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Abstract
In this paper we investigate the structure of the set of maximal ideals of G(�). The
method of investigation passes through the use of the m−reduction and the ideas are
analoguous to those in Gillman and Jerison (Rings of Continuous Functions, N.J.
Van Nostrand, Princeton, 1960) for the investigation of maximal ideals of continuous
functions on a Hausdorff space K .
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Introduction

The algebra of Colombeau generalized functions has been used for non linear P.D.E.
(see for example [4,6–8,22,24]) as well as for linear P.D.E. with irregular coefficients
[21]. Much work has been done on this field from the point view of Analysis. However
the Algebraic properties of this Algebra are still a largely open field of investigation.

In the case of continuous functions (with complex or real values over a compact set
K it is known that the set of points are in one-one correspondence with the set of max-
imal ideals. While in the more general case of the algebra of continuous functions on a
Hausdorff regular space A, the set of maximal ideals is in a one to one correspondence
with the Čech-compactification (β(A)) (see [16]).

It is known that generalized functions G(�) have a double structure:

(a) They constitute a sheaf of algebras (see [4,6]) and
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(b) They are continuous mappings of ̂�c (the set of compactly supported generalized
points) into the ring K of generalized constants. (This result follows immediately
from definitions.)

This leads to the notion of ‘localisation’ of ideals, the notion of ‘support’ of an
ideal and to the notion of generalized trace of ideals (see [2]).

Trying to obtain a better knowledge of prime and maximal ideals of G(�)we make
an extensive use of the results concerning the algebraic and topological properties
of the ring of generalized constants [3]. In order to use ideas analogous to those in
[16], we first use the m−reduction procedure [27] which gives a canonical surjective
mapping of G(�) onto Gm(�), but Gm(�) is a topological algebra on the field of
m−reduced generalized constants Km = K/m where m is maximal ideal of K. We
now consider a very large class of maximal ideals called regular maximal ideals. The
set of regular maximal ideals is proved to contain all closed maximal ideals (closed
for the natural Hausdorff topology of G(�)).

Our main result is the following: the set of regular maximal ideals is in one to one
correspondence with (m, d) where m is a maximal ideal of K and d ∈ γ (̂�m,c) where
γ (̂�m,c) is a special compactification of ̂�m,c called the g−compactification of ̂�m,c.

In Sect. 1. in order to make the paper almost self contained we give the main
definitions and results that we will use.

In Sect. 2. we give some results and examples and counterexamples concerning the
properties of ideals of G(�).

In Sect. 3. with the help of the concept of m−reduction we investigate the set of
maximal ideals of the algebra Gm(�) and show how to transfer these results by pull
back on G(�).

In the appendixwe present the technique of compactificationwith the help of special
families of closed sets called compactifying families.

1 Definitions andmain results

In order to make this paper almost self contained and accessible to non specialists
we remind the main definition and the main algebraic results. In order to enlighten
the functoriality of Colombeau constructions we will follow the presentation given in
[26].

1.1 Colombeau extension

Definition 1.1 Let (E, (μn)n) be a Hausdorff topological vector space whose uniform
structure is given by an increasing sequence (μn)n of seminorms.

A net ( fε)ε ∈ E ]0,1] is said to be moderate if

∀n ∈ N, ∃an ∈ R s.t. μn( fε) = o(εan )

The vector space of moderate nets will be denoted EM [E].
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Maximal closed ideals of the Colombeau Algebra... 121

A net (hε) ∈ E ]0,1] will be said to be negligible if

∀n ∈ N, ∀b ∈ R, μn(hε) = o(εb) .

The subspace of all negligible nets will be denoted N [E].
The factor space G[E] = EM [E]/N [E] will be called the Colombeau extension of

E .

The class of a moderate net ( fε)ε will be denoted [( fε)ε]. Notice that the above
construction depends only on the uniform structure of E andnot of the precise sequence
(μn) chosen to express it.

Definition 1.2 If ( fε)ε ∈ EM [E] we define the valuations

νn( fε) := sup{a ∈ R s.t. μn( fε) = o(εa)}

Clearly ( fε)ε ∈ N [E] if and only if ∀n , νn( fε) = +∞. We also define a family of
pseudodistances by:

δn(( fε), (gε)) = e−νn(( fε−gε)ε)

as fε − gε ∈ N [E] if and only if

∀n δn(( fε), (gε)) = 0

Those notions pass to the factor spaceG[E] = EM [E]/N [E] and define on it a complete
Hausdorff ultrametric uniform structure. The topology they define on G[E] is called
the sharp topology (see [14,15,21,25,26]). This notion has been extended to many
analogous constructions (see [9,10,12,13]).

The above extension procedure is functorial in the sense that if L : E → F is a
continuous linear mapping, then L defines in an obvious way a mapping Lg : G[E] →
G[F]which is continuous for respective sharp topologies. This property holds also for
a larger class of mappings the so called ‘continuously tempered’ mappings ([9,26]).
This class contains bilinear and quadratic mappings; thus if E is a topological algebra
on K, then G[E] is a topological algebra on the Colombeau extension of K that we
will denote K .

1.2 Generalized constants

Definition 1.3 The Colombeau extension of the field K (K = R or C) endowed with
its absolute value will be denoted by K, the ring of generalized constants.

The trivial embedding (x → [(xε)], xε = x, ∀ε ∈]0, 1]) of K into K is discrete
(the same holds generally for all trivial embeddings E → G[E]).

The ringK of generalized constants is not a field. Its main algebraic and topological
properties have been studied in [3], and later in [5,8,28]. Let us cite the main results
we will use in this paper:
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1) C = R + iR and if a is an ideal of C then a = (a ∩ R) + i(a ∩ R).

2) If p is a prime ideal of K then its closure p (closure for the sharp topology) is a
maximal ideal of K.

3) If in R we define x ≤ y by the fact that

there exist respective representatives (xε)ε and (yε)ε s.t. ∀ ε (xε) ≤ (yε)

then we define an order on R (but not a total order).
4) Let us denote by |x | the class of (|xε|)ε. If U is an ideal of K, |y| ∈ U and

|x | ≤ |y|, then x ∈ U .

1.3 Generalized functions

Let us consider the space E = C∞(�) where � is an open subset of R
d . Let us

remind first how we can define the uniform structure of E by an increasing sequence
of seminorms.

Let (�n)n be an exhaustive sequence of relatively compact subsets of� (i.e.�n ⊂⊂
�n+1,

⋃

�n = �). If f ∈ C∞(�), we put

μn( f ) := sup{|∂α f (t)| : t ∈ �n, |α| ≤ n} .

The ring of moderate nets of C∞(�) will be denoted EM (�).

The ideal of negligible nets will be denoted N (�). The Colombeau extension
G[C∞(�)] will be denoted G(�) and will be called the algebra of Colombeau gen-
eralized functions on �. By the functoriality properties of Colombeau constructions,
one immediately proves that

Proposition 1.4 G(�) is a differential topological algebra on K and all differentiations
are continuous mappings.

One defines in an obvious way the restriction of a generalized function on an open
subset �′ of � .

In fact we define a sheaf of topological algebras on K which can be proved to be
fine [15].

The support of a generalized function f is the complement of the largest open
subset �′ such that f/�′ = 0.

Clearly K is trivially embedded in a subring of G(�), the subring of ‘constant
generalized functions’.

A very important property of G(�) is the fact that there exist embeddings ofD′(�)

into G(�) :
Let φ ∈ S(Rn) (Schwartz functions) be such that

∫

φdx = 1 and ∀ α, |α| ≤ 1
∫

xαφ(x)dx = 0. For any ε ∈ ]0, 1], define the function φε(x) := 1

εn
φ(

x

ε
). If T ∈

D′(�) has compact support, consider iφ(T ) = [(T ∗ φε)ε]. By sheaf considerations
and partition of unity this mapping can be extended on all D′(�). Such mappings
respect derivations and products of C∞ functions but not the products of continuous
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Maximal closed ideals of the Colombeau Algebra... 123

functions (thiswould be impossible as is stated by awell known impossibility Theorem
of L. Schwartz).

However the situation is not completely hopeless because we have in Colombeau
theory some useful ‘weak-equalities’ (which are not stable under products):

(a) If F = [( fε)] and G = [(gε)], F and G are said to be associated if

∀ ρ ∈ D(�) lim
ε→0

∫

( fε − gε)ρdx = 0

(we denote F ∼ G).
(b) F and G are said to be strongly associated (see [21,25]) which we denote

(F ∼S G) if

∀ρ ∈ D(�), ∃a > 0 s.t.
∫

( fε − gε)ρ dx = o(εa)

(c) F and G are said to be ‘equal in distribution sense’ (F =
D′ G) if

∀ ρ ∈ D(�)

∫

[ fε − gε]ρdx = 0.

Oberguggenberger investigated many cases where, when the product of distribu-
tions T , S is defined in some sense, then iφ(T · S) is ‘weakly equal’ to iφ(T )iφ(S) in
the sense of one of the above equivalence relations (see [23]).

The functorial structure of Colombeau constructions allows to define the value of a
generalized function f on a point x0 of � as well as the integral of f over a compact
set K . Moreover it is clear that the mappings f → f (x0) and f → ∫

K f dx are
continuous K linear mappings for the respective sharp topologies.

Let us remind an important result proved using Landau inequality in [17].

Proposition 1.5 A net (hε) ∈ EM (�) is negligible ((hε) ∈ N (�)) if and only if
∀K ⊂⊂ �, ∀a > 0, supK |hε| = o(εa).

Thus in this casewe have to verify the rapid vanishing only of supremum seminorms
and we need not evaluate the behaviour of derivatives.

The definition of negligible nets only by the evaluation of the supremum seminorms
on relatively compact subsets allows us to prove easily the following.

Proposition 1.6 Let Ek = Ck(�) (k = 1, ...,∞).
There exist canonical mappings jk: G[Ek+1] → G[Ek].
We denote G′[Ek] := jk(G[Ek+1]), with the relative topology of G[Ek].
Then G(�) = G[C∞(�)] is embedded into a dense subset of G′[Ek].

Proof Themappings are defined as the identitymapon representatives.AsEM [Ek+1] ⊂
EM [Ek] and N [Ek+1] ⊂ N [Ek], the mapping jk is well-defined.
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124 A. Khelif, D. Scarpalezos

Injectivity of the mapping G(�) → G′[Ek] is easily deduced by the fact that

N (�) = EM (�) ∩ N [Ek].

In fact, by Proposition 1.5, the negligibility of the supremums on compact sets implies
the negligibility of the supremums of all derivatives on the same sets. As for density,

consider the modified nets δn,ε = 1

εnd
φ
( x

εn

)

, where φ is a function whose fourier

transform is a C∞ compactly supported function with value 1 on a neighbourhood of
0. Let us now consider (gε) ∈ EM,c(Ek+1) and hε = gε − gε ∗ δn,ε .

One can easily verify that gε ∗ δn,ε ∈ EM (�) and that ∀K ⊂⊂ �, ∀α ∈ N
d , |α| ≤

k,∀a > 0

∃n0 s.t. n > n0 ⇒ sup
K

|∂α(gε − gε ∗ δn,ε)| = o(εa).

��

1.4 Generalized points

J.F. Colombeau noticed that there exist non zero elements of G(�) which take zero
value on all points of �. This led M. Kunzinger and M. Oberguggenberger to define
the notions of ‘generalized points’ and ‘compactly supported generalized points’ (see
[19]).

Definition 1.7 A net (xε) ∈ �]0,1] is said to be moderate if there exists a ∈
R s.t . ‖xε‖ = o(εa). Two such nets are said to be equivalent if

∀a > 0, ‖xε − yε‖ = o(εa).

The set of equivalence classes is called the set of generalized points and is denoted ̂�

and the class of such a net (xε) is denoted as usually by [(xε)]. A generalized point
x = [(xε)] is said to be supported in a compact subset K if there exists a representative
(x ′

ε) of x such that ∀ ε x ′
ε ∈ K . The set of compactly supported generalized points is

denoted ̂�c.

Notice that if we put δ(x, y) = e−v(‖xε−yε‖) (where v is the valuation on K) then
̂�c acquires a complete ultrametric uniform structure. The topology thus defined is
called the sharp topology of ̂�c. Clearly � is embedded on a discrete subset of ̂�c.

In some sense ̂� is the ‘Colombeau extension’ of �. By putting for x ∈ ̂�c

and f ∈ G(�), f (x) = [( fε(xε))] we define the value of the generalized function
f (= [( fε)]) on the compactly supported generalized point x = [(xε)].
One can easily verify that the mappings

x → f (x) and f → f (x)

are continuous for the respective sharp topologies.
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Maximal closed ideals of the Colombeau Algebra... 125

Remark If x ∈ ̂� but x /∈ ̂�c, then f (x) cannot always be defined. M. Kunzinger and
M. Oberguggenberger proved in [19] that

Proposition 1.8 if f ∈ G(�) and ∀ξ ∈ ̂�c, f (ξ) = 0 then f = 0.

The notion of compactly supported generalized point allows us to obtain some
properties analogous to those of continuous functions on �.

Proposition 1.9 (Maximum theorem) Let K be a compact subset of � and f ∈ G(�)

then there exists a generalized point x0 ∈ ̂�c. s.t. ∀ y ∈ ̂�c, supported in K | f (y)| ≤
| f (x0)|.
Proof Let (xε) ∈ K be such that ∀ε, | fε(xε)| = sup

K
| fε|.

Clearly [(xε)] satisfies the requirements of the proposition. ��
Proposition 1.10 Let f be a ‘real valued’ generalized function on � (i.e. an element
of G[E] where E is the family of real valued C∞ functions). Let us suppose that �

is arcwise connected and that x and y are two elements of ̂�c and c ∈ R such that
f (x) < c < f (y). Then there exists z = [(zε)] ∈ ̂�c such that f (z) = c. (This
proposition will be called the intermediate value theorem for generalized functions).

Proof Let �′ be a relatively compact connected subset of � such that both x and y
are supported on some compact subset of �′. For ε small enough, we have

fε(xε) ≤ cε ≤ fε(yε).

Let zε be such that f (zε) = cε and zε ∈ �′ (this is possible because �′ is connected
and fε is continuous). Clearly z = [(zε)] satisfies the requirements of our proposition.

��
This simple property has important consequences concerning the set of maximal

ideals of G(�).

The notion of compactly supported generalized points allows us to have a ‘gener-
alized pointwise’ criterium for invertibility (see also in [19]).

Proposition 1.11 A generalized function f ∈ G(�) is invertible (as an element of the
algebra G(�)) if and only if

∀ ξ ∈ ̂�c, f (ξ) is invertible.

Let us remind a proof:

Proof Let us first remind that x ∈ K is invertible if and only if there exists a > 0 such
that |x | > [(εa)]. Let f be a generalized function.

Consider now a locally finite covering of � by relatively compact open subsets
(ωi , i ∈ I ) and consider a C∞ partition of unity (ϕi ) adapted to this covering. On ωi

consider zi
ε s.t. | fε(zi

ε)| = inf
ωi

| fε(t)|. By hypothesis if zi = [(zi
ε)], f (z) is invertible,
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126 A. Khelif, D. Scarpalezos

thus inf
ωi

| fε(t)| > εa where a is some positive constant. Clearly sup
ωi

1

|g(t)| < ε−a ,

thus gi ∈ G(ωi ) defined by gi = 1

f (t)
∀t ∈ ωi is such that f/ωi gi = 1. Consider

now G = ∑

ϕi gi . Clearly ϕi gi define also an element of G(�) and G is well defined
because the above sum is locally finite.

One verifies immediately that G · f = 1. ��

1.5 Sequencemodel of Colombeau theory

Another version of Colombeau extension is the sequence model where we simply
replace a net ( fε) by a sequence ( fn). The definition of moderateness or negligibility

is simply what is obtained when we replace ‘ε’ by
1

n
. Clearly the notions of ‘n-

valuations’ and ‘sharp’ topology have obvious counterparts in the sequence model.
This model was first used by the bielorussian group ofMathematicians around Radyno
and Antonevich ([1]).

The sequence presentation was also used in [12] when authors introduced general-
isations of the classical Colombeau constructions.

In some circumstances the sequence model allows a better understanding of the
main points of a proof.

Such proofs can be translated in the net model in the following way. If the proposi-
tion is false therewould exist a sequence ( fεn ) satisfying the negation of the proposition
and this would give a counterexample in the sequence model.

Wewill also use the sequencemodel to present complicated counterexampleswhere
the translation in the net model would just add useless difficulties of comprehension.
Since our purpose here is to allow the reader to grasp the main ideas of our work we
will freely pass from one model to the other.

Remark However arguments using cardinality must be treated with great caution
because the two models don’t have the same cardinal as sets.

1.6 m−reduction

In usual Colombeau theory the set of generalized constants is not a field but only a
ring (contrary to what happens in the ‘non standard’ version of Colombeau theory (see
[20,23], …).

However there is a shortcut to obtain in the frame of standard analysis algebras
where the ring of constants is a field.

This procedure is the ‘m−reduction’ (see [27]) where m is a maximal ideal of K.

Those ‘m−reduced’ constructions are closely analogous to the non standard version
of the theory see [20,23,28] and are a direct rough way to construct something similar
to ρE(�).

Definition 1.12 Let m be a maximal ideal of K. The quotient field Km = K/m will be
called the field of m−reduced generalized K-constants. The class of x will be denoted
[x]mand if x is represented by xε, it will be denoted [(xε)]m .
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Maximal closed ideals of the Colombeau Algebra... 127

In [2], the authors proved that any maximal ideal m of K is always closed for the
sharp topology of K. Thus Km can be endowed with a quotient Hausdorff topology
also called the sharp topology of Km .

More precisely

Definition 1.13 If x = [(xε)]m ∈ Km we define its valuation v(x) by v(x) :=
sup{v(yε) : [(yε − xε)] ∈ m} and we define a distance d(x, y) := e−v(x−y) which is
an ultrametric distance on Km .

The topology and uniform structure thus defined are called the ‘sharp’ topology
and uniform structure of Km .

Km with its sharp uniform structure satisfies the following properties (see [27]).

Proposition 1.14 (a) If m = R ∩ m then Cm = Rm + iRm

(b) v is a valuation i.e. v satisfies also v(x .y) = v(x) + v(y) (while in the case of K

we have only an inequality). Km is a complete ultrametric space.
(c) Rm is totally ordered by the following relation x̂ ≥ ŷ which means by definition

that there exist respective representing nets (xε), (yε) s.t. xε ≥ yε. The order
topology coincides with the sharp topology.

(d) Rm is a non archimedian, real closed field
(e) K is naturally embedded on a discrete subfield of Km .

(f) Rm is complete but not Dedekind complete (i.e. a bounded (for order) subset does
not always admit an upper bound) .

(g) If x ∈ Rm is limited i.e. ∃N ∈ N such that −N < x < N. Then there exists a
unique element x0 of R such that |x − x0| is smaller than every positive standard
real number, x0 will be called the shadow of x and we will say that x belongs to
the ‘halo’ of x0.

h) Then the halo of zero is a subring of Rm, both closed and open for sharp topology.

Here we will remind only the proof of g). As Rm is totally ordered, let A be the set
of classical reals bigger than x . A is non empty and bounded since x is limited. Let
x0 be the infimum of A. For any n ∈ N, |x − x0| < 1

n .

Notice that on Cm we can define an ‘absolute value’ with value in R
+
m in the

following way.
If x = [(xε)]m , then |x | := [(|xε|)]m . This absolute value satisfies all classical

properties.
We can now easily give the definition of the m−reduced Colombeau extension of

(E, (μn)n) (see [27]).

Definition 1.15 Let (E, (μn)) be a topological vector space topologized by an increas-
ing sequence of seminorms (μn).

An element f = [( fε)] of G[E] is said to be m−negligible if and only if

∀n ∈ N [μn( fε))] ∈ m

The subspace of m−negligible elements of G[E] will be denoted Jm[E]. The
m−reduced Colombeau extension Gm[E] is defined as the factor space Gm[E] =
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G[E]/Jm[E] by putting vn( f ) := sup{vn(g) : g represents f } and

δn( f , g) = e−vn( f ,g)

We define on Gm[E] a complete ultrametric Hausdorff uniform structure called the
sharp uniform structure and a Hausdorff topology called the sharp topology of Gm[E].
Using the definitions we can prove the following results (the proof is cumbersome but
straightforward)

Proposition 1.16 Gm[E] is a topological vector space on the topological field Km (K
being the field of real or complex numbers according to the case we are dealing with);
and when E is a topological algebra over K, then Gm[E] is a topological algebra
over Km . More generally, if L is a continuous linear mapping from E to F then it
defines canonically a Km-linear continuous mapping (also denoted L) from Gm[E] to
Gm[F]. If ϕ is a continuously tempered mapping (see [9] and [27]) from E to F, then
it defines a continuous mapping from Gm[E] to Gm[F].

Thus the m−reduction is also a ‘Functorial’ procedure (see [27]).

1.7 m−reduced generalized points

The above ‘m−reduction’ procedure can also be applied on the case of the set of
generalized points:

Definition 1.17 Two generalized points (x, y) = ([(xε)], [(yε)]) are said to be
m−equivalent if [(‖xε − yε‖)] ∈ m. The set of equivalence classes thus obtained
is denoted ̂�m . The set of classes admitting a compactly supported representative will
be denoted ̂�m,c and will be called the set of compactly supported m−reduced gener-
alized points. The sharp topology is defined also on ̂�m,c by the same procedures as
previously.

An important property of ̂�m,c (whose counterpart is not valid for ̂�c) is the
following.

Proposition 1.18 If x̂ ∈ ̂�m,c then there exists a unique element x0 of � s.t. ‖x̂ −x0‖ <

1/n, ∀n ∈ N. Such a point will be called the shadow of x̂ .

The set of elements of ̂�m,c admitting x0 as a shadow is called the halo of x0.

Proof If ̂�m,c ⊂ (Rm)n the sentence can be easily proved using proposition 1.14 g)
for any given coordinate thus for the whole space (Rm)n , i.e. one can prove that all
limited elements of (Rm)n admit such a shadow and all elements of ̂�m,c are limited.
More over it is obvious that their shadow lies in �. ��

In some sense ̂�m,c is some kind of a ‘nonstandard’ extension of �.

As in the case of Gm[E] we can define on ̂�m,c a ‘sharp’ topology which coincides

with the topology given by the R
+
m-valued ‘norm’ ‖x − y‖ = [(‖xε − yε‖)]m .

This topology can be given also by an ultrametric distance (see [27]).
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Maximal closed ideals of the Colombeau Algebra... 129

1.8 The algebraGm(Ä)

Starting from E = C∞(�) with its set of seminorms μn we obtain the algebra Gm(�)

of m−reduced generalized functions (for details see [27]). In this case the subspace
of m−negligible elements will be denoted Jm(�).

Using the same method as M. Kunzinger and M. Oberguggenberger in [19] and the
fact that all ideals of K are convex (i.e. if |x | ≤ |y| and |y| belongs to the ideal, so
does x) we obtain the following important remark.

Proposition 1.19 f = [( fε)] belongs to Jm(�) if and only if for any compact subset
K of �, [sup

K
| fε|] ∈ m.

We give the proof in the simplified case of one variable. By multiplying fε by a
C∞ compactly supported generalized function ϕ, we can without loss of generality
(evaluation been always done on compact spaces) suppose that fεϕ = gε hasmoderate
uniform evaluations for all derivatives. Let us remind the Landau inequalities : if M0
is the maximum of a function f , M1 the maximum of its derivatives and M2 the
maximum of its second derivatives, then M1 ≤ √

2M0.M2. Let M0,ε ; M1,ε ; M2,ε
be the corresponding maximums for the function gε , then we will prove that if
[(M0,ε)] ∈ m, then also [(M1,ε)] ∈ m. The above mentioned inequality implies that
M2

1,ε ≤ 2M0,ε.M2,ε and as [(M0,ε)] ∈ m and [(M2,ε)] ∈ R,, we have that [(M1,ε)
2]

belongs to m.But as m is a maximal ideal, we can conclude that also [(M1,ε)] belongs
to m since it is a prime ideal. By induction we can prove that, for all orders, the bounds
of derivatives belong to m, which implies that ( fε) ∈ Jm(�).

One can easily verify that, as in the case of G(�), we define by this procedure a
sheaf of algebras and a notion of restriction to open subsets.

Let ıθ be an embedding ofD′(�) into G(�). If for any T ∈ D′(�) we associate its
image [ıθ (T )]m into Gm(�), we obtain an embedding of distributions into the algebra
Gm(�) respecting derivations of distributions and products of C∞ functions. But this
time the ‘constants’ of our algebra form a field and not just a ring as in the case of
G(�).

Clearly Km is embedded in an obvious way into Gm(�) and its elements can be
considered ‘constant’ generalized m−reduced functions.

As in the case of G(�) we can evaluate m−reduced generalized functions on
m−reduced compactly supported generalized points.

Proposition-definition If f = [( fε)]m ∈ Gm(�) and x = [(xε)]m ∈ ̂�m,c then
[( fε(xε))]m does not depend on the choice of representatives ( fε) and (xε). This
m−reduced generalized constant will be called the value of f on x, ( f (x)). Moreover
the mappings f → f (x) and x → f (x) are continuous for the respective sharp
topologies.

The proof of this proposition is straightforward (see [25]) and is an easy conse-
quence of the ‘functoriality’ of m−reduction. One can also easily prove that Gm(�)

is a topological differential algebra for a fixed Km where K = R or C.
If φ : C → C is an element of OM (C) and if g ∈ Gm(�), we can define φ ◦ g :

Proposition 1.20 If g ∈ Gm(�), g = [(gε)]m and φ ∈ OM . Then [(φ(gε))]m does
not depend on the choice of representatives. It will be denoted φ(g) or φ ◦ g.
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Proof Let (ĝε) be another representative. For any convex compact subset K of �,

there exists a temperate mapping ε → Rε ≤ C

εN
(N , C, being adequate constants)

such that for any ε and any x ∈ K both gε(x) and ĝε(x) belong to B(0, Rε). Thus

sup
x∈K

(|φ(gε(x)) − φ(ĝε(x))|) ≤ sup
B(0,Rε)

|∇φ| sup
K

|gε − ĝε|

and by hypothesis, as φ is inOM and the increase of (Rε) is moderate, and [(|gε − ĝε|)]
belongs to Jm(�),we can conclude that [sup

K
|gε − ĝε|] ∈ m. Thus this is also the case

for

[sup
K

|φ(gε(x)) − g(ĝε(x))|]m

hence [φ(gε) − φ(ĝε)] ∈ Jm(�). As any compact set is included in a finite union of
balls, the proof is complete. ��
Proposition 1.21 Maximum theorem.

If f ∈ Gm(�) and �′ ⊂⊂ � is a relatively compact subset of � then there exists
x0 ∈ ̂�m,c, supported in �′ s.t.

∀y ∈ ̂�m,c, y supported in �′ then | f (y)| ≤ | f (x0)| .

Proof Let [( fε)] represent f and let xε be a point on which is attained the maximum
of the function fε on �′. The class of the net (xε) is supported in �′. Let y be any
m−reduced generalized point supported in �′. By definition it admits a representa-
tive (yε) supported in �′, and hence | fε(yε)| ≤ | fε(xε)| which implies, passing to
m−reduction, that | f (y)| ≤ | f (x)|. ��

Now we can easily establish the characterization of m−reduced generalized func-
tions by their values onm−reduced generalized points,which amounts to the following
proposition:

Proposition 1.22 If ∀x ∈ ̂�m,c f (x) = 0, then f = 0.

This is an easy consequence of the previous proposition.

Proposition 1.23 (Intermediate value theorem) Let � be an open connected subset of
R

n and f a ‘real’ m−reduced generalized function. Let us suppose that x and y are
two elements of ̂�m,c and c ∈ Km s.t. f (x) < c < f (y). Then there exists z ∈ ̂�m,c

s.t. f (z) = c.

Proof For simplicity without loss of generality we suppose that � is convex (going to
the general case is straightforward but cumbersome). The hypothesis implies that there
exist representing nets ( f1,ε) and ( f2,ε) of f , (xε) representing x and (yε) representing
y and (cε) representing c s.t.

f1,ε(xε) ≤ cε ≤ f2,ε(yε) for ε small enough.
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Since |y − x | is a non zero element of Km , it is an invertible element of Km . Thus
|y − x | has a positive inverse which is majorated by ε−a , where a is some positive real
constant. We can conclude that |y − x | is minorated by εa which implies that it has an
invertible representative. For fixed representatives of x and y, we can freely choose
f1,ε and f2,ε satisfying the above conditions. Let �′ be a convex relatively compact
subset of� s.t. (xε) and (yε) are both supported in it. Consider now a net (�ε) of affine
functions s.t.

�ε(xε) = 0, �ε(yε) = f2,ε(yε) − f1,ε(yε),

By invertibility of |(yε−xε)ε| the slope of �ε is clearly bounded by amoderatemultiple
of

sup
�′

| f2,ε − f1,ε|.

Thus [(�ε)] belongs to Jm(�); hence ( f1,ε + lε) = ( f̃ε) is another net representing
f . This net satisfies

f̃ε(xε) ≤ cε ≤ f̃ε(yε)

and hence �′ being convex there exists zε ∈ �′ s.t. f (zε) = cε. Clearly z = [(zε)]m

satisfies the requirements of the proposition. ��
When an m−reduced generalized function takes non zero values on all elements

of (̂�m,c), it turns out that it is invertible (contrarily to what happens in the non
m−reduced setting where we have to suppose that all values are invertible).

Proposition 1.24 f ∈ Gm(�) is invertible if and only if

∀x ∈ ̂�m,c f (x) �= 0.

Proof Necessity is obvious. Let us now suppose that ∀x ∈ ̂�m,c, f (x) �= 0. Let
�′ ⊂⊂ � be a relatively compact open subset of � and ( fε)ε be a net representing f .

There exists for any ε an element xε of �′ such that fε(xε) = inf
�′ | fε|. Our hypothesis

amounts to saying that there exists b > 0 and [aε] ∈ m s.t. | fε + aε|2 > ε2b on �′.
Notice that f1,ε = ( fε + aε)/�′ is another representative of f . Consider now

hε = f1,ε
| fε + aε|2 . The net (hε) is moderate on �′; moreover f1,ε · hε = 1. Hence if

h ∈ Gm(�′), h = [(hε)]m , it is clear that f/�′ · h = 1.
Let us now consider a locally finite covering of �′ by relatively compact open

subsets (ωi,i∈I ) and construct hi ∈ Gm(ωi ) as above. Consider also a C∞− partition
of unity (ϕi )i∈I adapted to the covering (ωi )i∈I . Then ϕi hi has a compact support
included in ωi and thus defines also an element of Gm(�). The partition being locally
finite we can define H = ∑

ϕi hi ∈ Gm(�).Nowwe clearly have: f H = ∑

ϕi hi f =
∑

ϕi = 1. ��
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2 Preliminaries on ideals ofG(Ä)

2.1 ‘Localization’of ideals

We saw that the structure of generalized function has two aspects: they are a sheaf
of algebras and they define continuous mapping from the set of compactly supported
generalized points into the ring of generalized constants. Let us first give a notion
linked to the ‘sheaf theoretic’ aspect of the theory.

Let J ⊂ G(�) be an ideal of G(�). If �′ ⊂ � is an open subset of � it might
happen that J/�′ contains all generalized constants in which case it spans G(�′), i.e.
it is locally ‘irrelevant’.

Thus studying an ideal J it is relevant to know ‘where’ it does not span everything.
This leads to the following notion already investigated in [2].

Definition 2.1 A point x0 ∈ � is said to be ‘regular’ for an ideal J of G(�) if there
exists an open neighborhood ω of x0 in � such that J/ω spans G(ω). Clearly the
set of all points of � which are ‘regular’ for the ideal J is an open subset of �. Its
complement is called the support of J (or the irregular support of J ).

Example The ideal spanned by [(x − ε)] in G(R) has {0} as support. Because if
x0 �= 0 there is a neighborhood ω of x0 on which [(x − ε)] is invertible; while it is
not invertible on any neighborhood of 0. Concerning support of ideals we have the
following properties, already proved in [2].

Proposition 2.2 (a) If J1 ⊂ J2 are two proper ideals of G(�), then

supp(J2) ⊂ supp(J1).

(b) IfJ is a proper ideal ofG(�), thenJ is dense inG(�) if and only if supp(J ) = ∅ .

(c) If J is a prime ideal of G(�) then card(supp(J )) ≤ 1.

We will give a rapid sketch of the proof (for more details see [2]).

Proof (a) If J1/ω contains 1, so does J2/ω.

(b) J is dense if and only if for any relatively compact open subset ω there exists

f ∈ J f = [( fε)] such that for ε small enough sup
ω

|1 − fε| <
1

2
. Thus

f /ω is invertible (because | fε| >
1

2
) and hence no point is irregular. Conversely.

Let us suppose that supp(J ) = ∅. By hypothesis for any x ∈ � there exists
an open neighborhood ωx and fx ∈ J such that fx/ωx = 1. Let �′ be an open
relatively compact subset of� . �′ being compact there exists a finite subcovering
(ωan ) of �′ and a C∞ partition of unity ϕn adapted to this subcovering. Clearly
∑

ϕn fn/�′ = 1. Thus J is dense.
(c) Let us suppose that card(supp(J )) > 1. Then there would exist two points x1 and

x2 of �, both belonging to supp(J ) and x1 �= x2.
Let ϕ1, ϕ2 be two elements of G(�) such that supp(ϕ1) ∩ supp(ϕ2) = ∅ and such

that there exist neighborhoodsω1 andω2 of x1 and x2 respectively such thatϕ1/ω1 = 1
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and ϕ2/ω2 = 1. Since ϕ1 · ϕ2 = 0 ∈ J , ϕ1 or ϕ2 has to be in J (J is prime). Thus
x1 or x2 has to be regular for J . ��
Remark The proof of (b) has the following consequence (see [2]).

Corollary 2.3 LetGc(�) be the set of the compactly supported elements ofG(�).Gc(�)

is the smallest dense ideal of G(�).

Remark Clearly different ideals can have the same support. For example, the ideal J1
spanned by [(x − ε)] and the ideal J2 spanned by [(x)] have both {0} as support.

2.2 Generalized trace of ideals

As generalized functions define continuous mappings of ̂�c into K, we can define
J (ξ) := { f (ξ) : f ∈ J } for ξ ∈ ̂�c and J an ideal of G(�). It is clear that J (ξ) is
an ideal of K.

Thus it is relevant to know on which ξ ∈ ̂�c, J (ξ) is a proper ideal:

Definition 2.4 If J is a proper ideal of G(�) we define the generalized trace of
J (Tr(J )) by

Tr(J ) := {ξ ∈ ̂�c s.t. J (ξ) �= K}.

Example The ideal J of G(R) spanned by [(x − 1

ε
)] is such that Tr(J ) =

{x such that [(xε − 1

ε
)ε] is not invertible}

Remark Onemight be led to suppose that if ξ ∈ Tr(J ), then there exists x ∈ supp(J )

s.t. (ξε) → x .This is not always the case. For example, ifJ is spannedby [(x−sin(
1

ε
)],

its generalized trace contains ξ = [(sin 1

ε
)] but sin 1

ε
admits no limit when ε tends to

zero. In this example it is easy to show that the support consists in the whole interval
[−1, 1].

However it is clear that when supp(J ) = ∅, then Tr(J ) = ∅.
An easy way of making ideals is the following.

Definition 2.5 Let A ⊂ ̂�c and a be a proper ideal of K.

GA,a(�) is the ideal constituted of all elements f ∈ G(�) s.t.

∀ξ ∈ A f (ξ) ∈ a

(see [2]).

Generalized traces have the following properties (see [2]):

Proposition 2.6 (a) IfJ1 ⊆ J2 are two proper ideals of G(�), then Tr(J2) ⊆ Tr(J1).
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(b) Let � be convex. If |x − x0| ∈ a, then x ∈ Tr(Gx0,a(�)). More generally the trace
of GA,a consists of all elements y ∈ ̂�c s.t. there exists ξ ∈ A s.t. ‖y − ξ‖ ∈ a.

Proof (a) It is straightforward using the definition of generalized trace.
(b) Let K be a convex compact subset of � in which both y and ξ are compactly

supported then

| fε(yε) − fε(ξε)| ≤ sup
K

| f ′
ε| · ‖yε − ξε‖

thus there exists a positive generalized constant R s.t.

[|( fε(yε) − fε(ξε)|] ≤ R[‖yε − ξε‖] = R‖y − ξ‖

As ideals of K are convex this implies that [( fε(y) − fε(ξε))] ∈ a and hence
f (y) ∈ a. ��

One can also easily verify the following (see [2]):

Proposition 2.7 (a) If a is a prime ideal of K and ξ ∈ ̂�c, then Gξ,a(�) is a prime
ideal of G(�).

(b) If m is a maximal ideal of K, then Gξ,m(�) is a maximal ideal of G(�) and

Tr(Gξ,m(�)) = {ξ ′ ∈ �c s.t.|ξ ′ − ξ | ∈ m}.

If an ideal M of G(�) is a maximal ideal then either it is dense, in which case its
support and trace are void, or it is closed, in which case its support is exactly one point
of �.

One might hope that all closed maximal ideals of G(�) are of the form Gξ,m(�)

where ξ ∈ ̂�c and m is a maximal ideal of K.

If all closed maximal ideals were of this form, we would at least have finished with
the characterisation of closed maximal ideals of G(�) (they would be in a one to one
correspondence with couples (ξ, m) where ξ ∈ ̂�c and m maximal ideal of K more
or less in the same way that the maximal ideals of C(K ) where K is compact are in
correspondence with elements of K ).

Unfortunately this is not the case (see [2]).

Proposition 2.8 There exist closed maximal ideals which are not of the form Gξ,m(�).

Proof Let x0 be an element of � and J1 the set of all generalized functions f such
that x0 /∈ supp( f ).

Let J2 be the ideal spanned by J1 and the following subset A of G(�)

A = {ϕ ∈ G(�) : ∃ξ ∈ ̂�c, ∃p > 0 s.t. there exists (ϕε) representative of ϕ and
(ξε) representative of ξ such that for any fixed ε, ϕε(ξε) = 1, supp(ϕε) ⊂ B(ξε, ε

p)}.
J1 is a proper ideal. Let us now prove that J2 is also a proper ideal of G(�). If this

was not the case it would be possible to write 1 = f +∑n
k=0 gkϕk where f ∈ J1 and

all ϕk are elements of A. But as x0 /∈ supp( f ), there exists a neighbourhood ω of x0
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s.t. f /ω = 0, thus inside ω we would have 1 = ∑n
k=0 gk/ω · ϕk/ω. But

∑n
k=0 gkϕk/ω

takes non zero values only on a finite union of sets of the form

{xi (ε) s.t. |xi (ε) − xk | ≤ ε p, p > 0}

the number of these sets and the p being independent of ε. Since for ε small enough,
the measure of this union is less than the measure of ω, this sum cannot take value 1
on all points of ω̂c.

Consider nowM a maximal ideal containing J2. We will prove thatM cannot be
dense. If it was dense its supportwould be void, thus therewould exist a neighbourhood
v of x0 and an element ψ of M s.t. ψ/v = 1. Let now v′ ⊂⊂ v be a smaller
neighbourhood of x0. One can construct a partition of unity (ϕ1, ϕ2) on � adjusted to
the covering (v, cv′) i.e. suppϕ1 ⊂ v, suppϕ2 ⊂ cv′ (where c denotes the complement)
and ϕ1 + ϕ2 = 1. But by definition ϕ2 belongs to J1 and hence to M, hence 1 =
ϕ1 + ϕ2 = ϕ1ψ + ϕ2 ∈ M which is impossible sinceM is a proper ideal. ��

Concerning maximal ideals of G(�) we also have the following property.

Proposition 2.9 If M is a maximal ideal and is stable under locally finite sums, then
M is closed.

Proof IfMwas not closed it would be dense henceMwould contain the ideal Gc(�)

(see Corollary 2.3). But if {ωn, n ∈ N} is a countable locally finite covering of �

where ωn are relatively compact open subsets of � and ϕn is a C∞ partition of unity
in � adapted to this covering then all (ϕn) would belong to Gc(�) and hence to M
and 1 would also belong to M since M is supposed to be stable under locally finite
sums. ��
Proposition 2.10 If M is a maximal closed ideal of G(�) then M ∩ K = m is a
maximal ideal of K.

Proof M ∩ K is a prime ideal of K. But K is a topological subspace of G(�) (here
we identify elements of K with the generalized constant functions they define). Thus
M ∩ K is a closed prime ideal of K, hence a maximal ideal (see [2]). ��

A natural question is the following: is it always true that if M is a maximal ideal
(dense or closed) then M ∩ K is a maximal ideal of K?

Unfortunately this is not true as we will see by the following counter example.

Proposition 2.11 There exist dense maximal ideals M of G(�) such that M ∩ K is
not a maximal ideal of K.

Proof Our counterexample will be given in G(Rd), the passage to a counterexample
in G(�) for a general � is straightforward but cumbersome. Also for the convenience
of the reader, the example will be presented in the sequence model of the theory. (In
order to translate the example into the net model, wherever we refer to a representative

( fn)n , consider the moderate net f̃ε defined by ∀ ε ∈] 1

n + 1
,
1

n
] , f̃ε = fn).
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Consider now a disjoint family An of subsets of N such that each An is infinite
and

⋃An = N.

Let (un) be a sequence of open subsets ofR
d such that un ⊂ B(0, n +1)− B(0, n)

and for each ui consider a relatively compact open subset u′
i of ui . Let (ϕn) be a

countable family of C∞ functions such that 0 ≤ ϕn ≤ 1 ϕn/u′
n

= 1 and supp(ϕn) is
a compact subset of un .

We also choose un, u′
n and ϕn in such a way that all derivatives of all ϕn are

bounded by constants independent of n.

Consider now the sequence (gn) defined by gn := ϕk when n ∈ Ak .
Clearly as all Ak are infinite the sequence is not negligible and as all derivatives

are bounded the sequence is moderate, so g = [(gn)] ∈ G(Rd).

Consider now the following generalized constants (considered as generalized func-
tions on R

d).

Xk = [(Xk,n)n] where Xk,n = 1 if n ∈ Ak

(i.e. Xk is the class of the characteristic function of the subset Ak).

Let I be the ideal of G(Rd) generated by (1 − g) and the family Xk .

Lemma 2.12 1 does not belong to I .

Proof Suppose the contrary and let 1 = ∑N
k=1 ψk Xk + h(1 − g), for some ψk and h

in G(Rd). Now (
∑N

k=0 ψk Xk + h(1 − g))(x) �= 1 for all x ∈ u′
N+1 because this is

represented by

zn =
(

N
∑

k=0

ψk,n Xk,n + hn(1 − gn)

)

(x)

and when n ∈ AN+1 all Xk,n in the above expression are zero and gn = ϕN+1 which
implies that (1 − gn)(x) = (1 − ϕN+1)(x) with x ∈ u′

N+1, thus (1 − gn)(x) = 0.
As AN+1 is infinite, the above sequence zn cannot be equivalent to 1 in the quotient
space K. Thus 1 does not belong to I . ��
Lemma 2.13 The closure of I contains 1.

Proof Consider

� = [�n] =
∞
∑

k=0

[

(

1

n

)k

Xk,n

]

and θ = [θn] =
∞
∑

k=0

[nkϕk Xk,n]

Both make sense because the sum in the expression of �n converges in K (and thus
in G(Rd) and for the expression of [θn] the sum is locally finite).

Now we have

[�n][θn] = [(�nθn)] =
∞
∑

k=0

ϕk Xk = g
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(because Xk,n · Xk,n = Xk,n).

� is the limit of [∑N
k=0(

1

n
)k Xk,n]which belongs to I . Thus� belongs to the closure

of I .
Thus g also belongs to the closure I of I because I is an ideal. But by definition

(1 − g) belongs to I and hence to I ; thus 1 = g + (1 − g) belongs to I . ��
Let now M be a proper maximal ideal containing I . Note now that � does not

belong toM. Otherwise, 1 would also belong toM andMwould not be proper ideal
but M does contain all the generalized constants

AN =
[

N
∑

k=0

(1

n

)k
Xk,n

]

(they belong also to I ⊆ M), but the sequence (AN )N converges to � thus M ∩ K

is not closed. This implies that it is not maximal, because all maximal ideals of K are
closed. ��

A natural question is now the following: do there exist dense maximal ideals of
G(�) whose constants are a maximal ideal?

The answer is yes, as can be seen by the following example.
Let I be the ideal spanned in G(�) by a given maximal ideal m of K and Gc(�).

Clearly I is a proper ideal and any maximal ideal M of G(�) containing I would
verifyM ∩ K = m.

This remark justifies the following definition.

Definition 2.14 A maximal ideal M of G(�) is called a regular maximal ideal if
M ∩ K is a maximal ideal of K.

In a heuristic sense the problems in the structure of a non regular maximal ideal are
concentrated near the border of � and such maximal ideals are not relevant for most
natural problems in Analysis.

Proposition 2.15 Let m be a maximal ideal of K. Then Jm(�) is the ideal of G(�)

spanned by m (the elements of m being considered as constant generalized functions).

Proof Let (ϕn) be a partition of unity of �, where ϕn are elements of D(�) for
which the supports are a locally finite covering of �. Let f be an element of Jm(�),
f = ∑

ϕn f . Let hn,k be the derivatives of all orders (including 0) of ϕn f . As ϕn f has
compact support and f belongs to Jm(�), αn,k = sup |hn,k | belongs to m. For any
n, k ∈ N, consider qn,k such that α′

n,k = [(εqn,k )]αn,k < [(εn+k)]. As the valuation
of α′

n,k tends to infinity when n + k tends to infinity, the series
∑

α′
n,k converges to

an element α of m (the maximal ideal m being closed). It is clear that there exists
gn ∈ Gc(�) such that ϕn f = αgn with support of gn included in support of ϕn . Thus
f = ∑

ϕn f = ∑

αgn = α
∑

gn ∈ mG(�). ��
Corollary 2.16 Let M be a maximal ideal of G(�) and m be a maximal ideal of K.
Then the conditions Jm(�) ⊂ M and M ∩ K = m are equivalent.
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Our next step will be the characterisation of the family of all regular maximal ideals
of G(�).

Let us now notice that given a maximal ideal m of K, if πm is the canonical map of
G(�) into Gm(�), then πm is continuous and surjective.

Thus ifM is a maximal ideal of G(�) s.t.M∩ K = m, then πm(M) is a maximal
ideal of Gm(�) (since M contains the kernel Jm(�) of πm).

Likewise if M̃ is a maximal ideal of Gm(�) then π−1
m (M̃) is a maximal ideal of

G(�) such that π−1
m (M̃) ∩ K = m.

Our main result in this paper will be to prove that the family �r of all regular ideals
of G(�) is in a one to one correspondence with the set of couples (m,̂ξ) where m is
a maximal ideal of K and̂ξ an element of a special compactification of ̂�m,c called
the g−compactification of ̂�m,c and will be noted γ (̂�m,c). This compactification is
‘smaller’ than the Čech compactification of ̂�m,c.

We are thus led to the study of ideals and maximal ideals of Gm(�).

3 Ideals ofGm(Ä)

3.1 Generalities

In the case of Gm(�) the study of ideals is greatly simplified by the fact that the ring
of generalized constants is a field and thus {0} is the only proper ideal of the ring Km .

As Gm(�) has both sheaf properties and continuity properties as a subset of contin-
uous maps from ̂�m,c into Km we have notions of ‘support’ and ‘generalized trace’:

Definition 3.1 If J is an ideal of Gm(�) and x0 ∈ � we say that x0 is regular for J
if there exists an open neighbourhood U of x0 s.t. J /U contains 1 or equivalently s.t.
J /U spans Gm(U).

Definition 3.2 An m−reduced generalized point ξ in ̂�m,c is said to belong to the
generalized trace of an ideal J if J (ξ) = 0 (i.e. ∀ f ∈ J , f (ξ) = 0).

Repeating the proof of Proposition 2.2, one can easily prove:

Proposition 3.3 If J is a prime ideal then card(supp(J )) ≤ 1.

Proposition 3.4 An ideal J of Gm(�) is dense if and only if it contains Gm,c(�), i.e.
the ideal of compactly supported m−reduced generalized functions is the smallest
dense ideal of Gm(�). This implies that an ideal is dense if and only if its support is
void.

Corollary 3.5 A maximal ideal M of Gm(�) is closed if and only if

card(supp(M)) = 1.

Concerning generalized trace we can have some more precise properties than in the
case of G(�).
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Proposition 3.6 If a is a prime ideal of Gm(�), then the generalized trace of a has at
most one element.

Proof Let us suppose that ξ1 and ξ2 are two distinct m−reduced generalized points.
This implies that there exist p > 0 and nets (ξ1,ε), (ξ2,ε) representing respectively
ξ1 and ξ2 and their distance net not belonging to m, such that for ε small enough
‖ξ1,ε − ξ2,ε‖ > ε p. But in this case it is possible to construct two nets ϕ1,ε and
ϕ2,ε, both belonging to EM (�) such that supp(ϕ1,ε) ∩ supp(ϕ2,ε) = ∅ for ε small
enough and ϕi,ε(ξi,ε) = 1. Let ϕ1 = [(ϕ1,ε)]m, ϕ2 = [(ϕ2,ε)]m . We clearly have
ϕ1 · ϕ2 = 0 ∈ a, thus ϕ1 or ϕ2 has to belong to a. But ϕi (ξi ) = 1 thus ξ1 or ξ2 does
not belong to the generalized trace of a. ��
Proposition 3.7 If M is a maximal ideal and {ξ} is the trace of M, then the shadow
of ξ is the support of M.

Proof Let x0 be the shadow of ξ . As {ξ} is the generalized trace of M, for any
f ∈ M, f (ξ) = 0. If {x0} was not the support of M, there would exist f ∈ M
and a neighbourhood V of x0 such that f /V = 1 but as |ξ − x0| < 1

n , ∀n ∈ N, the
m−reduced generalized point ξ is compactly supported in V thus f (ξ) = 1 which is
impossible. ��

The existence of maximal closed ideals of Gm(�) with void trace is proved exactly
as in the case of G(�) (the same construction gives a counterexample).

In order to characterize maximal ideals, we will now exhibit important relations
between ideals and their ‘zero sets’. This will follow the ideas used in [16] when they
study ideals of the algebra of real valued continuous functions on a completely regular
Hausdorff space.

3.2 Generalized zero sets of ̂Äm,c

Definition 3.8 A subset A of ̂�m,c is a generalized zero set (Zg) if there exists f ∈
Gm(�) s.t. A = {ξ ∈ ̂�m,c s.t. f (ξ) = 0}. In this case we note A = Zg( f ). More
generally if B is any subset of Gm(�), Zg(B) will be the family of all Zg( f ) for
f ∈ B.

Clearly, as m−reduced generalized functions define continuous mappings from
̂�m,c into K, it is clear that all generalized zero sets are closed subsets of ̂�m,c.

Anatural question is the following: is any given closed subset of̂�m,c a generalized
zero set? The answer is no.

Proposition 3.9 There exist closed subsets of ̂�m,c which are not Zg−sets.

The proof is based on the following lemma.

Lemma 3.10 If � is connected and A and B are two complementary subsets of ̂�m,c,
they cannot both be Zg−sets.
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140 A. Khelif, D. Scarpalezos

Proof Let f be such that Zg( f ) = A and g such that Zg(g) = B. Clearly Zg( f ) =
Zg(| f |2) and Zg(g) = Zg(|g|2). Notice that

Zg(| f |2 + |g|2) = Zg(| f |2) ∩ Zg(|g|2) = ∅.

Thus ∀ ξ ∈ ̂�m,c, (|g|2 + | f |2)(ξ) �= 0.
This implies that |g|2 + | f |2 is invertible (Proposition 1.24). Consider now the

reduced generalized function

h = | f |2
| f |2 + |g|2

Clearly, ∀ ξ ∈ A h(ξ) = 0 and ∀ ξ ∈ B h(ξ) = 1. As A and B are complementary, h
takes only the values 0 and 1. This is contradictory to the intermediate value property
for m−reduced generalized functions on a connected open set. ��

Now notice that in ̂�m,c there exist couples of complementary closed subsets, for
example:

let A be the halo of zero and B be the complement of A. Then one can easily verify
that A and B are both closed.

Proposition 3.11 The family of Zg−sets is stable under countable intersection.

Proof For each Zg−set Zg( f ), notice that Zg( f ) = Zg([(εn)]| f |2).
Let (Zg( fn)) be a sequence of Zg−sets. Let (μn) be an increasing sequence of

seminorms defining the topology of C∞(�). Then we can find positive integers mn

such that μn([(εmn )]| fn|2) ≤ [(εn)], ∀n. Then

⋂

Zg( fn) = Zg

(
∑

[(εmn )]| fn|2
)

.

Hence a countable intersection of generalized zero sets is a generalized zero set, too.
��

Proposition 3.12 The family of Zg−sets is a base for the family of closed subsets of
̂�m,c i.e. every closed subset is an intersection of Zg−sets.

This is an easy consequence of the following lemma:

Lemma 3.13 If A is a closed subset of ̂�m,c and ξ /∈ A, then there exists f ∈ Gm(�)

s.t. f (ξ) = 1 and ∀ r ∈ A f (r) = 0 (i.e., Zg( f ) ⊃ A).

Proof A being closed, there exists a positive constant p such that B(ξ, [(ε p)])∩A = ∅.
Consider now a net (ξε) representing ξ . Let ϕ ∈ D(Rn) s.t. 0 ≤ ϕ ≤ 1, ϕ(0) = 1

and supp(ϕ) ⊂ B(0, 1). Consider the net ϕε(x) = ϕ
( x − ξε

ε p

)

. Clearly this net is

moderate and for ε small enough, its support is included in a relatively compact subset
of �. Thus we can define [(ϕε)]m = f . One can now easily verify that f satisfies the
requirements of the lemma. ��
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3.3 Zg−sets, Zg−filters

As we already saw, a Zg−set is a subset of ̂�m,c s.t. there exists an m− reduced
generalized function f s.t. f takes zero values on all elements of this subset and only
there.

These sets will play a role analogous to z−sets in [16] for the investigation of
properties of ideals and the study of the family of maximal ideals.

Definition 3.14 A Zg−filter F is a family of Zg−sets such that

(a) if A is a Zg−set, A ⊃ B and B ∈ F , then A ∈ F .

(b) if (An)n≤N is a finite family of elements of Zg , then
⋂

n≤N An ∈ F .

(c) ∅ does not belong to F .

Proposition 3.15 Given a Zg−filterF , the familyJ (F) of all m−reduced generalized
functions on � whose generalized zero set belong to F is a proper ideal.

Proof If f ∈ Gm(�) and g ∈ J (F), then Zg( f g) ⊃ Zg(g) ∈ F . Thus Zg( f g) ∈ F
and f g ∈ J (F).

If f ∈ J (F) and g ∈ J (F), then

Zg( f + g) ⊃ Zg( f ) ∩ Zg(g) ∈ F .

Thus f + g ∈ J ( f ) . ��
This leads to the following definition.

Definition 3.16 An ideal J is called a Zg−ideal if it is of the form J (F) for some
Zg−filter F .

Example Let A be a nonempty subset of ̂�m,c and consider the idealJ of all elements
of Gm(�) which take the value zero on all elements of A. Then J = J (F), where
F is the family of all Zg−sets which contain A. One can easily verify that F is a
Zg−filter.

There exist ideals which are not of this type: consider the idealJ1 ofGm(R) spanned
by x and consider the ideal J2 spanned by x2. Those ideals have the same family of
Zg−sets, but they are not the same.

Definition 3.17 Given an ideal J , we denote F(J ) the family of all Zg−sets of
elements of J .

Proposition 3.18 If J is a proper ideal of Gm(�), then F(J ) is a Zg−filter.

Proof Let A = Zg( f ), and B = Zg(g) where g ∈ J . Let us suppose that A ⊃ B.

In this case Zg( f ) = Zg( f g), because f g(ξ) = f (ξ)g(ξ) = 0 if and only if f (ξ) is
zero or g(ξ) is zero (K is a field). But as Zg( f ) ⊃ Zg(g), we see that f (x) is zero if
and only if f g(x) is zero. But as f g ∈ J , we have proved that A = Zg( f ) = Zg( f g)

belongs to F(J ).
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142 A. Khelif, D. Scarpalezos

Let now A and B belong to F(J ) (A = Zg( f ), B = Zg(g) with ( f , g) ∈ J 2).

Then as Zg( f ) = Zg(| f |2) and Zg(g) = Zg(|g|2), we have A∩ B = Zg(| f |2+|g|2).
But | f |2 + |g|2 ∈ J , thus A ∩ B ∈ F(J ).

Finally, ∅ /∈ F(J ) because of Proposition 1.24. ��
Proposition 3.19 If J is a Zg−ideal, and if f ∈ Gm(�) is such that | f |2 ∈ J , then
f ∈ J .

Proof This is a direct consequence of the fact that Zg( f ) = Zg(| f |2). ��
Proposition 3.20 IfJ1 ⊂ J2 andJ1 andJ2 are proper ideals ofGm(�), thenF(J1) ⊂
F(J2). If F1 and F2 are two Zg−filters, F1 ⊂ F2, then J (F1) ⊂ J (F2). If P is a
Zg−ideal, then P = J (F(P)) and if F is a Zg−filter, then F(J (F)) = F . If P is
any proper ideal of Gm(�), then P ⊂ J (F(P)).

The proof is a direct consequence of the definitions.
By Zorn’s theorem, one can easily verify that any Zg−filter is included is some

maximal Zg−filter.

Definition 3.21 Maximal Zg−filters will be called Zg−ultrafilters.

There is a correspondence between maximal ideals and maximal Zg− ultrafilters:

Proposition 3.22 If M is a maximal ideal of Gm(�), then F(M) is a Zg− ultrafilter
and conversely, if F is a Zg−ultrafilter, then J (F) is a maximal ideal of Gm(�).

Proof If F(M) = F1 was not maximal there would exist a Zg−ultrafilter F2 strictly
larger than F1 and thus there would exist f ∈ J (F2) s.t. Zg( f ) /∈ F(M). Hence
J (F2) would be a proper ideal strictly larger than M.

Likewise, let us suppose thatJ (F) is not maximal. Then there would exist a proper
ideal P strictly larger than J (F). It would thus have an element f s.t. Zg( f ) /∈ F ;
thus F(P) would be a Zg−filter larger than F . Hence F would not be an ultrafilter. ��

It is now clear that maximal ideals are in a one to one correspondence with
Zg−ultrafilters. This will allow us to consider the set of all Zg−ultrafilters and prove
later that it gives a compactification of ̂�m,c.

But let us first give some more properties of Zg−filters and their associated ideals.
As in the case of ideals we have a notion of ‘support’ of Zg−filters.

Definition 3.23 A point x0 ∈ � is said to be regular for a Zg−filter F if there exists
a neighbourhood V of x0 s.t. there exist A ∈ F s.t. the shadow of every element of A
is in the complement of V .

The support of a Zg−filterF is the complement of the open set of all regular points
for F . It will be denoted supp(F). There is a natural relation between supports of
Zg−filters and supports of associated ideals.

Proposition 3.24 If F is a Zg−filter, then supp(F) = supp(J (F)).

Likewise, if P is an ideal of Gm(�), then supp(P) = supp(F(P)).

123



Maximal closed ideals of the Colombeau Algebra... 143

Proof If x0 /∈ supp(F), then there exists a ball B(x0, ρ) ⊂ � s.t. there exists A ⊂
̂�m,c, A ∈ F s.t. B(x0, ρ) does not contain any shadow of an element of A. Consider
ϕ ∈ D(�) s.t. supp(ϕ) ⊂ B(x0, ρ) and ϕ/B(x0,

ρ
2 ) = 1. Zg(ϕ) is in the complement

of ̂B(x0, ρ) (considered as a part of ̂�m,c). Thus Zg(ϕ) ⊃ A, thus Zg(ϕ) ∈ F , thus
ϕ ∈ J (F) and ϕ = 1 on a neighbourhood V of x0, hence x0 is regular for J (F).

There exists a neighbourhood V of x0 and f0 ∈ J (F) s.t. f0/V = 1. Thus the zero
set of F0 has a shadow that does not intersect V . An analogous argument holds for
regular points of P and F(P). ��
Definition 3.25 A Zg−filter F is said to be prime if, whenever the union A ∪ B of
two Zg−sets A and B belongs to F , then A ∈ F or B ∈ F .

In the case of Zg−ideals, there is a natural relation between the notion of prime
ideal and prime Zg−filter.

Proposition 3.26 Let P = J (F). Then P is prime if and only if F is prime.

Proof

f · g ∈ P ⇐⇒ Zg( f ) ∪ Zg(g) = Zg( f · g) ∈ F .

Let Zg( f ) ∪ Zg(g) ∈ F . If P is prime, then Zg( f ) ∈ F or Zg(g) ∈ F , thus F is
prime. The converse argument is of the same kind. ��

3.4 The compact set �(̂Äm,c)

Following the ideas of the Čech-compactification, we will now see how the family
of Zg−ultrafilters constitutes a compact space into which ̂�m,c is densely embedded.
The main idea will be to show that the family of Zg−sets is a compactifying family
for ̂�m,c (see Appendix).

Proposition 3.27 The family Zg of Zg−sets satisfies the following properties:

(1) ̂�m,c ∈ Zg.

(2) For any closed subset F of ̂�m,c and x ∈ c F, there exists F ′ ∈ Zg s.t. x /∈ F ′ and
F ′ ⊃ F .

(3) For any couple F1, F2 of elements of Zg s.t. F1 ∩ F2 = ∅, there exist F ′
1, F ′

2
elements of Zg s.t.

F1 ⊂ F ′
1, F2 ⊂ F ′

2, F ′
1 ∩ F2 = F ′

2 ∩ F1 = ∅, F ′
1 ∪ F ′

2 = ̂�m,c.

(4) Zg is stable under countable intersections and under finite unions.
5) If x ∈ ̂�m,c, then {x} ∈ Zg.

Proof (1) ̂�m,c = Zg(0).
(2) It is exactly the content of Lemma 3.13.
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(3) Let us suppose F1 = Zg(| f |) = Zg(| f |2), F2 = Zg(g) = Zg(|g|2). Consider
now the functions f̃ = | f |2

| f |2 + |g|2 and g̃ = |g|2
| f |2 + |g|2 . Clearly, Zg( f̃ ) = F1

and Zg(g̃) = F2. Moreover

F2 = {ξ ∈ ̂�m,c s.t. f̃ (ξ) = 1}.

We will use the following lemma:

Lemma 3.28 Let f ∈ Gm(�) and let a be a positive real number. Then there exists
g ∈ Gm(�) s.t. {x, | f (x)|2 ≤ a} ⊂ Zg(g) ⊂ {x, | f (x)|2 ≤ a + η} for each real
number η > 0.

Proof Let φ be a C∞ increasing function on R s.t. φ(x) = 0 iff x ≤ a, and s.t. for
x ≥ 2a,φ(x) = 1.Clearlyφ is a bounded smooth function andφ′ has compact support,
thus g = φ(| f |2) ∈ Gm(�). Clearly g takes value zero on all compactly supported
generalizedpoints x such that | f (x)|2 ≤ a.Thus Zg(g) ⊃ {x, | f (x)|2 ≤ a}.Likewise,
if | f (x)|2 > a + η, then clearly φ(| f |2) > 0, thus

{

x, | f (x)|2 ≤ a + η
}

⊃ Zg(g) ⊃
{

x, | f (x)|2 ≤ a
}

.

��
Consider now h1 ∈ Gm(�) s.t. for any real η > 0

{

x, f̃ (x) ≤ 1

2

}

⊂ Zg(h1) ⊂
{

x, f̃ (x) ≤ 1

2
+ η

}

and h2 ∈ Gm(�) s.t.

{

x, f̃ (x) ≥ 1

2
− η

}

⊃ Zg(h2) ⊃
{

x, f̃ (x) ≥ 1

2

}

.

The existence of h1 and h2 can easily be deduced by the previous lemma. Put now
F ′
1 = Zg(h1) and F ′

2 = Zg(h2). Clearly,

F ′
1 ∪ F ′

2 = ̂�m,c, F ′
1 ⊃ F1, F ′

2 ⊃ F2, F1 ∩ F ′
2 = ∅, F2 ∩ F ′

1 = ∅ .

(4) By Proposition 3.11 and because Zg( f ) ∪ Zg(g) = Zg( f g).
(5) Let (xε) be a net representing x and consider fε(t) = (t − xε)/�. Clearly,

Zg[( fε)]m = {[(xε)]m} = {x}. ��
Now we can conclude using Theorem A.2 of Appendix that Zg−sets constitute a

compactifying family and thus that the family γ (̂�m,c) of Zg− ultrafilters constitutes
a compactification of ̂�m,c. (Recall that ̂�m,c is metrizable, hence normal.)

A natural question now is if γ (̂�m,c) is the Čech-compactification of̂�m,c (denoted
β(̂�m,c)).
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This is not the case. To prove it, we will use Theorem B.1 of Appendix and thus we
only have to prove that the there exists a pair (F1, F2) of disjoint closed subsets of̂�m,c

such that there does not exist a pair ̂F1, ̂F2 of Zg−sets s.t. F1 ⊂ ̂F1, F2 ⊂ ̂F2 and
̂F1 ∩ ̂F2 = ∅. This is obvious because we saw that there exist pairs of complementary
closed subsets of ̂�m,c, but there does not exist a pair of complementary Zg−sets.

We have at last proved the main theorem of this section.

Theorem 3.29 The family of maximal ideals of Gm(�) is in a one to one corre-
spondence with γ (̂�m,c) which is a compactification of ̂�m,c different from the
Čech-compactification of ̂�m,c.

By pull back we obtain the following:

Theorem 3.30 The family of regular maximal ideals M of G(�) is in a one to one
correspondence with couples (m, ξ) where m = M ∩ K is a maximal ideal of K and
ξ is an element of γ (̂�m,c).

We have thus classified all regular maximal ideals, but we still have no idea con-
cerning the family of non-regular maximal ideals (i.e., the dense maximal ideals M
s.t.M ∩ K is not a maximal ideal of K).

There is also another field of analogous investigations. In [5], the authors investi-
gated the behaviour of objects of the theory under the additional hypothesis that we
impose parametrizations by ε to be continuous on ε.Which results of this paper are still
valid under this condition? For the case of generalized constants, a first investigation
has been done in [18].
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A Compactifying families of closed subsets

Let us first remind the definition of a normal topological space E . A Hausdorff topo-
logical space E is said to be normal if for any couple F1, F2 of disjoint closed subsets
there exists a couple (U1, U2) of disjoint open subsets such that F1 ⊂ U1, F2 ⊂ U2.

In this appendix we will show that some families of closed subsets of a normal
space E allow us to define a compactification Ẽ of E .

Definition A.1 A family S of closed subsets of a normal topological space E is a
compactifying family of closed subsets if the following conditions hold:

(1) E ∈ S.
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(2) For any closed subset F of E and every element x in the complement c F of F
there exists F ′ ∈ S s.t. F ′ ⊃ F and x ∈ c F ′.

(3) For any couple F1, F2 of elements of S s.t. F1 ∩ F2 = ∅ There exist F ′
1, F ′

2
elements of S s.t.

F1 ⊂ F ′
1, F2 ⊂ F ′

2, F ′
1 ∪ F ′

2 = E, F1 ∩ F ′
2 = F2 ∩ F ′

1 = ∅ .

(i.e. F1 ⊂ c F ′
2, F2 ⊂ c F ′

1, and
c F ′

1 ∩ c F ′
2 = ∅)

(4) S is stable under finite intersections and under finite unions.
(5) If x ∈ E, {x} ∈ S .

Theorem A.2 Let E be a normal topological space and H a compactifying family of
closed subsets of E .

Let H̃ be the set of all H−filters (i.e., filters of elements of H). Let ̂EH be the set of
H−ultrafilters, i.e. the set of maximal H−filters. Consider now the following family
of subsets of ̂EH

̂O = {̂EH} ∪ {OF : F ∈ H̃}

where

OF := {G ∈ ̂EH, F �⊂ G} (F ∈ H̃).

Then (a) ̂O is a basis of open sets for some topology on ̂EH.

(b) The mapping u : E → ̂EH defined by

u(x) = {F ∈ H s.t. x ∈ F} (this is clearly a H−ultrafilter)

is injective and continuous.
(c) ̂EH is a compact Hausdorff space and E is embedded by u into a dense subset

of ̂EH.
̂EH will be called the H−compactification of E .

Proof (a) The family ̂O defines a basis of a topology:
∅ ∈ ̂O, since ∅ = O{E}.
̂EH ∈ ̂O by definition.
If {Oi , i ∈ I } is a family of elements of ̂O, then either Oi = ̂EH for some i (in

which case trivially
⋃Oi ∈ ̂O) or Oi = OFi ,∀i . Then if

⋃Oi �= ̂EH, we have
⋃Oi = OF , where F is the smallest H−filter containing all Fi . This is possible
because if

⋃Oi �= EH, there exists a H−ultrafilter B such that B does not belong
to any Oi . This means by definition that all Fi are included in B. Thus there exists a
minimal H−filter F containing all Fi .

This means that
⋃Oi = {G ∈ ̂EH, F �⊂ G}, i.e. ⋃Oi ∈ ̂O.

As H is stable under finite unions, and every H−ultrafilter is prime (by the same
argument as [16, 2.13]), we have that OF1 ∩ OF2 = OF1∩F2 .

Thus ̂O satisfies the condition to be the family of open subsets of some topology.
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(b) Clearly, {F ∈ H, x ∈ F} is a well defined H−ultrafilter, E being a normal
Hausdorff space. Since an H−ultrafilter contains at most one singleton (property of
non empty intersection), and since for every x of E the only singleton of u(x) is {x},
the mapping u is injective. We will now show the continuity of u. i.e., if O ∈ ̂O,
u−1(O) is an open subset of E .

If O = ̂EH, u−1(O) = E . If now O = OF , then

u−1(O) = {x s.t. F �⊂ u(x)} = {x s.t. ∃D ∈ F s.t. x /∈ D}

which is clearly an open set.
Let now W be an open subset of E and D = E − W . Let F be the H−filter of all

elements of H containing D. It is now easy to verify that W = u−1(OF ). Thus the
trace of our topology on u(E) ‘coincides’ with the topology on E .

(c) To see that u(E) is dense in ̂EH, we only have to show that ifOF is a non void
open subset of ̂EH, then u−1(OF ) is a non void subset of E . But this is obvious, since

u−1(OF ) = {x s.t. ∃D ∈ F s.t. x /∈ D} �= ∅ .

Let us now prove that ̂EH is Hausdorff. Let x̂1 and x̂2 be two distinctH−ultrafilters.
Then there exist D1 ∈ x̂1 and D2 ∈ x̂2 s.t. D1 ∩ D2 = ∅. (Indeed, if D1 ∈ x̂1 is such
that D1 ∩ D2 �= ∅, for each D2 ∈ x̂2, then there exists an H−filter generated by x̂2
and D1. By maximality, this H−filter coincides with x̂2. Thus D1 ∈ x̂2.) Then by
property 3 of Definition A.1, there exist D′

1, D′
2 elements ofH s.t.

D1 ⊂ D′
1, D2 ⊂ D′

2, D1 ⊂ c D′
2, D2 ⊂ c D′

1, D′
1 ∪ D′

2 = E .

Let F ′
i be the H−filter of all elements of H containing D′

i . Since D′
1 ∪ D′

2 = E ,
a maximal H−filter either contains D′

1 or contains D′
2 (or both). Thus, using the

definitions we showed that

OF ′
1
∩ OF ′

2
= ∅ .

This establishes that our topology is Hausdorff.
Let now

⋃

i∈I
OFi = ̂EH be an open covering of ̂EH. We will prove that there exists

a finite open subcovering.
If ̂EH = ⋃OFi then there is no H−filter containing all Fi , which implies that

there exist i1, i2, . . . , in ∈ I

Di1 ∈ Fi1 , Di2 ∈ Fi2 , Din ∈ Fin s.t.

Di1 ∩ Di2 ∩ · · · ∩ Din = ∅

(if it would not, theH−filter generated by all Fi would exist and satisfy the non empty
intersection property.) The above property implies by definition that

⋃n
j=1OFi j

=
̂EH. ��
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B Comparison of compactifications

An interesting question is the following: if F and G are two compactifying families
such that G ⊂ F , under which conditions do G andF give the same compactification?
This is investigated in the following theorem.

Theorem B.1 Let E be a normal topological space and let F and G be two compacti-
fying families such that G ⊂ F . Then G and F yield the same compactification if and
only if for any couple (F1, F2) of elements of F such that F1 ∩ F2 = ∅, there exists a
couple (G1, G2) of elements of G such that F1 ⊂ G1, F2 ⊂ G2 and G1 ∩ G2 = ∅.

Proof Let us first prove the necessity: Let (F1, F2) be a couple of elements of F such
that F1 ∩ F2 = ∅ and such that there does not exist a couple (G1, G2) of elements of
G such that: F1 ⊂ G1, F2 ⊂ G2, G1 ∩ G2 = ∅.

Let G1 be the set of all elements of G containing F1 and let G2 be the set of all
elements of G containing F2.

By hypothesis we know that if A ∈ G1 and B ∈ G2 then A ∩ B �= ∅. Let U be
a G−ultrafilter containing all such intersections. Let us first prove that there is no
element of U which is disjoint from F1 (respectively F2).

If there existed h ∈ U s.t. F1∩h = ∅, then by property 3 of compactifying families
there would exist h1 ∈ G, h1 ⊃ F1 such that h1 ∩ h = ∅. But by hypothesis since
h1 ∈ G, h1 is also in U and h1 ∩ h = ∅, which is impossible (by construction of
U), thus all elements of U intersect F1 (respectively F2). Let K1 be an F−ultrafilter
containing F1 and U and K2 an F−ultrafilter containing F2 and U . Since F1 ∩ F2 =
∅, K1 and K2 are distinct ultrafilters.

Let us now prove that the condition is sufficient:
Let U be an ultrafilter of elements of G and K1 and K2 be two F ultrafilters both

containing U . We will prove K1 = K2.

Let us suppose this is not the case. Then there would exist F1 ∈ K1, F2 ∈ K2
such that F1 ∩ F2 = ∅ and by hypothesis, there would exist G1 and G2 elements of G
such that G1 ⊃ F1, G2 ⊃ F2, G1 ∩ G2 = ∅ but G1 ∈ K1. Thus G1 ∈ K1 ∩ G and
G2 ∈ K2 ∩G. BothK1 ∩G andK2 ∩G are filters containing U , which is an ultrafilter.
Thus K1 ∩ G = U = K2 ∩ G and G1 ∩ G2 = ∅ which is impossible. Thus K1 = K2.

Conversely, let K be an F ultrafilter. Let us consider K ∩ G. K ∩ G is clearly a
G−filter.

Let G ∈ G such that G /∈ K ∩ G. This implies that there exists F ∈ K s.t.
G ∩ F = ∅ (K is aF−ultrafilter). Then if G1 and G2 are two elements of G such that
G1 ⊃ G and G2 ⊃ F and G1∩G2 = ∅, G2 ∈ K. Thus G∩G2 = ∅with G2 ∈ G∩K.

Thus K ∩ G is a G−ultrafilter. We thus have a one to one correspondence between
G−ultrafilters and F−ultrafilters. The continuity of this correspondence comes from
the density of E into both compactifications. ��
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