solutions and adds a brief investigation of mild solutions
with their relations to the former. The final subsection then focusses on continuous
traveling waves in relation to the weak or weak entropy solution concept.

2 Solution concepts for the Cauchy problem

2.1 Strong solutions

In pure classical terms, the minimum requirements for a particular function u : R ×
[0,∞[→ R to count as a global solution of the Cauchy problem consisting of (1)

2 The symmetry of K and Fubini’s theorem imply 〈K ∗v, w〉 = 〈v, K ∗w〉 and an additional differentiation
gives skew-symmetry.
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Solution concepts, well-posedness, and wave breaking... 425

and (5), would be like the following: u possesses first-order partial derivatives in
R×]0,∞[, the convolution K ∗ ux (., t) is defined on R for every t > 0, Eq. (1)
holds pointwise for every (x, t) ∈ R×]0,∞[, and u(x, 0) = u0(x) for all x ∈ R. We
could instead also consider classical solution for a finite time interval [0, T [ instead
of [0,∞[ and the adaptations in the conditions described above are obvious.

Remark 2.1 In the context of partial differential conservation laws the term classical
solution is also used, e.g., by Dafermos (cf. [9, Sect. 4.1]), for locally Lipschitz con-
tinuous functions u that satisfy the differential equation almost everywhere on the
(x, t)-domain. We could mimic this here with bounded and locally Lipschitz contin-
uous functions, since K ′ ∈ L1(R) so that the convolution K ′ ∗ u is defined. This
lies somewhat between typical weak solution concepts and what we will call strong
solution below.

A somewhat restrictive, but more systematic and modern approach is to first iden-
tify some topological multiplicative algebra X of functions on the real line that is
invariant under differentiation ∂x and such that the operator of convolution with
K acts continuously X → X . A standard example is X = H∞(R). Assuming
u0 ∈ X , one then searches for a solution on [0, T [ of (1) and (5) in the sense3

that u ∈ C1(]0, T [, X) ∩ C([0, T [, X) should satisfy u(0) = u0 and (1) holds as an
equation in X for 0 < t < T , i.e.,

∀t ∈ R, 0 < t < T : u′(t) + u(t)∂x u(t) + K ∗ ∂x u(t) = 0. (6)

In cases where T may be taken arbitrarily large we speak of a solution global in time.

Remark 2.2 For any u satisfying Eq. (6) in the above sense we have u′(t) =
−u(t)ux (t)−K ∗ux (t) for all t > 0,where the right-hand side belongs toC([0, T [, X).
Therefore, u′ = ∂t u can be continuously extended to t = 0 and we may thus specify
u ∈ C1([0, T [, X) ∩ C([0, T [, X) from the outset.

The required invariance of X under differentiation makes it hard to obtain X itself
as a Banach algebra, but an alternative is to resort to a scale of Banach spaces Xs

(s ∈ [0,∞[) with Xs2 ↪→ Xs1 , if s1 ≤ s2 and differentiation being continuous
Xs+1 → Xs . The standard examples are Sobolev-type spaces, in particular, Xs =
Hs(R) with X0 = L2(R). In the latter case, we also know that we obtain a Banach
algebra, if s > 1/2 (and we adapt the Sobolev norm by an appropriate constant factor;
cf. [1, Theorem 4.39]). Observe that moreover, v �→ K ∗v is a continuous operator on
Hs(R) for every s ≥ 0, since K ∈ L1(R) (hence K̂ ∗ v = K̂ ·v̂ with K̂ continuous and
bounded). Therefore, the Sobolev spaces Hs(R) (with s > 1/2) provide an example
of the following set-up.

Suppose s0 ≥ 0 and Xs (s > s0) is a scale of Banach algebras of function spaces
on R, Xs2 ↪→ Xs1 (s0 < s1 ≤ s2), the product in Xs being pointwise multiplication
of functions, and such that convolution by K acts continuously on every space and

3 Differentiability of a map v : ]0, T [→ X at t ∈ ]0, T [ simply meaning that the difference quotient
(v(t1) − v(t))/(t1 − t) converges to a limit v′(t) in X as t1 → t ; and v ∈ C1(]0, T [, X) then requires that
v is differentiable at every t ∈ ]0, T [ and t �→ v′(t) is continuous ]0, T [→ X .
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426 G. Hörmann

differentiation is continuous Xs+1 → Xs . Let s > s0 and 0 < T ≤ ∞. A strong
solution on the time interval [0, T [ of the Cauchy problem (1) and (5) with initial
value u0 ∈ Xs+1 is given by an element u ∈ C1([0, T [, Xs) ∩ C([0, T [, Xs+1) such
that u(0) = u0 and (6) holds as an equation in Xs for 0 < t < T .

A typical notion of well-posedness of the Cauchy problem (1) and (5) will require
that, given any u0 ∈ Xs+1, there is some 0 < T ≤ ∞ such that a unique solution
u to (6) with u(0) = u0 exists in C1([0, T [, Xs) ∩ C([0, T [, Xs+1) and that the
solution map u0 �→ u is continuous, e.g., for every T1 ∈ ]0, T [ as a map between
the Banach spaces Xs+1 → C([0, T1], Xs+1), where the norm on C([0, T1], Xs+1)

is sup0≤t≤T1 ‖u(t)‖Xs+1 (the supremum exists, because [0, T1] is compact, and this
was the reason for taking T1 < T ). A reasonable variant of the notion may speak of
well-posedness on the closed finite time interval [0, T1], if the solution exists and is
unique in C1([0, T1], Xs) ∩ C([0, T1], Xs+1) with continuity of u0 �→ u as above.

Proofs of well-posedness typically establish a so-called a priori estimate of
sup0≤t≤T1 ‖u(t)‖Xs+1 in terms of some concrete bounded function of the life span T1,
the regularity s, and ‖u0‖Xs+1 . In case ofwell-posedness, themaximal life span T asso-
ciated with a given regularity s > s0 and an initial value u0 ∈ Xs+1 is the supremum
of all T1 > 0 such that a (unique) solution exists inC1([0, T1], Xs)∩C([0, T1], Xs+1)

with u(0) = u0. To have a unique strong solution global in time thus means that we
have the maximal life span T = ∞. On the other hand, a situation with finite maximal
life span, i.e., T < ∞, does lead to blow-up of the solution in finite time and is also
the starting point for discussions of the question of wave breaking.

Blow-up of strong solutions and wave breaking: Suppose now that for given s > s0
and initial wave profile u0 ∈ Xs+1 we have maximal life span T < ∞. Since u ∈
C1([0, T [, Xs) and u ∈ C([0, T [, Xs+1) at least one of the following two situations
has to arise: (a) There is no continuous extension of t �→ u(t), [0, T [ → Xs+1 at
t = T ; (b) t �→ u(t), [0, T [ → Xs cannot be extended as a continuously differentiabe
map up to t = T . We claim that (a) must hold, i.e.,

the map t �→ u(t), [0, T [→ Xs+1, cannot possess a continuous extension to t = T ,

(7)

for we could otherwise extend u to a solution with a life span larger than T : Indeed, if
(7) is false, then v0 := limt→T u(t) ∈ Xs+1 can serve as an initial value with some life
time T0 > 0 for a unique solution v ∈ C1([0, T0], Xs)∩C([0, T0], Xs+1).Wepatch the
two solutions u and v into one function w ∈ C([0, T + T0], Xs+1), i.e., w(t) := u(t)
(0 ≤ t ≤ T ),w(t) := v(t) (T < t ≤ T +T0),which obviously solves (6) for t �= T and
satisfiesw ∈ C1([0, T [ ∪ ]T , T +T0], Xs). We have to show thatw isC1 at t = T and
also solves (6) there.We clearly havew′(T +) := limt↓T w′(t) = v′(0). The limit from
the left,w′(T −) := limt↑T w′(t) also exists, since again by (6)wemay representw′(t)
in terms of w(t) and wx (t) and both are continuous at t = T with values in Xs by the
negation of (7). This yields w′(T −) = −v(0)∂xv(0)− K ∗ ∂xv(0) = ∂tv(0) = v′(0).
Thus, w is C1 also at t = T and the validity of (6) on all of [0, T + T0] follows from
continuity of all terms in it.
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Solution concepts, well-posedness, and wave breaking... 427

The consequence of the finiteness of the life span T expressed in (7) means that
u(t) does not converge in Xs+1 as t → T . In this generality we do not see how to
assess whether ‖u(t)‖Xs+1 stays bounded or we have blow-up of the solution at t = T
in the sense that

lim sup
t↑T

‖u(t)‖Xs+1 = ∞.

In the most prominent case with the scale of Sobolev spaces Hs(R) (s > 1/2), we
have that Hs+1(R) is continuously embedded in the space of bounded C1 functions
with bounded derivative [10, Chapter IV, 3, Theorem 1]. Thus, we obtain that for any
strong solution u ∈ C1([0, T [, Hs(R)) ∩ C([0, T [, Hs+1(R)) the norms ‖u(t)‖L∞
and ‖∂x u(t)‖L∞ are finite for every t ∈ [0, T [. We say that wave breaking occurs for
u at time T > 0 (cf. [6, Definition 6.1]), if the wave itself remains bounded while its
slope becomes unbounded at t = T , i.e.

sup
t∈[0,T [

‖u(t)‖L∞ < ∞ and lim sup
t↑T

‖∂x u(t)‖L∞ = ∞. (8)

An analysis of wave breaking should ideally address at least the following two issues:

(a) Whether a finite maximal life span T < ∞ for a strong solution u necessarily
implies wave breaking for this solution at time T .

(b) Identification of a certain class of initial wave profiles u0 such that the maxi-
mal life span of the corresponding strong solution is indeed finite. Hence wave
breaking does definitely occur for the strong solutions with these initial values.

2.2 Weak(er) solution concepts

2.2.1 Weak solutions

We recall how to proceed in the well-known standard policy to obtain an interpretation
of the Cauchy problem (1) and (5) in a weak or distributional sense: Suppose u is a
classical solution, write out (1) in the form (3) or (4), multiply the equation by an
arbitrary test function φ from the space D(R2) := C∞

c (R2) of smooth functions with
compact support, and integrate with respect to x over all of R and with respect to t
over the half-line [0,∞[; integration by parts and observing u(x, 0) = u0(x) then
yields an integral identity, which reads

∫ ∞

0

∫ ∞

−∞

(
− u(x, t)∂tφ(x, t) − u2(x, t)

2
∂xφ(x, t)+(

K ′ ∗ u(., t)
)
(x)φ(x, t)

)
dx dt

=
∫ ∞

−∞
u0(x)φ(x, 0) dx .

Since K ′ ∈ L1(R), it does make sense also for measurable functions u and u0 such
that u is bounded on R × [0, T ] for every T > 0 and u0 is (locally) bounded.
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428 G. Hörmann

Definition 2.3 Ameasurable functionu : R×[0,∞[→ R that is boundedonR×[0, T ]
for every T > 0 is called a weak solution of the Cauchy problem (1), (5) with initial
value u0 ∈ L∞(R), if

∫ ∞

0

∫ ∞

−∞

(
u(x, t)∂tφ(x, t) + u2(x, t)

2
∂xφ(x, t) − (

K ′ ∗ u(., t)
)
(x)φ(x, t)

)
dx dt

+
∫ ∞

−∞
u0(x)φ(x, 0) dx = 0 (9)

holds for every test function φ ∈ D(R2).

In the situation of the above definition, let us extend u to a measurable function on all
of R

2 by setting u(x, t) := 0 for negative t . Upon writing K ′ ∗ u = ∂x (K ∗ u) this
leads to the distributional identity

div(x,t)(A1, A2) = u0 ⊗ δ on R
2,

where A1 := u2/2+ K ∗ u and A2 := u. We may thus deduce from [9, Lemma 1.3.3]
(similarly as in the discussion in [9, Sect. 4.3]) the following, upon possibly modifying
u on a set of measure zero: For any relatively compact open subset B of R, the map
t �→ u(., t)|B is weak* continuous from [0,∞[ into L∞(B). This implies that u may
be considered a continuous map

[0,∞[→ D′(R), t �→ u(t),

where u(t) is defined, for any t ≥ 0, by its action on test functions ϕ ∈ D(R) as

〈u(t), ϕ〉 :=
∫

u(x, t)ϕ(x) dx .

In particular, we obtain that limt→0
∫

B(u(x, t) − u0(x))φ(x) dx = 0 for any test
function ϕ ∈ D(R), i.e.,

u(t) → u0 in D′(R) as t → 0, or simply, u(0) = u0 holds in D′(R),

which also explains in what sense the initial value is attained for a weak solution
according to Definition 2.3. As the following remark illustrates, we cannot hope for a
considerably stronger notion of continuity.

Remark 2.4 In general, even with B compact, the weak* continuity of a map
v : [0,∞[→ L∞(B) does not imply strong continuity of v as a map into some
L p(B) although L∞(B) ⊆ L p(B). (An example with B = [0, 1] is provided by
v : [0,∞[→ L∞([0, 1]), where v(t)(x) := exp(i x/t), if t > 0, and v(0) := 0:
Strong discontinuity of v at t = 0 is obvious from ‖v(t) − v(0)‖L p = 1 for all
t > 0; for any f ∈ L1([0, 1]), continuity of 〈v(t), f 〉 = ∫ 1

0 exp(i x/t) f (x) dx in
t > 0 is clear; to check weak* continuity of v at t = 0, suppose tn > 0, tn → 0,
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Solution concepts, well-posedness, and wave breaking... 429

and let f be arbitrary from the dense subspace C1([0, 1]) ⊆ L1([0, 1]); integra-
tion by parts gives 〈v(tn), f 〉 → 0 and, since ‖v(tn)‖L∞ = 1, a standard variant
of the Banach-Steinhaus theorem [33, Sect. 3.3, Proposition 2] yields the pointwise
convergence v(tn) → 0 = v(0) on all of L1([0, 1]), thus the weak* continuity of
v at t = 0.) The author would like to use this opportunity to correct a slight slip
of argument in a related discussion in [22, the paragraph below Definition 2.1] for
periodic solutions on the torus T. The claim limt→0 ‖u(t) − u0‖L1(T) = 0 made
there is true, but the reasoning rests on the entropy condition, which provides the
weak* continuity of t �→ u(t) and of t �→ u(t)2 (compare with the discussion lead-
ing to (14) below) and the Cauchy–Schwarz inequality then yields the upper bound
(
∫ |u(t) − u0|dx)2 ≤ ∫ |u(t) − u0|2dx = ∫

u(t)2dx − 2
∫

u(t)u0dx + ∫
u2
0dx → 0

as t → 0 and completes the argument.

A typical phenomenon with nonlinear hyperbolic conservation laws is non-
uniqueness of weak solutions to the Cauchy problem, in particular, for the Burgers
equation [9, Sect. 4.4]. As the Fornberg–Whitham equation is a non-local linear per-
turbation of the Burgers equation by the convolution term, it seems plausible that
non-uniqueness is an issue4 there as well. In any case, guided by the success of entropy
(admissibility) conditions on weak solutions for pure partial differential conservation
laws, such methods have also been employed for the Fornberg–Whitham equation.

2.2.2 Weak entropy solutions

Let us write Eq. (4) as to resemble a scalar balance law, but with a non-local right-hand
side as a “source”,

∂t u + ∂x

(
u2

2

)
= −K ′ ∗ u.

Introducing an entropy-entropy flux pair η, Q : R → R, where η is convex and
Q′(z) = η′(z)z [9, Sect. 3.2], we obtain for any classical solution, ∂tη(u)+∂x Q(u) =
η′(u)∂t u + Q′(u)∂x u = η′(u)(∂t u + u∂x u) = −η′(u)(K ′ ∗ u), thus

∂tη(u) + ∂x Q(u) + η′(u)(K ′ ∗ u) = 0. (10)

We cannot expect this equation to extend toweak solution aswell, but wemay note that
for any bounded measurable function u, the various compositions with u appearing in
this equation are defined as locally bounded (Lebesgue) measurable functions: Indeed,
convexity of η implies that η is (locally Lipschitz) continuous and η′ is increasing,
hence both η and η′ are Borel measurable and locally bounded; furthermore, z �→
Q′(z) = η′(z)z is measurable and locally bounded, hence also Q is locally Lipschitz
continuous; therefore, in all the compositions η ◦ u, η′ ◦ u, and Q ◦ u, the left member
is Borel measurable, hence the composition is Lebesgue measurable.

4 However, the author does currently know neither a concrete example of non-uniqueness nor of a unique-
ness proof for the general weak Cauchy problem.
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430 G. Hörmann

Recall the following notion of admissibility for a weak solution to the hyperbolic
partial differential conservation law ∂t u + ∂x f (u) + g(u) = 0 with entropy–entropy
flux pair η and Q, Q′(z) = η′(z) f ′(z): One replaces the differential equation ∂tη(u)+
∂x Q(u) + η′(u)g(u) = 0 for classical solutions, the analog of (10), by the inequality
∂tη(u)+∂x Q(u)+η′(u)g(u) ≤ 0 and requires that it holds in the distributional sense,
i.e.,−(∂tη(u)+∂x Q(u)+η′(u)g(u)) shall be equal to a non-negative measure; it even
turns out that this inequality alone already implies that u is a weak solution (see, e.g.,
[9, the brief discussion following Definition 6.2.1]). Taking this as a guideline for the
Fornberg–Whitham equation and replacing (10) accordingly, we will thus consider
measurable locally bounded solutions u of the distributional inequality

∂tη(u) + ∂x Q(u) + η′(u)(K ′ ∗ u) ≤ 0 (11)

and obtain a concept that is compatible with, but in-between, those of weak and of
strong solutions. Before implementing this in detail for the Cauchy problem (1) and
(5), we will simplify matters by a typical reduction in the set of all possible entropies
η used in the inequality (11), which is based on the observation that on finite intervals
any convex functionmay be approximated by linear combinations of a linear functions
and functions of the form z �→ |z −λ| (cf. [19, discussion of Theorem 1.5.1, page 25]
and [9, Sect. 6.2]). Namely, we need to consider only the so-called Kružkov entropy–
entropy flux pairs [9, Eq. (6.2.6)] with parameter λ ∈ R of the form

η(z) = |z − λ|, Q(z) = sgn(z − λ)
z2 − λ2

2
= 1

2
|z − λ|(z + λ). (12)

We summarize the discussion so far in the following solution concept.

Definition 2.5 (Intermediate version)Let u0 ∈ L∞(R). Ameasurable function u : R×
[0,∞[→ R that is bounded on R × [0, T ] for every T > 0 is called a weak entropy
solution of the Cauchy problem (1) and (5), if

0 ≤
∫ ∞

0

∫ ∞

−∞

(
|u(x, t) − λ|∂tφ(x, t) + sgn(u(x, t) − λ)

u2(x, t) − λ2

2
∂xφ(x, t)

− sgn(u(x, t) − λ)
(
K ′ ∗ u(·, t)

)
(x)φ(x, t)

)
dx dt +

∫ ∞

−∞
|u0(x) − λ|φ(x, 0) dx

(13)

holds for arbitrary λ ∈ R and nonnegative test functions φ ∈ D(R2).

Entropy solutions are weak solutions: It is easy to check that the condition (13) in
Definition 2.5 implies (9), since for any given φ we may choose λ = −r and λ = r ,
where r > 0 is sufficiently large such that |u| < r holds on the support of φ. Thus,
every weak entropy solution is a weak solution of the Cauchy problem.

Remark 2.6 It is equivalent to add K ′ ∗ λ = K ∗ λ′ = 0 in the convolution term of
the integral (13), i.e., change sgn(u(x, t)−λ)

(
K ′ ∗u(·, t)

)
(x)φ(x, t) to sgn(u(x, t)−

λ)
(
K ′ ∗ (u(·, t) − λ)(x)

)
φ(x, t) there. We note this only to clarify consistency with

the formulae mentioned in [20,22].
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Observe that for any weak entropy solution u (with the entropy–entropy flux pair
given in (12)), the term η′(u)(K ′ ∗ u) in (11) is a bounded measurable function, so
that ∂tη(u) + ∂x Q(u) is equal to some signed measure. Thus, we may therefore again
invoke [9, Lemma 1.3.3], but now also with η(u) in place of u, where η is any convex
function. In particular, we may choose η quadratic and obtain that t �→ u(t) and
t �→ u(t)2 both induce weak* continuous maps from [0,∞[ into L∞(B) for any
relatively compact open subset B. We claim that

t �→ u(t) is norm continuous [0,∞[→ L1(B). (14)

Let tn, t0 ≥ 0with tn → t0 (n → ∞).We have to show that vn := u(tn)|B converges to
v0 := u(t0)|B in L1(B), which follows directly from the Cauchy–Schwarz inequality
and the weak*-convergences vn → v0 and v2n → v20, since

( ∫
B

|vn − v0|dx
)2 ≤

∫
B
12dx ·

∫
B

|vn − v0|2dx

= |B|
( ∫

B
v2ndx − 2

∫
B

vnv0dx +
∫

B
v20dx

)
→ 0.

The automatic continuity of weak entropy solutions with respect to time expressed
in (14) suggests that with an initial value u0 ∈ L1(R) ∩ L∞(R) one might hope to
obtain even u ∈ C([0,∞[, L1(R)) for the weak entropy solution. Such a set-up works
fine with scalar (partial differential) conservation laws (cf. [9, Chapter VI]) and turns
out to be well-suited also for the Cauchy problem of the Fornberg–Whitham equation
as demonstrated in [15]. We therefore adapt Definition 2.5 accordingly, in particular,
the initial value may then be required to be attained directly in the form u(0) = u0
and need not appear in the integral inequality.

Definition 2.7 Let u0 ∈ L1(R) ∩ L∞(R). A function u ∈ C([0,∞[, L1(R)) that is
bounded onR×[0, T ] for every T > 0 is called aweak entropy solution of the Cauchy
problem (1) and (5), if u(0) = u0 and

0 ≤
∫ ∞

0

∫ ∞

−∞

(
|u(x, t) − λ|∂tφ(x, t) + sgn(u(x, t) − λ)

u2(x, t) − λ2

2
∂xφ(x, t)

− sgn(u(x, t) − λ)
(
K ′ ∗ u(·, t)

)
(x)φ(x, t)

)
dx dt

holds for arbitrary λ ∈ R and nonnegative test functions φ ∈ D(R×]0,∞[).

2.2.3 Mild solutions

The (inviscid) Burgers equation is just (1) without the convolution term, in which case
an alternative approach is to extend the nonlinear map v �→ ∂x (v

2/2), C1
c (R) →

L1(R), to an accretive operator in L1(R) and to show that it generates a continuous
semigroup of nonlinear contractions on L1(R). In case of an initial value u0 ∈ L1(R)∩
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L∞(R) the concept for the Cauchy problem based on this approach is equivalent to
that of a weak entropy solution (cf. [9, Sect. 6.4] or [4, Sect. 5.5]).

Let us recall some of the basic notions from nonlinear operator theory [4, Chapter
3] involved here, but writing it out specifically for the Banach space L1 := L1(R). A
general (possibly multi-valued) nonlinear operator G on L1 is defined by a relation
G ⊆ L1 × L1. The value of G at u ∈ L1 is defined as the subset G(u) := {v ∈
L1 | (u, v) ∈ G}, the domain is D(G) := {u ∈ L1 | G(u) �= ∅}, and the range
is R(G) := ⋃

u∈D(G) G(u). Thus, G = {(u, v) | u ∈ D(G), v ∈ G(u)} and in the
special case of only single-valued sets G(u) for all u ∈ D(G) this is the identification
of a map with its graph. For G, F ⊆ L1 × L1 and λ ∈ R, we define λG := {(u, λv) |
(u, v) ∈ G}, the sum G + F := {(u, v + w) | (u, v) ∈ G, (u, w) ∈ F}, and the
composition G ◦ F := {(u, w) | ∃v ∈ L1 : (u, v) ∈ F and (v,w) ∈ G}. We also set
G−1 := {(v, u) | (u, v) ∈ G}.

A quasi-accretive nonlinear operator G on L1 can be characterized by the property
that there exists some ω > 0 such that we have for 0 < λ < 1

ω
,

∀(u1, v1), (u2, v2) ∈ G : ‖u1 − u2 + λ(v1 − v2)‖L1 ≥ (1 − λω)‖u1 − u2‖L1 ,

while G is accretive, if ‖u1 − u2 + λ(v1 − v2)‖L1 ≥ ‖u1 − u2‖L1 holds for some
(hence any) λ > 0. An accretive operatorG is said to bem-accretive, if R(I +G) = L1

(where I denotes the identity on L1); a quasi-accretive operatorG isquasi-m-accretive,
if G + ωI is m-accretive for some ω > 0.

A continuous semigroup of nonlinear operators (respectively, contractions) on L1 is
a family (S(t)t≥0 ofmaps S(t) : L1 → L1 such that S(0) = I , S(t1+t2) = S(t1)◦S(t2)
for all t1, t2 ≥ 0, the map t �→ S(t)(u0) is continuous [0,∞[→ L1 for every u0 ∈ L1

(and, in case of contractions, ‖S(t)(u0) − S(t)(v0)‖L1 ≤ ‖u0 − v0‖L1 holds for all
u0, v0 ∈ L1 and t ≥ 0). The semigroup is said to be generated by the quasi-m-accretive
nonlinear operator G, if for every u0 in the closure D(G) of the domain of G, we have

S(t)(u0) = lim
n→∞

(
I + t

n
G

)−n
(u0).

We are now ready to formulate a solution concept for (1) and (5) in terms of
semigroups. Let A be the generator of the solution semigroup of contractions for
the (inviscid) Burgers equation and denote by B the continuous linear convolution
operator L1(R) → L1(R), u �→ Bu := K ′ ∗ u (cf. Lemma 3.8).

Definition 2.8 Suppose that A + B is quasi-m-accretive and generates the continuous
semigroup (S(t)t≥0 on L1(R). If u0 ∈ L1(R), then u(t) := S(t)(u0) (t ≥ 0) defines
the mild solution u ∈ C([0,∞[, L1(R)) of the Cauchy problem (1) and (5).

We recall from [9, Sect. 6.4] or [4, Sect. 3.3 and 5.5] that A is given as the closure
of the set A0 ⊆ L1(R) × L1(R), where A0 is defined to be the set of all pairs
(u, v) ∈ L1(R) × L1(R) with u2/2 ∈ L1(R) and satisfying

∫
R

sgn(u(x) − λ)
(u2(x) − λ2

2
∂xϕ(x) + v(x)ϕ(x)

)
dx ≥ 0

for every non-negative ϕ ∈ D(R) and λ ∈ R.
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3 Strong solutions and wave breaking

3.1 Existence and uniqueness of strong solutions for short time

The basic result on classical smooth solutions with initial and spatial H∞ regularity
was established in [28, Chapter 2, 2], alongside with the case of smooth periodic
solutions in [28, Chapter 3, 2]. The strategy of proof there is successive approximation,
starting with u(0)(x, t) := u0(x) (x, t ∈ R), in the form

∂t u
(n) + u(n−1)∂x u(n) + K ′ ∗ u(n−1) = 0, u(n)|t=0 = u0,

which requires in each step to solve a linear hyperbolic equation for u(n), given u(n−1).
Estimates along the characteristics allow then to show convergence of the scheme as
well as uniqueness and leads to the following statement, which in particular gives a
classical solution.

Theorem 3.1 If u0 ∈ H∞(R), then there is some T > 0 such that the Cauchy problem
(1) and (5) possesses a unique solution u ∈ C∞([0, T ], H∞(R)).

Ten years later, the following unique existence result with initial and spatial Hk+1

regularity (k ∈ N, thus k + 1 ≥ 2) was established in [11, Theorem 4.1], essentially
by deriving a contraction argument for the map v �→ u, where u solves

ut + uux = −K ′ ∗ v, u|t=0 = u0.

Theorem 3.2 Let u0 ∈ Hk+1(R) with k ∈ N. Then given any T > 0, which is smaller
than some positive bound depending on ‖u0‖Hk+1 , the Cauchy problem (1) and (5) is
uniquely solvable with u ∈ C([0, T ], Hk(R)) ∩ L∞([0, T ], Hk+1(R)).

As far as we understand the details of the proof in [11], it is implicit in its argu-
ments that the actual solution regularity is better than just C([0, T ], Hk(R)) ∩
L∞([0, T ], Hk+1(R)), so that one obtains a strong solution. In fact, it follows from
the equation that ∂t u = −u∂x u − K ′ ∗ u ∈ L∞([0, T ], Hk(R)), so that u is Lipschitz
continuous as a map [0, T ] → Hk(R).

For the periodic case, a similar result, but with spatial Hs+1 regularity for general
s ∈ R with s > 1/2 and solution u ∈ C([0, T ], Hs+1(T)), was given in [17, Theorem
1]. In addition, continuous dependence of u on the initial data u0 ∈ Hs+1(T) is
noted there explicitly. Moreover, reasoning again via the equation we have that u ∈
C1([0, T ], Hs(T)) as well, hence u is a strong solution. The method of proof in [17]
rests on Galerkin approximation and uses involved commutator and regularization
techniques to derive the key energy estimates yielding convergence in appropriate
function spaces. The well-posedness statement with spatial regularity Hs+1 (s > 1/2)
for periodic and non-periodic cases and even for a whole class of related equations is
mentioned also in [27, Theorem 1], but there the proof is omitted and only a vague
reference to a “standard iteration scheme combined with a closed energy estimate” is
made.
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The following result from [18, Theorem 1.1] holds for both cases, i.e., with the
spatial variable in T or R, and extends well-posedness to spatial regularity measured
in the Besov scales Bs+1

s,r in place of merely Hs+1 = Bs+1
2,2 .

Theorem 3.3 Let u0 ∈ Bs+1
2,r with s > 1/2, 1 < r < ∞ or s + 1 = 3/2, r = 1.

Then for any 0 < T < c/‖u0‖Bs+1
2,r

, where c is some positive constant depending only

on s, the Cauchy problem (1) and (5) is uniquely solvable with u ∈ C([0, T ], Bs+1
2,r ).

Furthermore, the map u0 �→ u is continuous Bs+1
2,r → C([0, T ], Bs+1

2,r ).

We obtain again also u ∈ C1([0, T ], Bs
2,r ) and thus have a strong solution. The proof

starts with a regularizing sequence (u(n)
0 )n∈N of the initial value u0, putting u(0) := 0,

and defining u(n) (n ≥ 1) successively as the solution of the linear hyperbolic Cauchy
problem

∂t u
(n) + u(n−1)∂x u(n) = −K ′ ∗ u(n−1), u(n)|t=0 = u(n)

0 .

It is then shown that energy estimates hold for short enough time T > 0 and allow for
extraction of a convergent subsequence which can be used to define a solution. Again
commutator estimates involving the regularization are crucial in the process.

Remark 3.4 In case of u0 ∈ H2(R) one can give an alternative proof for the unique
existence of a short-time solution with spatial H2 regularity based on Kato’s semi-
group approach for semi-linear evolution equations. This fact was indicated very
briefly in [17,18] after the basic well-posedness statements. The key elements and
a sketch of this are provided in the introductory section of [16] and was worked out
in more detail in the first part of the proof of Theorem 1 in [30].

3.2 Wave breaking for strong solutions

In contrast to well-posedness results, an analysis of wave breaking does not require to
strive for statements with lowest possible regularity of the initial value. In a way, it is
even more impressive to see smooth initial wave profiles leading eventually to wave
breaking.

The first clear indication that wave breaking may indeed happen for solutions of the
Fornberg–Whitham equation was given already in [29], where a sketch of arguments
was provided including a quantitative asymmetry condition in terms of the minimum
and maximum slopes occurring in the initial wave profile (see also [32, Sect. 13.14]).
The arguments for awave breaking result given later in [28] picked up the basic strategy
from [29], namely to look at the time development of the locations with minimum and
maximum slope in a solution and to consider these as curves in the spatial domain.
However, the reasoning in [28] is not mathematically complete, as explained in [7],
where the first rigorous proof of a wave breaking result was achieved. A main issue
was that one cannot guarantee a time-dependent choice of the minimal or maximal
slope location that is smooth with respect to time. The key to overcome this obstacle
is a theorem on the evolution of extrema proved in [7, Theorem 2.1] (see also [6,
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Appendix 6.3.2] or [8, Page 104, Theorem 5]), which has by now become a standard
tool in the analysis of wave breaking and that we state therefore here as a lemma.

Lemma 3.5 Let T > 0 and v ∈ C1([0, T [, H2(R)). Then for every t ∈ [0, T [ there is
some ξ(t) ∈ R such that

m(t) := inf
x∈R ∂xv(x, t) = ∂xv(ξ(t), t).

The function t �→ m(t) is locally Lipschitz continuous, thus differentiable almost
everywhere, and satisfies

m′(t) = ∂t∂xv(ξ(t), t) for almost every t ∈ ]0, T [.

The analogous statement is true with the supremum in place of the infimum. A for-
mulation for the periodic case is slightly simpler due to compactness of the torus [21,
Lemma 3.1].

The first part in the definition of wave breaking at time T according to (8) requires
that ‖u(t)‖L∞ stays bounded as t → T . A nice proof of this fact for solutions with
spatial H2 regularity is given in [16, Proposition 2] based on an adaptation of the
above lemma for the extrema of v rather than of ∂xv. We recall the statement.

Proposition 3.6 If u0 ∈ H2(R) and T > 0 is the maximal life span of the correspond-
ing unique solution u, then we have

sup
t∈[0,T [

‖u(t)‖L∞ < ∞.

To prove that wave breaking actually occurs one has to show that there is a certain
class of initial values u0 ∈ H2(R) such that ‖∂x u(t)‖L∞ inevitably blows up as t
approaches the maximal life span T . We sketch out a basic strategy for such a proof
attempt employing Lemma 3.5:

Step 1: Suppose u0 ∈ H3(R) and T > 0 is the maximal life span of the correspond-
ing unique solution u ∈ C([0, T [, H3(R))∩C1([0, T [, H2(R)). (Note that we had to
assume H3 regularity in order to meet the regularity requirement C1([0, T [, H2) for
the function v as in Lemma 3.5.) For every t ∈ [0, T [ we define

m1(t) := inf
x∈R ∂x u(x, t), m2(t) := sup

x∈R
∂x u(x, t)

and ξ1(t), ξ2(t) ∈ R such that

m1(t) = ∂x u(ξ1(t), t), m2(t) = ∂x u(ξ2(t), t)

holds. The regularity of u allows us to differentiate Eq. (1) with respect to x , which
yields

utx + u2
x + uuxx + K ∗ uxx = 0.
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Upon observing that uxx (ξ j (t), t) = 0 holds by definition of ξ j (t), we evaluate this
equation at (ξ j (t), t) and obtain

m′
j (t) + m j (t)

2 + (K ∗ uxx (t))(ξ j (t)) = 0 for almost all t ∈ [0, T [. (15)

The convolution term can be estimated frombelow upon an integration by parts (recall-
ing K ′(y) = − sgn(y)e−|y|/2) in the following way

(K ∗ uxx (t))(ξ j (t)) = −
∫ ∞

−∞
K ′(y)ux (ξ j (t) − y, t) dy

= −1

2

∫ 0

−∞
eyux (ξ j (t) − y, t) dy + 1

2

∫ ∞

0
e−yux (ξ j (t) − y, t) dy

≥ −m2(t)

2

∫ 0

−∞
ey dy + m1(t)

2

∫ ∞

0
e−y dy

= 1

2
(m1(t) − m2(t)).

Inserting this into (15) gives the two differential inequalities

m′
j (t) ≤ −m j (t)

2 + 1

2
(m2(t) − m1(t)) for almost all t ∈ ]0, T [ and j = 1, 2.

(16)

Step 2: Suppose that

m1(0) + m2(0) + S ≤ 0 (17)

holds for some S ≥ 1. Adding the two inequalities in (16) and observing m1 ≤ m2
then yields

(m1 + m2)
′ ≤ −m2

1 − m2
2 + m2 − m1 = (m2 − m1)(1 + m1 + m2) − 2m2

2 ≤ −m2
2,

which therefore in combination with (17) gives

∀t ∈ [0, T [ : m1(t) + m2(t) + S ≤ 0.

We use this now in the inequality (16) for j = 1 and obtain

m′
1 ≤ −m2

1 + m2

2
− m1

2
≤ −m2

1 + −S − m1

2
− m1

2

= −
(

m1 + 1

2

)2

+ 1

4
− S

2
≤ −

(
m1 + 1

2

)2

,
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which also implies

(
m1 + 1

2

)′
≤ −

(
m1 + 1

2

)2

.

Step 3:Putting M(t) := m1(t)+ 1
2 wehave M(0) = m1(0)+ 1

2 ≤ −S−m2(0)+ 1
2 <

0 (sincem2(0) ≥ 0; otherwise, we could not have u0 ∈ L2(R)) and M ′(t) ≤ −M(t)2,
which means

d

dt

(
1

M(t)

)
= − M ′(t)

M(t)2
≥ 1, M(0) < 0,

and thus implies

0 ≥ 1

M(t)
≥ 1

M(0)
+ t (0 ≤ t < 1/|M(0)| =: t∗ ≤ T ).

We conclude that M(t) → −∞ as 0 < t → t∗, hence t∗ ≥ T , thus t∗ = T , and
‖∂x u(t)‖L∞ cannot stay bounded as t approaches T .

Wemay thus state the followingwave breaking result corresponding to [7, Theorem
3.2] with two slight differences: First, availability of more general well-posedness
results allows for less regular initial data; second, we discussed here only the specific
convolution kernel K (x) = exp(−|x |)/2 andnot thewhole class of nonzero symmetric
kernel functions K ∈ C(R) ∩ L1(R) that are decreasing on [0,∞[.
Theorem 3.7 If u0 ∈ H3(R) satisfies

inf
x∈R u′

0(x) + sup
x∈R

u′
0(x) ≤ −1,

then we observe wave breaking for the unique solution of the Cauchy problem (1) and
(5) with initial value u0.

Note that the divergence in Step 3 of the above chain of reasoning ultimately
rests on the extra condition (17) and this is the prototype of an initial wave profile
asymmetry mentioned in the introduction to the current subsection. Unfortunately, a
direct comparison of quantitative wave breaking conditions used in various results on
wave breaking in the literature is somewhat impaired by the fact that these certainly
have to depend on the exact conventions used for scaling and signs in the Fornberg–
Whitham equation.

The reasoning in the wave breaking result of [16, Sect. 3] is similar to the above, but
uses refined estimates in Steps 1 and 2 and gives a sufficient condition on the minimal
and maximal slopes of u0 weighted by a real parameter from a bounded interval. For
the periodic case, a wave breaking result along the lines of the above theorem is proved
in [21, Sect. 3]. All the previous sufficient conditions on u0 have been shown in [30,
Theorem 2] to be special cases of one more general condition that still leads to wave
breaking. The proof departs from the above strategy after inequalities (16) at the end
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of Step 1 and succeeds to produce subtle bounds on an appropriate linear combination
of m2

1 and m2 − m1, which leads to a sufficient condition of the structure

m1(0) < min
(
−c1,−c2(1 + √

1 + c3m2(0))
)

with positive constants c j depending on the precise scaling and sign conventions used
in the Fornberg–Whitham equation.

For smooth periodic solutions the blow-up of ux in finite time is shown in [27,
Theorem 2], if − inf x∈R u′

0(x) is sufficiently large5, and a similar result is shown in
[15, Sect. 4] for the non-periodic case with initial value u0 ∈ C1(R)∩ L1(R). Both of
these proofs use elaborate estimates along characteristics and the sufficient conditions
require in particular domination of ‖u0‖L∞ or ‖u0‖L1 , respectively. To justify these
results strictly as proofs of wave breaking, one should also guarantee boundedness of
‖u(t)‖L∞ as t approaches the critical blow-up time t∗. This is implicitly so in [15],
since there u is supposed to be the unique weak entropy solution with initial value u0.

Some numerical case studies of wave breaking as the formation of shocks in weak
solutions on the torus are contained in [22]. They suggest that only negative infinities
of ux are developing and that ux stays bounded from above at the moment of wave
breaking. This also finds support by the Oleinik type inequality proved in [15, Lemma
2.1] (see also (19) below) for weak entropy solutions on the real line and can be shown
directly for strong solutions with spatial H3 regularity by calling on Lemma 3.5. We
will discuss this below after first listing a few basic results about convolution with K ′
that will also be useful for the application of semigroup theory later on.

Lemma 3.8 The linear operator u �→ K ′ ∗ u

(i) Is bounded from Lq(R) to L p(R) for all p, q ∈ R with 1 ≤ q ≤ p ≤ ∞,
(ii) Maps BV (R) into W 1,∞(R) ∩ W 1,1(R),

(iii) And for any u ∈ L∞(R) one has that

sup |∂x (K ′ ∗ u)| ≤ 2‖u‖∞. (18)

Proof For the first point, as K ′ ∈ Lr (R) for every 1 ≤ r ≤ ∞, we obtain ‖K ′ ∗u‖p ≤
‖K ′‖r‖u‖q , if 1 ≤ q := r p/(r + r p − p) ≤ p, from Young’s convolution inequality
[12, Proposition 8.7].

For the second point, we note that ∂x (K ′ ∗ u) = K ′ ∗ Du, where we may interpret
Du as the BV derivative of u, which is a finite measure by assumption (cf. [25,
Definition 7.1]). We can then apply the version of Young’s inequality for convolution
with measures (cf. [12, Proposition 8.49]) to obtain (with 1 ≤ p ≤ ∞ arbitrary)

‖K ′ ∗ Du‖p ≤ |Du|(R) · ‖K ′‖p,

where |Du| denotes the total variation measure associated with Du.

5 This is a bit reminiscent of the classical blow-up condition for initial values with the Burgers equation,
where negative slope causes characteristics to intersect.
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For the last point, note that K ′′ = K − δ and we therefore obtain

sup |∂x (K ′ ∗ u)| = ‖K ′′ ∗ u‖∞ ≤ ‖K ∗ u‖∞ + ‖u‖∞
≤ (‖K‖1 + 1)‖u‖∞ = 2‖u‖∞.

��
Assuming initial data u0 ∈ H3(R) ⊂ W 1,1(R) ⊂ BV (R) ⊂ L1(R)∩L∞(R) there

is some maximal life span T > 0 of a unique strong solution u ∈ C([0, T [, H3(R))∩
C1([0, T [, H2(R)). In case T < ∞, u ceases to be a strong solution in the
form of wave breaking at time t = T , i.e., sup0≤t<T ‖u(t)‖∞ is bounded while
lim supt↑T ‖ux (t)‖∞ = ∞, in fact, inf x∈R ∂x u(x, t) → −∞ as t → T (cf. [16,
Proposition 1]). Furthermore, there are sufficient conditions on the initial wave profile
u0 to definitely cause T < ∞, thus wave breaking occurs even for smooth initial
values. Combined with the following proposition we may deduce that in case of wave
breaking

a shock in the spatial wave profile can only form as a downward jump

(in the direction of growing x).

Proposition 3.9 If u0 ∈ H3(R) and T is the maximal life span of the corresponding
unique strong solution u ∈ C([0, T [, H3(R)) ∩ C1([0, T [, H2(R)) to (1) and (5),
then

sup
0≤t<T

sup
x∈R

∂x u(x, t) < ∞.

Proof We put M(t) := supx∈R ux (x, t) and may call on Lemma 3.5 to deduce the
following three facts: M is differentiable almost everywhere on [0, T [; for every
t ∈ [0, T [ there exists ξ(t) ∈ R such that M(t) = ux (ξ(t), t); and we have the
relation

M ′(t) = utx (ξ(t), t) a.e. on [0, T [.

Noting that uxx (ξ(t), t) = 0 we obtain upon differentiation in (1) from (18) in Lemma
3.8

M ′(t) = −M(t)2 − 0 − ∂x
(
K ∗ ux (., t)

)
(ξ(t))

≤ −M(t)2 + 2‖u(t)‖∞ for almost every t ∈ [0, T [.

By Proposition 3.6 we have c2 := 2 sup0≤t<T ‖u(t)‖∞ < ∞ (with c ≥ 0) and obtain

M ′(t) ≤ c2 − M(t)2.

Note that 0 ≤ M(0) = supx∈R u′
0(x) < ∞, since u0 ∈ L2(R) ∩ C1(R) and u′

0 ∈
H2(R) ⊂ L∞(R). Now consider the solution y to the initial value problem y(0) =
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M(0), y′(t) = c2 − y(t)2: It is constant, if M(0) = c; in case M(0) < c, we have
y(t) = c tanh(ct + α) with tanh(α) = M(0)/c < 1; and in case M(0) > c, we have
y(t) = c coth(ct + α) with coth(α) = M(0)/c > 1. In any case, y(t) exists for all
t ∈ [0, T ] and is bounded. Since M(0) = y(0), M ′ ≤ c2 − M2, and y′ = c2 − y2,
an application of the comparison theorem for ordinary differential equations (e.g., [2,
Lemma 16.4]) yields M(t) ≤ y(t) for t ∈ [0, T [, thus M is bounded from above. ��
Remark 3.10 The above proposition does not tell whether the height of a downward
shock that was formed due to wave breaking will stay bounded or decrease as time
progresses. As the existence of bounded, piecewise smooth, traveling wave solutions
with entropic jump discontinuities shows, we cannot in general expect a decrease of
the shock height with time for entropy solutions in the sense of Definition 2.5 (see the
paragraph on heteroclinic connections in [11, Sect. 3] or [20]).

4 Weak solutions from entropy concepts, semigroupmethods, or
traveling waves

4.1 Weak entropy solutions

First indications that the method of vanishing viscosity produces a convergent scheme
seem to be given in [28, Chapter 5, 2 and 3], although their notion of generalized solu-
tion remains vague and uniqueness is not addressed. The basic strategy of vanishing
viscosity was later used to produce the following rigorous statement on weak entropy
solutions for the Fornberg–Whitham equation in [11, Theorem 4.2], where spatial BV
regularity is assumed. (The original formulation does not describe the relation of the
solution u with the initial value u0, but we know from our previous discussion of the
solution concepts that u(0) = u0 holds in the sense of u ∈ C([0,∞), L1(R)), since
u0 ∈ BV (R) ⊆ L1(R) ∩ L∞(R).) The uniqueness follows in the proof given in [11]
from an intermediate L1-stability result (see also (20) below).

Theorem 4.1 If u0 ∈ BV (R), then there is a unique weak entropy solution u (in the
sense of Definition 2.7) to the Cauchy problem (1) and (5), which in addition satisfies
u ∈ L∞

loc([0,∞[, BV (R)).

This result was extended in [15, Theorem 1.2] to the general case described by the
situation inDefinition 2.7.Wenote that although [15,Definition 1.1] does not explicitly
specify the precise quality assumed of the initial value u0 and the formulation in [15,
Theorem 1.2] speaks only of u0 ∈ L1(R), we have some doubt whether the concept
and all the proof details are true without having also u0 ∈ L∞(R) a priori. In any case,
our formulation of the main result with the a priori requirement u0 ∈ L1(R)∩ L∞(R)

is certainly covered by and coherent with [15].

Theorem 4.2 Given u0 ∈ L1(R) ∩ L∞(R), the Cauchy problem (1) and (5) has a
unique weak entropy solution u (in the sense of Definition 2.7). It satisfies the Oleinik
type inequality

∀t > 0,∀x, y ∈ R, x < y : u(y, t) − u(x, t) ≤
(
1

t
+ 2 + 2t(1 + 2et‖u0‖L1 )

)
(y − x).
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(19)

Moreover, the following L1-stability holds: If v is the weak entropy solution corre-
sponding to the initial value v0 ∈ L1(R) ∩ L∞(R), then

∀t > 0 : ‖u(t) − v(t)‖L1 ≤ et‖u0 − v0‖L1 . (20)

Of course, as a corollary of (20) (with v0 = 0) we obtain the following estimate for
every t ≥ 0:

‖u(t)‖L1 ≤ et‖u0‖L1 .

The proof of Theorem 4.2 is by a so-called flux-splitting method and uses approx-
imate solutions based on discretized time steps and the solution semigroup for the
Burgers equation applied in each interval between these time steps. Convergence is
shown by fine techniques involving estimates for the Burgers semigroup and regular-
ity properties of solutions to the Poisson equation. Continuity of u as a function into
L1 follows from a tightness condition of the approximate solution sequence, which is
shown via energy estimates establishing Hölder regularity of the characteristics along
the way. Boundedness of weak entropy solutions combined with the L1 continuity of
u with respect to time produces an integral inequality, which implies L1-stability and
hence also uniqueness.

The recent publication [26] states results partially parallel to Theorem 4.2 and inde-
pendently sketches arguments based on vanishing viscosity solutions and compensated
compactness. The solutions obtained are in coherencewith the current setting, although
the solution concepts given in [26, Definitions 2.6 and 2.7] fail to clarify details about
the initial data and neither the definition of weak entropy solutions nor the main exis-
tence theorem [26, Theorem3.6] include continuity aspects of the solutionwith respect
to time.

Well-posedness and L1-stability for periodic weak entropy solutions to the
Fornberg–Whitham equation has been shown independently in [22, Sect. 2] along the
lines of Kružkov’s original paper [24] and with an adaptation of an older technique
by Fujita and Kato for the Navier–Stokes equation based on the analytic semigroup
generated by −ε∂2x on L2(T).

Remark 4.3 Wenote that [14, Theorem1] contains an L1-stability statement analogous
to (20), although for strong solutions and only for times of their common existence.
There are also the following bounds for the spatial L∞ norm of a strong solution u
with existence time T > 0 and initial value u0 ∈ Hs(R) (s > 3/2), given in [14,
Lemma 4],

‖(K ∗ ux )(t)‖L∞ ≤ ‖u0‖L2 and ‖u(t)‖L∞ ≤ ‖u0‖L∞ + t‖u0‖L2 .
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4.2 Mild solutions

Our goal here is to establish mild solutions and also the well-posedness of weak
entropy solutions via the generation of a non-linear semigroup. The basic properties
of the non-local term according to Lemma 3.8 allow us to see the following theorem
almost as a direct application of the theory of semigroups on Banach spaces generated
by non-linear operators (as described, e.g., in [4]).

Theorem 4.4 If u0 ∈ L1(R) then there exists a unique global mild solution u ∈
C([0,∞[, L1(R)) of the Cauchy problem (1) and (5) in the sense of semigroups.

Proof As the non-local term is bounded in L1, and as the inviscid Burgers term
generates a non-linear contraction semigroup in L1, we may consider the former a
perturbation of the latter and apply the theory of semigroups generated from nonlinear
operators. More precisely, let A be the non-linear operator associated with the Burgers
equation as in [4, Sect. 3.3] or in [9, Sect. 6.4], and put Bu := K ′ ∗ u with domain
D(B) = L1(R). By Proposition 3.8 we have the finite operator norm b := ‖B‖ < ∞
for B as linear map L1(R) → L1(R). We claim that A + B is quasi-m-accretive on
L1(R) (in the sense of [4, Sect. 3.1]).

To establish this, we first note that from the accretiveness of A and boundedness of
B, we have for v1, v2 ∈ L1(R) and 0 < λ < 1/b,

‖v1 − v2 + λ(A(v1) + Bv1 − A(v2) − Bv2)‖1
≥ ‖v1 − v2 + λ(A(v1) − A(v2))‖1 − λ‖B(v1 − v2)‖1 ≥ (1 − λb)‖v1 − v2‖1,

hence A + B is quasi-accretive.
Second, appealing to [4, Proposition 3.3], the accretive operator A + B is quasi-

m-accretive, if we can show surjectivity of I + λ(A + B) for small λ > 0, e.g. by
proving solvability of the following equation in L1(R) for u given v:

(I + λA)−1(v) − (I + λA)−1(λBu) = u.

As long as λ < 1/b, the left-hand side is a contraction, since by accretiveness of A,

‖(I + λA)−1(λBu1) − (I + λA)−1(λBu2)‖1 ≤ ‖λBu1 − λBu2‖1 ≤ λb‖u1 − u2‖1
and hence the equation is solvable.

For the quasi-m-accretive operator A + B we have by [4, Proposition 3.6] that its
domain D(A+B) is dense in L1(R). Therefore, the existence and uniqueness of amild
solution in the sense of non-linear semigroups with initial value u0 ∈ D(A + B) =
L1(R) now follows from [4, Corollary 4.1]. ��
Remark 4.5 In course of the above proof we preferred to show directly that of A+ B is
quasi-m-accretive, while alternatively, one could also just observe quasi-accretiveness
of B and apply an appropriate variant of the basic perturbation result proved in [3,
Theorem 3.2] (and mentioned also in [4, Theorem 3.1]).
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The following result gives an independent proof of the well-posedness part from
Theorem 4.2.

Theorem 4.6 If u0 ∈ L1(R) ∩ L∞(R), then the global mild solution u ∈
C([0,∞[, L1(R)) of the Cauchy problem (1) and (5) according to Theorem 4.4 is
also a weak entropy solution.

Proof Assuming now that u0 ∈ L1(R) ∩ L∞(R), the equivalence of the semigroup
solution according to Theorem 4.4 and the entropy solution follows similarly as in
the proof of [4, Theorem 5.6]. We indicate a few adaptations implementing the proof
variant in our case: First, since we have shown that the range of I + λ(A + B) for
small λ > 0 is all of L1(R), we may note that following [4, Theorem 4.3, Eq. (4.17)],
the mild solution can be constructed as the limit of resolvents

u(t) = lim
n→∞

(
I + t

n
(A + B)

)−n

u0

uniformly in t on compact intervals. Second, the resolvent-like bounds established
above hold (with an appropriately changed constant b > 0) with respect to any L p-
norm, 1 ≤ p ≤ ∞, since this is true for the unperturbed operator A, the convolution
operator B is bounded on L p(R) as well (Lemma 3.8), and the above estimates for A+
B were generic, i.e., without using special properties of the L1-norm. In combination
of these facts, it follows that the solutions uε to the ε-regularized difference equation
as in [4, Eq. (5.125)], namely (uε(t) − uε(t − ε))/ε + A(uε(t)) + Buε(t) = 0 for
t > ε and uε(t) = u0 for t < 0, satisfy

‖uε(t)‖p ≤ ebt‖u0‖p,

uniformly in ε > 0, and uε(t) → u(t) as ε → 0, uniformly for t in a compact time
interval. This uniform upper bound for uε allows us to enter the proof of [4, Theorem
5.6] at (5.128) and follow the line of arguments there up to the end with A + B always
replacing A, which concludes the proof of our theorem. ��

4.3 Continuous weak traveling wave solutions

In the theory of (local) scalar conservation laws it can be shown that continuous weak
solutions are always entropy solutions ( [9, Theorem11.13.1]). Theproof employsfine-
tuned techniques from the theory of generalized characteristics and might to be out of
reach in our case of a nonlocal conservation lawwith the Fornberg–Whitham equation.
However, for the special situation of traveling waves we show a related result below.
Its hypotheis includes the case of the famous peakon solution with initial wave profile
4 exp(−|y|/2)/3, which gives a weak solution to the Fornberg–Whitham equation (cf.
[5,13] or [20, Example 1.4]). In general for a traveling wave u(x, t) = v(x −ct)we do
not want to require u0 = v ∈ L1(R), since this would exclude many interesting cases.
Thus, in the following statement we do not assume that x �→ u(x, t) is integrable for
every t and resort to Definition 2.5 instead of 2.7.
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Proposition 4.7 Any weak traveling wave solution (x, t) �→ u(x, t) = v(x − ct) with
bounded and absolutely continuous6 wave profile v is an entropy solution in the sense
of Definition 2.5.

Proof From the assumption that u(x, t) = v(x − ct) defines a weak solution it is not
difficult7 to derive the following equation, which holds in the sense of distributions as
well as pointwise almost everywhere on R:

(
(v − c)2

2
+ K ∗ v

)′
= 0. (21)

We will show that for any λ ∈ R and nonnegative test function φ in C∞
c (R2),

∞∫
0

∞∫
−∞

|v(x − ct) − λ|∂tφ(x, t) dxdt

+
∞∫
0

∞∫
−∞

sgn(v(x − ct) − λ)
v2(x − ct) − λ2

2
∂xφ(x, t) dxdt

−
∞∫
0

∞∫
−∞

sgn(v(x − ct) − λ)K ′ ∗ (v(· − ct))(x)φ(x, t) dxdt

+
∞∫

−∞
|v(x) − λ|φ(x, 0) dx = 0.

Let us denote the four integral terms on the left-hand side by I1, I2, I3, I4, respectively,
i.e., we claim that I1 + I2 − I3 + I4 = 0.

Fubini’s theorem and integrating by parts with respect to t , gives

I1 =
∞∫

−∞

∞∫
0

|v(x − ct) − λ|∂tφ(x, t) dtdx

=
∞∫

−∞

( ∞∫
0

(
sgn(v(x − ct) − λ)cv′(x − ct)φ(x, t)

)
dt + |v(x − ct) − λ|φ(x, t)|t=∞

t=0

)
dx

=
∞∫

−∞

∞∫
0

(
sgn(v(x − ct) − λ)cv′(x − ct)φ(x, t)

)
dtdx −

∞∫
−∞

|v(x) − λ|φ(x, 0) dx,

where we already observe that the last term cancels I4.

6 In the sense that v is differentiable almost everywhere with locally integrable derivative.
7 For example, along the lines of the reasoning in [20, Subsection 2.1], but here with the simplification of
continuity of the wave profile at ξ = 0.
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In I2 we observe that f (y) = sgn(y−λ)(y2−λ2)/2 is differentiablewith derivative
f ′(y) = sgn(y − λ)y in an integration by parts to obtain

I2 =
∞∫
0

∞∫
−∞

sgn(v(x − ct) − λ)
v2(x − ct) − λ2

2
∂xφ(x, t) dxdt

= −
∞∫
0

∞∫
−∞

sgn(v(x − ct) − λ)v(x − ct)v′(x − ct)φ(x, t) dxdt .

Summing up, we find

I1 + I2 − I3 + I4

=
∞∫
0

∞∫
−∞

sgn(v(x − ct) − λ)
(
(c − v(x − ct))v′(x − ct) − (K ′ ∗ v)(x − ct)

)
︸ ︷︷ ︸

=−((v−c)2/2)′−K ′∗v=0 a.e.

φ(x, t) dxdt

= 0.

��
The hypothesis of absolute continuity in the previous proposition certainly would

allow for non-smoothness in v harsher than the Lipschitz continuous corner singularity
in the example of the peakon solution. An interesting question is whether absolutely
continuous functions v with a cusp at some location x0 ∈ R, where the derivative is
locally integrable but unbounded, qualify as initial values of weak traveling solutions
u. If we have, in addition, v ∈ L1(R) ∩ L∞(R) this can be ruled out immediately:
The proof of Proposition 4.7 shows that u would be also a weak entropy solution in
the sense of Definition 2.7 and we could construct a contradiction to the Oleinik type
estimate (19) in Theorem 4.2 for any t > 0 near the translated cusp location x0 + ct .

Example 4.8 In [5] the authors construct an interesting class of examples of bounded
continuous traveling waves with a cusp and satisfying Eq. (1) in the pointwise classical
sense everywhere on R

2 except for the straight line x = ct . We consider the particular
case with parameters A = 0 and c > 4/3 in [5, Theorem 2.4(i), Theorem 2.5(iii), and
Case III in Sect. 3] and obtain the traveling wave u(x, t) := v(x − ct), where v is a
bounded continuous function on R that is C3 off 0 and satisfies

(
1 − d2

dξ2

)(
(v − c)2

2

)′
+ v′ = 0 on R\{0}. (22)

Furthermore, 0 < v ≤ c, v(0) = c, ξ �→ v(ξ) is strictly increasing for ξ < 0, v(−ξ) =
v(ξ), limξ→±∞ v(ξ) = 0, and we have, with the constant b := 4|c|3/2√c − 4/3 > 0,

v(ξ) = c − 2b|ξ |1/2 + O(|ξ |) and v′(ξ) = −b sgn(ξ)|ξ |−1/2 + O(1) (ξ → 0).

(23)
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Note that v is absolutely continuous. In fact, an inspection of the change of variables
in the construction of [5, Sect. 3, Case III] shows that we have even v ∈ W 1,1(R) ⊂
BV (R) ⊂ L1(R) ∩ L∞(R). Therefore, the argument presented above already shows
that u cannot be a weak solution.

However, let us add here also a more direct reasoning why Eq. (22), valid pointwise
for ξ �= 0, cannot guarantee that the initialwave profile v defines a globalweak solution
u of the Fornberg–Whitham equation. Similar arguments may be applicable to other
cases of parameters in this example class as well.

We will show that the precise asymptotic information about v and v′ near ξ = 0
according to (23) allows us to draw the following conclusion: If v has all the properties
specified above and the left-hand side of (22) is the restriction of a distribution on R

which vanishes on R\{0}, then
(

(v − c)2

2
+ K ∗ v

)′
= −4b2K ′. (24)

SinceEq. (24) is in contradiction to (21),wemay then conclude thatu(x, t) = v(x−ct)
cannot define a weak solution of the Fornberg–Whitham equation.

To prove (24),wefirst note that due to (22) the distribution (1− d2

dξ2
)((v−c)2/2)′+v′

has support in the singleton set {0}, thus equals a finite linear combination of derivatives
of theDirac distribution δ (concentrated at ξ = 0). Recall that v is globally continuous,
even C3 outside ξ = 0, and by (23) the derivative v′ is locally integrable; hence also
((v − c)2/2)′ = (v − c)v′ is locally integrable. Therefore the order of the Delta
derivatives can be at most 1, i.e., there are λ0, λ1 ∈ R such that

(
1 − d2

dξ2

) ( (v − c)2

2

)′ + v′ = λ0δ + λ1δ
′.

Upon convolution with K we obtain

((v − c)2/2)′ + K ′ ∗ v = λ0K + λ1K ′,

which implies ((v − c)2/2)′ = λ0K + λ1K ′ − K ′ ∗ v ∈ L1(R) and upon integration
over R that

λ0 =
∫ ∞

−∞
(λ0K + λ1K ′ − K ′ ∗ v)dξ =

∫ ∞

−∞
((v − c)2/2)′dξ = 0,

since limξ→±∞(v(ξ) − c)2/2 = c2/2. Thus, we are left with the equation

((v − c)2/2)′ + K ′ ∗ v = λ1K ′. (25)

Considering again (23), when ξ → 0 we have

((v(ξ) − c)2/2)′

123



Solution concepts, well-posedness, and wave breaking... 447

= (v(ξ) − c)v′(ξ) = (−2b|ξ |1/2 + O(|ξ |))(−b sgn(ξ)|ξ |−1/2 + O(1))

= 2b2 sgn(ξ) + O(|ξ |1/2),

hence ((v − c)2/2)′ has a jump of height 4b2 at ξ = 0. Recalling K ′(ξ) =
− exp(−|ξ |) sgn(ξ)/2, using the continuity of K ′ ∗ v and of K when taking the dif-
ferences in (25) as ξ → ±0 we finally conclude that 4b2 = −λ1.

Remark 4.9 It can be shown (cf. [11, Sect. 3] or [20]) that there are bounded, piecewise
smooth, traveling waves with an entropic jump discontinuity that are weak entropy
solutions in the sense of Definition 2.5.
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