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Abstract
Let us consider the space M(n, m) of all real or complex matrices on n rows and m
columns. In 2000 Lesław Skrzypek proved the uniqueness of minimal projection of
this space onto its subspace M(n, 1)+ M(1, m)which consists of all sums of matrices
with constant rows andmatriceswith constant columns.We generalize this result using
some new methods proved by Lewicki and Skrzypek (J Approx Theory 148:71–91,
2007). Let S be a space of all functions from X ×Y × Z intoR orC, where X , Y , Z are
finite sets. It could be interpreted as a space of three-dimensional matrices M(n, m, r).
Let T be a subspace of S consisting of all sums of functions which depend on one
variable. Let S be equipped with a smooth norm ‖.‖. We show that there exists the
unique minimal projection of S onto its subspace T .

Keywords Minimal projection · Rudin’s theorem · Groups of isometries · Unique
projection

Mathematics Subject Classification 43A07 · 46B28 · 46E30 · 47D03

1 Introduction

At the beginning let us set up some basic terminology and notation.

Definition 1 Let S be a Banach space and let T be a linear, closed subspace of S. An
operator P : S → T is called a projection if P|T = id|T . We denote by P(S; T ) the
set of all linear and continuous (with respect to the operator norm) projections.
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276 M. Kozdęba

Definition 2 A projection P0 ∈ P(S; T ) is called minimal if

‖P0‖ = inf{‖P‖ : P ∈ P(S; T )} =: λ(T ; S).

In the theory of minimal projection three main problems are considered: exis-
tence and uniqueness of minimal projections [15–17,19–29] , finding estimates of the
constant λ(T ; S) [2–5,7–13] and finding concrete formulas for minimal projections
[6,9,18,24]. As one can see this theory is widely studied by many authors also recently
[1,11,12,14,18,23].

Let X = {1, 2, 3, . . . , n}, Y = {1, 2, 3, . . . , m}, Z = {1, 2, 3, . . . , r}, where 3 ≤
n, m, r < +∞ are fixed. Define S = M(n, m, r) as a set of all functions from
X × Y × Z into R (or C). Let T be a subspace of S consisting of all sums of functions
which depend on one variable, i.e.

T = { f ∈ S : f (x, y, z) = g(x) + h(y) + i(z); g : X �→ R, h : Y �→ R, i : Z �→ R}(or C).

It is convenient to consider these spaces as a spaces of ”three-dimensional”matrices
with real (or complex) values. Let M(1, 1, r) be a subspace of a three-dimensional
matrix space S with elements ai jk , such that ai1 j1k = ai2 j2k for any i1, i2 ∈
{1, 2, . . . , n}, j1, j2 ∈ {1, 2, . . . , m} and k ∈ {1, 2, . . . , r}. Analogously we define
M(1, m, 1), M(n, 1, 1). Thenwe canwrite T = M(n, 1, 1)+M(1, m, 1)+M(1, 1, r).

Definition 3 Let �n be a set of all permutations of {1, 2, . . . , n}. Define

�n × �m × �r = {π = α × β × γ,where : α ∈ �n, β ∈ �m, γ ∈ �r }.

G = �n × �m × �r will be a group with permutation composition as a natural
operation and let Aα×β×γ be a transformation of S associated with permutation α ×
β × γ . It means that

Aα×β×γ (x)(i, j, k) = x(α(i), β( j)γ (k)).

Every element of a group G can be identified with a composition of permutations
of matrix planes: parallel to plane XY , parallel to plane X Z and parallel to plane Y Z .
For more details about that interpretation see [18].

Let us remind

Definition 4 An element x of Banach space X is called a smooth point if there exists
a unique supporting functional fx .
If every x from the unit sphere of X is smooth, then X is called a smooth space.

From now we assume that for any permutation α × β × γ an operator Aα×β×γ is
an isometry and a space S is smooth.

Definition 5 Let X be a Banach space and G be a topological group such that for every
g ∈ G there is a continuous linear operator Ag : X → X for which:

Ae = I , Ag1g2 = Ag1 Ag2 , for every g1, g2,∈ G
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Uniqueness of minimal projections in smooth expanded… 277

Then we say that G acts as a group of linear operators on X .

Definition 6 We say that L : X → X commutes with G if Ag L Ag−1 = L for every
g ∈ G.

The aim of this paper is to generalize a result of Skrzypek [27] who proved the
uniqueness of minimal projection in standard smooth matrix spaces. In particular, we
prove that there is a unique projection from S into T . Our approach is based on a
Skrzypek’s method, who used there two main theorems: Rudin’s theorem [26] and
Chalmers and Metcalf’s theorem [6]. In this paper, we also use a theorem proved by
Lewicki and Skrzypek in [22].

Theorem 1 (Rudin) Let X be a Banach space and W be its complemented subspace
(P(X , W ) �= ∅). Assume that W is G-invariant subspace, where G is a compact
topological group acting by isomorphisms on X such that

– for every x ∈ X function Ag(x) is continuous,
– Ag(W ) ⊂ W for every g ∈ G.

If there exists a bounded linear projection P : X �→ W then there exists a bounded
linear projection Q P from X to W which commutes with G and is of the form:

Q P x =
∫

G
Ag−1 P Agxdμ′(g), (1)

where μ′ is normalized Haar measure and
∫

G f (g)dμ′(g) is a Pettis integral of f .

Moreover, the following theorem holds true.

Theorem 2 Let the assumptions of the Rudin’s Theorem be satisfied. Assume further-
more that for every g ∈ G there is Ag linear surjective isometry of X . If there is the
unique projection Q ∈ P(X , W ) commuting with G then Q is a minimal projection
of X into W .

For the proof and more details see [18, Theorem 2]
These theorems are very useful in finding in some cases explicit formulas for

minimal projections [18] but, in general, does not imply their uniqueness, because
there can exist a minimal projection which does not commute with G. To prove the
uniqueness we use the following theorems, but first let us recall a definition.

Definition 7 A pair (x, y) ∈ S(X∗∗) × S(X∗) is called an extreme pair for P ∈
P(X , W ) if y(P∗∗x) = ‖P‖, where P∗∗ : X∗∗ → W and S(X) is a sphere on X . Let
E(P) be a set of all extreme pairs of P .

Spaces S, T are of a finite dimension so the set E(P) is not empty. Furthermore
X∗∗ can be considered as X . It is also known that for such spaces P(S; T ) �= ∅ (see
[10]).
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278 M. Kozdęba

Theorem 3 (Chalmers, Metcalf) A projection P ∈ P(X , W ) is minimal if and only if
closed convex hull of {y ⊗ x}(x,y)∈E(P) contains an operator EP , for which W is an
invariant subspace.
Operator EP (called Chalmers–Metcalf operator) is given by a formula:

EP =
∫
E(P)

y ⊗ xdμ′′(x, y) : X → X∗∗,

where μ′′ is a probabilistic Borel measure on E(P).

Theorem 4 (Lewicki, Skrzypek) Let X be a Banach space, let W be its finite dimen-
sional subspace. Assume that X∗∗ is a smooth space. Assume furthermore that for a
minimal projection P there exists a Chalmers–Metcalf operator EP such that EP |W
is invertible. Then P is the unique minimal projection.

2 Preliminary results

First let us prove some technical lemmas which will be used in a main proof. Lemma 1
and Theorems 5, 6 are easy generalizations of their analogs from [27]. For the com-
pleteness of the content of this paper, we present their proofs.

Lemma 1 (Compare with [27] Lemma 1.4) For any y ∈ S∗ i π ∈ G we have

y(A−1
π (s)) = (Aπ y)(s), s ∈ S.

Proof Since dim S < +∞ then any y ∈ S∗ can be written as

y(x) =
∑
i, j,k

yi, j,k · xi, j,k,

where x =
∑
i, j,k

xi, j,k · ei, j,k and elements yi, j,k ∈ K do not depend on x . Since

A−1
α×β×γ = Aα−1×β−1×γ −1 :

y(A−1
π (s)) =

∑
i, j,k

yi, j,k · (A−1
α×β×γ (s))i, j,k =

∑
i, j,k

yi, j,k · (Aα−1×β−1×γ −1(s))i, j,k

=
∑
i, j,k

yi, j,k · sα−1(i)×β−1( j)×γ −1(k) · si, j,k =
∑
i, j,k

yα(i),β( j),γ (k) · si, j,k

=
∑
i, j,k

(
Aα×β×γ (y)

)
i, j,k · si, j,k = Aπ y(s)

��
Theorem 5 (Compare with [27] Theorem 1.5) Let Q ∈ P(S, T ) commutes with G. If
(x, y) ∈ E(Q) then (Aπ x, Aπ y) ∈ E(Q) for any permutation π ∈ �n × �m × �r .
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Uniqueness of minimal projections in smooth expanded… 279

Proof If Q commutes with �n × �m × �r then from Lemma 1 we get

‖Q‖ = y(Qx) = y((Aπ )−1Q Aπ (x)) = y((Aπ )−1(Q Aπ (x))) = (Aπ y)(Q(Aπ x)).

��
For our further considerations let us introduce a Chalmers-Metcalf operator

EQ = 1

|G|
∑
π∈G

(Aπ y) ⊗ (Aπ x) : S → S,

where (x, y) is a fixed extreme pair ((x, y) ∈ E(Q)).

Theorem 6 (Compare [27] Theorem 1.7) EQ commutes with G.

Proof Fix δ ∈ G. From Lemma 1 we get that for every s ∈ S

|G| · EQ ◦ Aδ(s) =
∑
π

(Aπ y) ⊗ (Aπ x)(Aδs) =
∑
π

(Aπ y)(Aδs) · (Aπ x)

=
∑
π

(A−1
δ Aπ y)(s) · Aπ (x) =

∑
π

(Aδ−1◦π y)(s) · (Aπ x)

=
∑
π ′

(Aπ ′ y)(s) · Aδ◦π ′(x)

=
∑
π ′

(Aπ ′ y)(s) · Aδ(Aπ ′)(x) = Aδ

(∑
π ′

(Aπ ′ y)(s) · (Aπ ′)(x)

)

= Aδ(|G| · EQ(s)) = |G| · Aδ ◦ EQ(s).

��
One of the main results of this paper is a Theorem 9 concerning the form of an

operator from T into itself. Let us recall that space T is generated by elements

ua(i, j, k) =
{
1 if i = a

0 if i �= a
∈ M(n, 1, 1),

vb(i, j, k) =
{
1 if j = b

0 if j �= b
∈ M(1, m, 1),

wc(i, j, k) =
{
1 if k = c

0 if k �= c
∈ M(1, 1, r),

t(i, j, k) = 1,

for any i ∈ {1, . . . , n}, j ∈ {1, . . . , m}, k ∈ {1, . . . , r},
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280 M. Kozdęba

where a ∈ {1, . . . , n}, b ∈ {1, . . . , m}, c ∈ {1, . . . , r}. Furthermore, we can choose a
basis as

{ua, vb, wc, t, where a ∈ {1, . . . , n − 1}, b ∈ {1, . . . , m − 1}, c ∈ {1, . . . , r − 1}} .

Consequently, dim T = n − 1 + m − 1 + r − 1 + 1 = n + m + r − 2. Now we can
prove two useful theorems.

Theorem 7 Let EQ, S, T be as above. Then:

EQ(T ) ⊂ T .

Proof Fix a ∈ {1, . . . , n}. We show that EQ(ua) ∈ T . Analogously, it can be shown
that EQ(vb) ∈ T and EQ(wc) ∈ T which will end the proof. Proceeding in the same
way as in the proof of Theorem 1.6 (1) in [27] we get from Lemma 1 that

|G|EQ(ua) =
∑
π∈G

y(Aπ (ua)) · (Aπ )−1(x). (2)

Let π(a, z) = {π = α × β × γ : α(a) = z}. Then

∑
π∈G

y(Aπ (ua)) · (Aπ )−1(x) =
n∑

z=1

⎛
⎝ ∑

π∈π(a,z)

y(Aπ (ua)) · A−1
π (x)

⎞
⎠

=
n∑

z=1

⎛
⎝ ∑

π∈π(a,z)

y(uz) · A−1
π (x)

⎞
⎠

=
n∑

z=1

y(uz) ·
⎛
⎝ ∑

π∈π(a,z)

Aπ−1(x)

⎞
⎠

=
n∑

z=1

y(uz) ·
⎛
⎝ ∑

π ′∈π(z,a)

Aπ ′(x)

⎞
⎠ . (3)

In the last equality we changed the summing because of the fact that π ∈ π(a, z) ⇔
π−1 ∈ π(z, a). Let us now focus on the expression in the last brackets.

⎛
⎝ ∑

π ′∈π(z,a)

Aπ ′ (x)

⎞
⎠ (i, j, k) =

∑
α×β×γ∈π(z,a)

x(α(i), β( j), γ (k))

=
∑

α:α(z)=a

⎛
⎝∑

β×γ

x(α(i), β( j), γ (k))

⎞
⎠

=
∑

α:α(z)=a

(m − 1)!
(

m∑
b=1

(r − 1)!
(

r∑
c=1

x(α(i), b, c)

))

(4)
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Uniqueness of minimal projections in smooth expanded… 281

As one can see the last expression in (4) does not depend on j nor k so(∑
π ′∈π(z,a) Aπ ′(x)

)
∈ M(n, 1, 1) ⊂ T . Combining (2) and (3) we get that

EQ(ua) ∈ T , which ends the proof. ��
Theorem 8 Let EQ, S, T , t be as defined above. Then there exists a constant c such
that

E∗
Q(t) = c · t .

Proof Notice that for any y ∈ M(n, m, r) we have:

∑
π∈G

Aπ (y) =
(∑

π∈G

Aπ

)⎛
⎝∑

i, j,k

y(i, j, k)ei jk

⎞
⎠ =

∑
i, j,k

y(i, j, k)

(∑
π∈G

Aπ

) (
ei, j,k

)

=
∑
i, j,k

y(i, j, k)

⎛
⎝(n − 1)!(m − 1)!(r − 1)! ·

∑
ĩ, j̃,k̃

eĩ, j̃,k̃

⎞
⎠

=
∑
i, j,k

y(i, j, k)
(
(n − 1)!(m − 1)!(r − 1)! · t

)

= (n − 1)!(m − 1)!(r − 1)!
∑
i, j,k

y(i, j, k) · t (5)

By the formula for E∗
Q , Lemma 1 and the above equality we get

|G|E∗
Q(t) =

∑
π∈G

(Aπ x) ⊗ (Aπ y)(t) =
∑
π∈G

(Aπ x)(t) · Aπ (y)

=
∑
π∈G

(A−1
π (t)) · Aπ (y) =

∑
π∈G

x(t) · Aπ (y) = x(t)
∑
π∈G

Aπ (y)

= x(t)(n − 1)!(m − 1)!(r − 1)!
∑
i, j,k

y(i, j, k) · t

Since |G| = n!m!r ! then these equalities give us our thesis with a constant

c = x(t)(n − 1)!(m − 1)!(r − 1)!∑i, j,k y(i, j, k)

n!m!r ! = x(t)
∑

i, j,k y(i, j, k)

nmr
.

��

3 Main results

Finally, we can present previously mentioned theorem of the form of an operator from
T into T which is crucial to prove the main theorem of that paper.
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Theorem 9 If an operator L : T → T commutes with a group G = �n × �m × �r

(Aπ L = L Aπ ), then there exist constants d, e, f , g such that:

L(ua) = dua + g − d

n
t, for a ∈ {1, . . . , n − 1};

L(vb) = evb + g − e

m
t, for b ∈ {1, . . . , m − 1}; (6)

L(wc) = f wc + g − f

r
t, for c ∈ {1, . . . , r − 1};

L(t) = gt .

Proof Notice that elements

{u1, . . . , un−1, v1, . . . , vm−1, w1, . . . , wr−1, t}

form a basis of T . Every linear operator L : T → T is represented by the images of
basis elements, so

L(ua) =
n−1∑
i=1

du
ai ui +

m−1∑
j=1

eu
ajv j +

r−1∑
k=1

f u
akwk + gu

a t,

L(vb) =
n−1∑
i=1

dv
bi ui +

m−1∑
j=1

ev
bjv j +

r−1∑
k=1

f v
bkwk + gv

b t,

L(wc) =
n−1∑
i=1

dw
ci ui +

m−1∑
j=1

ew
cjv j +

r−1∑
k=1

f w
ckwk + gw

c t,

L(t) =
n−1∑
i=1

dt
i ui +

m−1∑
j=1

et
jv j +

r−1∑
k=1

f t
k wk + gt t .

Due to the complexity of the proof, we will conduct it in a few steps.

1. Fix a1, a2 ∈ {1, . . . , n − 1}, b1, b2 ∈ {1, . . . , m − 1}, c1, c2 ∈ {1, . . . , r − 1} and
consider A ∈ G, which interchanges: ua1 with ua2 , vb1 with vb2 and wc1 with wc2 ,
i.e.

A(ua1) = ua2 , A(ua2) = ua1 , A(ua) = ua, a �= a1, a2;
A(vb1) = vb2 , A(vb2) = vb1 , A(vb) = vb, b �= b1, b2;
A(wc1) = wc2 , A(wc2) = wc1, A(wc) = wc, c �= c1, c2;

A(t) = t .
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Since L commutes with G, in particular L ◦ A(ua1) = A ◦ L(ua1), which means
that

L(ua2) = A

⎛
⎝n−1∑

i=1

du
a1i ui +

m−1∑
j=1

eu
a1 jv j +

r−1∑
k=1

f u
a1kwk + gu

a1 t

⎞
⎠

Therefore

n−1∑
i=1

du
a2i ui +

m−1∑
j=1

eu
a2 j v j +

r−1∑
k=1

f u
a2kwk + gu

a2 t =
n−1∑

i=1,i �=a1,a2

du
a1i ui +

m−1∑
j=1, j �=b1,b2

eu
a1 j v j

+
r−1∑

k=1,k �=c1,c2

f u
a1kwk + gu

a1 t + du
a1a1ua2 + du

a1a2ua1 + eu
a1b1vb2 + eu

a1b2vb1 + f u
a1c1wc2 + f u

a1c2wc1 .

Hence, after comparing the coefficients corresponding to the base elements, we get
the equations

(a) du
a1i = du

a2i , eu
a1 j = eu

a2 j , f u
a1k = f u

a2k for all i ∈ {1, . . . , n − 1}\{a1, a2},
j ∈ {1, . . . , m − 1}\{b1, b2}, k ∈ {1, . . . , r − 1}\{c1, c2};

(b) du
a1a1 = du

a2a2 , eu
a1b1

= eu
a2b2

, f u
a1c1 = f u

a2c2 ;
(c) du

a1a2 = du
a2a1 , eu

a1b2
= eu

a2b1
, f u

a1c2 = f u
a2c1 ;

(d) gu
a1 = gu

a2 .

2. Let us consider a matrix of coefficients du
ai , where a, i ∈ {1, . . . , n − 1} given by

Du =
⎡
⎢⎣

du
1 1 . . . du

1 n−1
...

. . .
...

du
n−1 1 . . . du

n−1 n−1

⎤
⎥⎦

Elements a1, a2 are chosen arbitrary, hence by (b) elements on a main diagonal of
Du are equal.

By (c) matrix Du is symmetric.

If a1 = 1, a2 = 2 then by (a) we get du
1i = du

2i for all i �= 1, 2. In particular
du
13 = d21. Furthermore by (c) du

12 = du
21.

Analogously, if a1 = 1, a2 = 3 then by (a) du
12 = du

32 and by (c) du
13 = du

31 and if
a1 = 2, a2 = 3 then by (a) du

21 = du
31 and by (c) du

23 = du
32.

Hence

du
12 = du

21 = du
31 = du

13 = du
23 = du

32 =: du
2 .
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Proceeding similarly, for any three numbers from the set {1, . . . , n − 1}, we get

Du =

⎡
⎢⎢⎢⎢⎣

du
1 du

2 . . . du
2

du
2

. . .
...

...
. . . du

2
du
2 . . . du

2 du
1

⎤
⎥⎥⎥⎥⎦ .

3. Consider now a matrix of coefficients eu
aj , where a ∈ {1, . . . , n − 1}, j ∈

{1, . . . , m − 1}

Eu =
⎡
⎢⎣

eu
1 1 . . . eu

1 m−1
...

. . .
...

eu
n−1 1 . . . eu

n−1 m−1

⎤
⎥⎦ .

If b1 = 1, b2 = 2 then by (b) we get eu
a11

= eu
a22

and by (c) eu
a12

= eu
a21

.

If b1 = 1, b2 = 3 then by (a) we get eu
a12

= eu
a22

.

Hence eu
a11

= eu
a22

= eu
a12

= eu
a21

. Proceeding analogously for any b1, b2 ∈
{1, . . . , m − 1} and by arbitrariness of choice of a1, a2, we get the equality of all
elements of the matrix Eu , i.e.

Eu =
⎡
⎢⎣

eu . . . eu

...
. . .

...

eu . . . eu

⎤
⎥⎦ .

Analogously

Fu =
⎡
⎢⎣

f u . . . f u

...
. . .

...

f u . . . f u

⎤
⎥⎦ .

Furthermore, by (d) and by arbitrariness of choice of a1, a2 we get gu
a1 = gu

a2 =: gu

for all a1, a2 ∈ {1, . . . , n − 1}. Applying the above formulas and (2), (3) we get a
new form of L(ua)

L(ua) = du
1 ua + du

2

n−1∑
i=1,i �=a

ui + eu
m−1∑
j=1

v j + f u
r−1∑
k=1

wk + gut .
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Analogously

L(vb) = dv
n−1∑
i=1

ui + ev
1vb + ev

2

m−1∑
j=1, j �=b

v j + f v
r−1∑
k=1

wk + gvt,

L(wc) = dw
n−1∑
i=1

ui + ew
m−1∑
j=1

v j + f w
1 wc + f w

2

r−1∑
k=1,k �=c

wk + gwt .

4. L commutes with G, so L ◦ A(t) = A ◦ L(t) and therefore

L(t) = A

⎛
⎝n−1∑

i=1

dt
i ui +

m−1∑
j=1

et
jv j +

r−1∑
k=1

f t
k wk + gt t

⎞
⎠ ,

which means that

n−1∑
i=1

dt
i ui +

m−1∑
j=1

et
j v j +

r−1∑
k=1

f t
k wk + gt t = A

⎛
⎝n−1∑

i=1

dt
i ui +

m−1∑
j=1

et
j v j +

r−1∑
k=1

f t
k wk + gt t

⎞
⎠ .

After subtraction the same elements from both sides of equation, we get

dt
a1ua1 + dt

a2ua2 + et
b1vb1 + et

b2vb2 + f t
c1wc1 + f t

c2wc2

= dt
a1ua2 + dt

a2ua1 + et
b1vb2 + et

b2vb1 + f t
c1wc2 + f t

c2wc1 .

Hence

dt
a1 = dt

a2 =: dt , et
b1 = et

b2 =: et , fc1 = f t
c2 =: f t .

By arbitrariness of choice of a1, a2, b1, b2, c1, c2 we obtain a new formula for L(t)

L(t) = dt
n−1∑
i=1

ui + et
m−1∑
j=1

v j + f t
r−1∑
k=1

wk + gt t .

5. Fix a3 ∈ {1, . . . , n − 1}, b3 ∈ {1, . . . , m − 1}, c3 ∈ {1, . . . , r − 1} and consider
B ∈ G, which interchanges: ua3 with uan , vb3 with vbm andwc3 withwcr . Therefore,
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since un = t − ∑n−1
i=1 ui , B fulfills the conditions

B(ua3) = t −
n−1∑
i=1

ui , B(ua) = ua, a ∈ {1, . . . , n − 1}\{a3};

B(vb3) = t −
m−1∑
j=1

v j , B(vb) = vb, b ∈ {1, . . . , m − 1}\{b3};

B(wc3) = t −
r−1∑
k=1

wk, B(wc) = wc, c ∈ {1, . . . , r − 1}\{c3};

B(t) = t .

Since L ◦ B(ua) = B ◦ L(ua) for all a �= a3,

L(ua) = B

(
du
1 ua + du

2

n−1∑
i=1,i �=a

ui + eu
m−1∑
j=1

v j + f u
r−1∑
k=1

wk + gut

)
.

Hence:

du
1 ua + du

2

n−1∑
i=1,i �=a

ui + eu
m−1∑
j=1

v j + f u
r−1∑
k=1

wk + gut = du
1 ua

+du
2

n−1∑
i=1,i �=a,a3

ui + du
2

(
t −

n−1∑
i=1

ui

)

+eu
m−1∑

j=1, j �=b3

v j + eu

⎛
⎝t −

m−1∑
j=1

v j

⎞
⎠ + f u

r−1∑
k=1,k �=c3

wk + f u

(
t −

r−1∑
k=1

wk

)
+ gut

Therefore, after reducing identical elements, we get

du
2 ua3 + euvb3 + f uwc3 = du

2 t − du
2

n−1∑
i=1

ui + eut − eu
m−1∑
j=1

v j + f ut − f u
r−1∑
k=1

wk .

Consequently,

du
2

n−1∑
i=1,i �=a3

ui + eu
m−1∑

j=1, j �=b3

v j + f u
r−1∑

k=1,k �=c3

wk

+2du
2 ua3 + 2euvb3 + 2 f uwc3 = (du

2 + eu + f u)t .

Hence du
2 + eu + f u = 0, du

2 = 0, eu = 0, f u = 0. Analogously dv = 0, ev
2 =

0, f v = 0 and dw = 0, ew = 0, f w
2 = 0.
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6. Furthermore, we know that L ◦ B(t) = B ◦ L(t) which gives

L(t) = B

⎛
⎝dt

n−1∑
i=1

ui + et
m−1∑
j=1

v j + f t
r−1∑
k=1

wk + gt t

⎞
⎠

and

dt
n−1∑
i=1

ui + et
m−1∑
j=1

v j + f t
r−1∑
k=1

wk + gt t = dt
n−1∑

i=1,i �=a3

ui + dt

⎛
⎝t −

n−1∑
i=1

ui

⎞
⎠

+et
m−1∑

j=1, j �=b3

v j + et

⎛
⎝t −

m−1∑
j=1

v j

⎞
⎠ + f t

r−1∑
k=1,k �=c3

wk + f t

⎛
⎝t −

r−1∑
k=1

wk

⎞
⎠ + gt t .

After reduction, we get

dt ua3 + etvb3 + f twc3 + dt
n−1∑
i=1

ui + et
m−1∑
j=1

v j + f t
r−1∑
k=1

wk = (dt + et + f t )t .

Therefore dt + et + f t = 0, dt = 0, et = 0, f t = 0 and so we obtain a new
formula for L

L(ua) = du
1 ua + gut,

L(vb) = ev
1vb + gvt,

L(wc) = f w
1 wc + gwt,

L(t) = gt t .

7. To end the proof, we should only find proper relationships between constants:
gu, gv, gw, gt . To this end, we note that L ◦ B(ua3) = B ◦ L(ua3), which implies

L

(
t −

n−1∑
i=1

ui

)
= B(du

1 ua3 + gut)

gt t −
n−1∑
i=1

(du
1 ui + gut) = du

1

(
t −

n−1∑
i=1

ui

)
+ gut

gt t − du
1

n−1∑
i=1

ui − (n − 1)gut = du
1 t − du

1

n−1∑
i=1

ui + gut .

Hence (du
1 + ngu − gt )t = 0 so du

1 + ngu − gt = 0, which gives us: gu = gt −du
1

n .
Analogously for the rest of two constants, we obtain:
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gv = gt −dv
1

m , gw = gt −dw
1

r and the proof is completed.

��

Now we can prove the main theorem of this paper.

Theorem 10 Let S = (M(n, m, r), ‖.‖) be a smooth space. Assume, that for any per-
mutation α × β × γ an operator Aα×β×γ is an isometry. Consider T = M(n, 1, 1)+
M(1, m, 1) + M(1, 1, r) and assume that Q is a minimal projection which commutes
with G. Then Q is the unique minimal projection from S into T .

Proof By Theorems 6 and 7 , the operator EQ |T fulfills the assumptions of Theorem 9.
Therefore, there exist constants d, e, f , g such that EQ |T is of the form (6). Consider
now the adjoint operator (EQ |T )∗. It is represented by adjoint matrix corresponding
to operator EQ |T . It means that

(EQ |T )∗(t) =
(

n−1∑
i=1

g − d

n
ui

)
+

⎛
⎝m−1∑

j=1

g − e

m
v j

⎞
⎠ +

(
r−1∑
k=1

g − f

r
wk

)
+ gt .

By Theorem 8 we know that (EQ |T )∗(t) = c · t . Hence g−d
n = g−e

m = g− f
r = 0,

which means that g = d = e = f . Finally we get

EQ |T = g · I dT .

Since EQ |T �≡ 0, g �= 0. Therefore, the operator EQ |T is invertible. By Theorem 4
we obtain the uniqueness of Q, what ends the proof. ��

Remark 1 Since dim S < +∞, P(S, T ) �= ∅ and a minimal projection exists. For
more details see [10].

Example 1 For every 1 < p < +∞ space L p(M(n, m, r)) is smooth and every
permutation Aα×β×γ is an isometry. Therefore the assumptions of Theorem 10 are
fulfilled and there exists the unique projection from S into T .

The above considerations also works for Orlicz spaces equipped with a smooth
Orlicz or Luxemburg norm.
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