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Abstract
Products of terms of arithmetic progressions yielding a perfect power have been long
investigated by many mathematicians. In the particular case of consecutive integers,
various finiteness results are known for the polynomial values of such products. In the
present paper we consider generalizations of these result in various directions.
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1 Introduction

A classical result of Erdős and Selfridge [11] says that the product of consecutive
positive integers is never a perfect power, that is, the equation

x(x + 1) · · · (x + k − 1) = yn (1)

has no solutions in positive integers x, k, y, n with k ≥ 2 and n ≥ 2. This result and
also Eq. (1) has been generalized into various directions. Here we only mention those
directions and results which are important from our viewpoint.
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The first extension of the problem we mention is when on the left hand side of (1),
we omit a term from the product, that is, we consider the equation

x(x + 1) · · · (x + j − 1)(x + j + 1) · · · (x + k − 1) = yn

in positive integers x, k, y, n with k ≥ 2 and n ≥ 2, where 0 ≤ j ≤ k−1. Confirming
a conjecture of Erdős and Selfridge, Saradha and Shorey [20,21] proved that the only
solutions of the above equation are given by

4!
3

= 23,
6!
5

= 122,
10!
7

= 7202.

The second direction of extensions we mention (which probably attracted the most
attention) is when instead of products of consecutive integers one takes products of
terms of an arithmetic progression. More precisely, one considers the equation

x(x + d) · · · (x + (k − 1)d) = yn

in positive integers x, d, k, y, n with k ≥ 2, n ≥ 2 with gcd(x, d) = 1. Under certain
(mild, necessary) conditions Darmon and Granville [9] proved that for fixed k and n,
this equation has only finitely many solutions in x, d, y. (See also Győry, Hajdu and
Saradha [14] for a further generalization.) Recently, Bennett and Siksek [2] proved that
if k is large enough, then this equation has only finitely many solutions in x, d, y, n.
On the other hand, for small values of k, namely for k < 35, a result of Győry, Hajdu
and Pintér [13] in accordance with a conjecture of Erdős says that (under certain
trivial necessary restrictions) this equation has no solutions at all. We also mention
that combining the two directionsmentioned above, Saradha and Shorey [22] provided
results for equations of the above shape, with one term of the progressionmissing from
the product on the left hand side.

The third direction of extensions we refer to is when in (1) in place of yn on the
right hand side we take an arbitrary polynomial, that is, we consider the equation

x(x + 1) · · · (x + k − 1) = g(y)

in integers x, k, y, where g(y) ∈ Q[y]. Here we recall a result of Kulkarny and Sury
[18] who could completely describe when this equation can have infinitely many
solutions in x, y, for k fixed. Further, in the particular case where g(y) is of the shape
ayn + b, Yuan [26] could give effective upper bounds for x, y, while Bilu et al. [5]
could prove an ineffective finiteness theorem for x, k, y, n. We also mention that if
g(y) = (y

n

)
then all solutions are completely described by results of Erdős [10] and

Győry [12].
In this paper we consider a common generalization of the above approaches.

Namely, we study the equation

x(x + d) · · · (x + ( j − 1)d)(x + ( j + 1)d) · · · (x + (k − 1)d) = g(y) (2)
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Polynomial values of products of terms from an arithmetic progression 639

in integers x, d, k, y with d �= 0, k ≥ 3 and 0 ≤ j ≤ k − 1, where g(y) ∈ Q[y].
Note that the choice j = 0 (or j = k − 1) gives back the classical case, where we
have a full product on the left hand side. We shall prove various finiteness results
concerning Eq. (2). First, we completely describe those cases where for fixed k and
d, (2) has infinitely many solutions in x, y. In the particular case where g(y) is of the
form g(y) = ayn + b, we are able to provide effective upper bounds for the solutions
x, y, as well. We also prove that the polynomials appearing on the left had side, up
to some special (completely described) cases are indecomposable. We mention that
there are many results in the literature which are related in the sense that they concern
equal values or polynomial values of terms of families of combinatorial polynomials.
We cannot survey the extremely huge literature, we only refer to the papers [1,4,8,15–
17,24] and the references there.

The structure of the paper is the following. In the next section we provide our main
results. We give their proofs in the third section. The main tools we use are the Bilu–
Tichy theorem [6] and Baker’s method (through results of Schinzel and Tijdeman [23]
and Brindza [7]). However, to make themwork we need to combine several arguments
of combinatorial nature, as well.

2 Main results

For the smooth formulation of our main results, we introduce the following notation.
Let k, j, d be integers with d �= 0, k ≥ 3 and 0 ≤ j ≤ k − 1, and put

fk, j (x) = x(x + d) · · · (x + ( j − 1)d)(x + ( j + 1)d) · · · (x + (k − 1)d).

Consider the equation

fk, j (x) = g(y) (3)

(which is a reformulation of (2)) in integers x, y with k ≥ 3 and 0 ≤ j ≤ k−1, where
g(y) ∈ Q[y]. (Note that for k < 3 the equation is trivial or empty.)

Now we can formulate our general theorem. This is ineffective in the sense that
it only guarantees the finiteness of the solutions of (3) (apart from the exceptional
cases), but it does not give an upper bound for the solutions.

Theorem 2.1 Let k ≥ 8 and g(y) ∈ Q[y] with deg g ≥ 2. Then Eq. (3) has only
finitely many integer solutions x, y, unless we are in one of the following cases:

(i) k, j are arbitrary, and g(y) = fk, j (h(y)) with some non-constant h(y) ∈ Q[y],
(ii) k is odd, j = 0, k−1 and g(y) is of the form g(y) = h∗

1(h(y))where h(y) ∈ Q[y]
has at most one root of odd multiplicity,

(iii) k is odd, j = (k−1)/2 and g(y) is of the form g(y) = h∗
2(h(y))where h(y) ∈ Q[y]

has at most one root of odd multiplicity.

Here we have

h∗
1(y) =

(
y − d2

4

) (
y − (3d)2

4

)
. . .

(
y − ((k − 1)d)2

4

)
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and

h∗
2(y) = (y − d2)(y − (2d)2) . . .

(

y −
(

(k − 1)d

2

)2
)

.

Remark The condition deg g ≥ 2 in the above statement is clearly necessary. Further,
it is well-known (see also our Lemma 3.4 later on) that if h(y) fulfils the prescribed
property in parts (ii) and (iii), then Eq. (3) can have infinitely many integer solutions.

In the case where g(y) is of the form ayn +b, we are able to give an effective result,
bounding x, y, n. In particular, note that here also the exponent n is a variable, so in
fact this theorem concerns families of polynomials g(y).

Theorem 2.2 Let k ≥ 8, 0 ≤ j ≤ k − 1 and let a, b ∈ Q with a �= 0. Then for all
solutions of the equation

fk, j (x) = ayn + b (4)

in integers x, y, n with n ≥ 2 we havemax(|x |, |y|, n) < C, where C is an effectively
computable constant depending only on k, a, b. Here we use the convention that for
|y| ≤ 1 we have n = 2, 3.

Remark One can easily check that we have

f7,3(x) =
(
x3 + 9dx2 + 20d2x + 6d3

)2 − 36d6

(see also Theorem 2.3). This shows that (4) with k = 7, j = 3 and a = 1, b = 36d6,
n = 2 hence also (3) with k = 7, j = 3 and g(y) = y2 − 36d6 have infinitely
many integer solutions x, y. Thus the assumption k ≥ 8 in Theorems 2.1 and 2.2 is
necessary.

For the formulation of our last theorem, we need to introduce some new notation.
Let K be a field and F ∈ K [x]. Then

F(x) = G1(G2(x)) (G1(x),G2(x) ∈ K [x]),

is a decomposition of F over K , which is called non-trivial if

degG1 > 1 and degG2 > 1.

Two decompositions F(x) = G1(G2(x)) and F(x) = H1(H2(x)) are called equiv-
alent if there exists a linear polynomial τ(x) ∈ K [x] such that we have G1(x) =
H1(τ (x)) and H2(x) = τ(G2(x)). We say that the polynomial F(x) is decomposable
over K if it has at least one nontrivial decomposition over K – otherwise F(x) is
called indecomposable.

Our last theorem shows that up to some special cases, the polynomials fk, j (x) are
indecomposable. This property (similarly e.g. to the papers [1,8]) plays an important
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role in the proof of our ineffective statement – however, we also find it of independent
interest. Note that the cases with j = 0, k − 1 could be derived from Theorem 4.3 of
[8].

Theorem 2.3 For any k ≥ 2 and 0 ≤ j ≤ k − 1 the polynomial fk, j (x) is indecom-
posable over Q, except for the following cases:

(i) if k = 7, j = 3 then we have a decomposition of the form fk, j (x) = (x3 +9dx2 +
20d2x + 6d3)2 − 36d6,

(ii) if k is odd and j = 0 then all non-trivial decompositions of fk, j (x) are equivalent

to fk, j (x) = h∗
1

((
x + (k+1)d

2

)2)
,

(iii) if k is odd and j = (k − 1)/2 then all non-trivial decompositions of fk, j (x)
not equivalent to the one in (i) for (k, j) = (7, 3), are equivalent to fk, j (x) =
h∗
2

((
x + (k+1)d

2

)2)
,

(iv) if k is odd and j = k − 1 then all non-trivial decompositions of fk, j (x) are

equivalent to fk, j (x) = h∗
1

((
x + (k−1)d

2

)2)
.

Here, h∗
1 and h∗

2 are given in Theorem 2.1.

3 Proofs

In this section we give the proofs of our theorems. In this, we follow a reverse order:
we start with the proof of Theorem 2.3, then we follow with the proof of Theorem 2.2,
and we conclude with the proof of Theorem 2.1. The reason is that as we shall see,
this is the ‘logical’ way to follow.

In our arguments we shall need several lemmas. The first two consider certain
properties of the derivatives and shifts of the polynomials fk, j (x). In fact, we can
simplify our treatment due to the observation that in these studies the parameter d
does not play an important role. That is, instead of the polynomials fk, j (x) it is
sufficient to study the polynomials

pk, j (x) = x(x + 1) · · · (x + j − 1)(x + j + 1) · · · (x + k − 1).

The reason why this simplification is possible is that we have

fk, j (x) = dk−1 pk, j (x/d). (5)

We start with describing the root structure of the polynomials p′
k, j (x) (which is in

fact rather simple).

Lemma 3.1 For every k ≥ 3 and 0 ≤ j ≤ k − 1, the roots of the polynomial p′
k, j (x)

are real and simple, and there is a root in each interval

(− k + 1,−k + 2), (− k + 2,−k + 3), . . . ,

. . . , (− j − 2,− j − 1), (− j − 1,− j + 1), (− j + 1,− j + 2), . . . , (− 1, 0).
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642 L. Hajdu, Á. Papp

Proof The statement is a trivial consequence of Rolle’s theorem. Note that the cases
j = 0, k − 1 are already treated in the proof of Proposition 3.4 of [4]. �	
Our next lemma concerns the common roots of the derivatives and shifts of the

polynomials pk, j (x).

Lemma 3.2 For any k ≥ 3 and 0 ≤ j ≤ k − 1 we have

max
λ∈C deg gcd(p′

k, j (x), pk, j (x) − λ) ≤ 4.

Proof If k ≤ 5 then deg p′
k, j (x) ≤ 4 and the statement is trivial. Sowemay assume that

k ≥ 6. Further, for j = 0, k − 1 the statement immediately follows from Proposition
3.4 of [4]. Thus we may also assume that 0 < j < k−1. In what follows, we shall use
these assumptions without any further mentioning. Write α1, . . . , αk−2 for the roots
of p′

k, j (x). By Lemma 3.1 we know that these roots are distinct, and (renumbering
them if necessary) we have

−k + 1 < α1 < −k + 2 < · · · < − j − 2 < αk− j−2 < − j − 1

< αk− j−1 < − j + 1 < αk− j < − j + 2 < · · · < −1 < αk−2 < 0.

We give an upper bound for the number of αi -s satisfying

pk, j (αi ) = λ

for any fixed λ ∈ C. For this, put

P∗
k, j (x) := |pk, j (x)| − |pk, j (x − 1)|.

We would like to calculate the sign changes of P∗
k, j (x) inside certain intervals. We

note that we take the polynomial pk, j at x and x − 1 (not at other shifts of x) to
make this analysis simple - in this way the problem reduces to the study of a quadratic
polynomial. Indeed, as we have

P∗
k, j (x) = (|(x + j − 1)(x + k − 1)| − |(x − 1)(x + j)|)
·|x(x + 1) . . . (x + j − 3)(x + j − 2)(x + j + 1)(x + j + 2)

. . . (x + k − 3)(x + k − 2)|,

we may restrict our attention to

Pk, j (x) := |(x + j − 1)(x + k − 1)| − |(x − 1)(x + j)|.

We need to understand the behavior of Pk, j (x) (and ultimately of P∗
k, j (x)) on certain

subintervals of (− k + 1, 0). A simple consideration gives that for −k + 1 < x < 0
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we have

Pk, j (x) =

⎧
⎪⎨

⎪⎩

q1(x), if − j + 1 < x < 0,

q2(x), if − j < x < − j + 1,

−q1(x), if − k + 1 < x < − j,

where

q1(x) = 2x2 + (k + 2 j − 3)x + ( jk − k − 2 j + 1),

q2(x) = (1 − k)x + (k − jk − 1).

This shows that Pk, j (x), and hence P∗
k, j (x) changes sign on the interval (− k + 1, 0)

at most three times: at the two roots of q1(x) and between − j and − j + 1. (Note that
the root of q2(x) is between− j and− j+1.) The relevance of this fact is shown by the
following observation. Suppose that P∗

k, j (x) is positive on some interval (− i,−i+1),
with 0 < i ≤ k − 2. If i ≥ j , then αk−i ∈ (− i,−i + 1) and αk−i−1 ∈ (− i − 1,−i),
and we have

0 < |pk, j (αk−i−1 + 1)| − |pk, j (αk−i−1)| ≤ |pk, j (αk−i )| − |pk, j (αk−i−1)|,

that is,

|pk, j (αk−i )| > |pk, j (αk−i−1)|.

A similar phenomenon occurs for i < j , while in the case where P∗
k, j (x) is negative

on some interval (− i,−i + 1), the above relation just turns around. Altogether, we
see that the sequence

|pk, j (α1)|, |pk, j (α2)|, . . . , |pk, j (αk−2)|

changes strict monotonicity at most three times. In other words, the above sequence
is the union of at most four strictly monotone sequences, hence it can contain at most
four equal terms. This proves our claim. �	

Now we can give the proof of Theorem 2.3.

Proof of Theorem 2.3 Wemay clearly assume that deg fk, j ≥ 4, that is, k ≥ 5. Observe
that in view of (5), it is sufficient to deal with the polynomials pk, j instead of fk, j . So
suppose that pk, j (x) has a non-trivial decomposition of the form pk, j (x) = G(H(x))
with G, H ∈ Q[x]. It is well-known (see e.g. the proof of Theorem 4.3 of [8]) that
then we have

deg H ≤ max
λ∈C deg gcd(p′

k, j (x), pk, j (x) − λ).

Thus, by Lemma 3.2, we obtain that deg H ≤ 4. Let γ1, . . . , γt be the (complex) roots
of G. They are all simple, because pk, j (x) has only simple roots. Hence, assuming
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without loss of generality that G and H are monic, we have

pk, j (x) = (H(x) − γ1) · · · (H(x) − γt ).

We consider the cases deg H = 2, 3, 4 separately.
Let first deg H = 2. Then necessarily k − 1 = deg pk, j is even; put k − 1 = 2t .

Further, we have

H(x) − γr = (x + a2r−1)(x + a2r ) (r = 1, . . . , t),

where a1, . . . , a2t is a permutation of 0, 1, . . . , j − 1, j + 1, . . . , k − 1. Writing b1
for the coefficient of x in H(x),

a2r−1 + a2r = b1 (r = 1, . . . , t)

follows. By summing up these identities we obtain

tb1 = k(k − 1)

2
− j .

As t = (k − 1)/2, this yields that (k − 1)/2 divides j . Since 0 ≤ j ≤ k − 1, we get
j = 0, (k − 1)/2, k − 1.
If j = 0 then b1 = k and (after re-ordering if necessary) we get

(a1, a2) = (1, k − 1), . . . , (a2t−1, a2t ) =
(
k − 1

2
,
k + 1

2

)
.

This gives the decomposition

pk,0(x) = h1

((
x + k + 1

2

)2
)

with

h1(x) =
(
x − 1

4

)(
x − 9

4

)
. . .

(
x − (k − 1)2

4

)
.

We claim that any other decomposition of pk,0(x) with deg H = 2 is equivalent to the
above one. For this, suppose that we have a decomposition

pk,0(x) = G0(H0(x))

over Q with deg H0 = 2. Write H0(x) = α(x − β)2 + γ with α, β, γ ∈ Q. Then the
above decomposition is equivalent to P((x − β)2) with some polynomial P having
rational coefficients. However, this shows that the roots of pk,0 are symmetric with
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respect to β, so β = (k + 1)/2. This proves our claim, and by (5) we easily get the
corresponding decomposition of fk,0(x).

If j = k − 1 then b1 = k − 2, and a similar argument shows that we have

pk,k−1(x) = h1

((
x + k − 1

2

)2
)

,

and up to equivalence, this is the only decomposition of pk,k−1(x) with deg H = 2.
Also, we get the corresponding decomposition of fk,k−1(x). Note that these cases are
handled by Lemma 4.3 of [8], but for the sake of completeness, we wanted to present
a full argument.

Finally, if j = (k − 1)/2 then we have b1 = k − 1, and (after re-ordering if
necessary) we obtain

(a1, a2) = (0, k − 1), . . . , (a2t−1, a2t ) =
(
k − 3

2
,
k + 1

2

)
.

In this case we have

pk,(k−1)/2(x) = h2

((
x + k + 1

2

)2
)

with

h2(x) = (x − 12)(x − 22) . . .

(

x −
(
k − 1

2

)2
)

.

The fact that any decomposition of pk,(k−1)/2(x) with deg H = 2 is equivalent to this
follows by a simple argument as in case of j = 0. From these, the description of the
decomposition of fk,(k−1)/2(x) easily follows.

Let now deg H = 3. Then necessarily 3 | k − 1; put k − 1 = 3t . Further, we have

H(x) − γr = (x + a3r−2)(x + a3r−1)(x + a3r ) (r = 1, . . . , t), (6)

where a1, a2, . . . , a3t is a permutation of 0, 1, . . . , j − 1, j + 1, . . . , k − 1. Similarly
as in case of deg H = 2, we have

a3r−2 + a3r−1 + a3r = b1 (r = 1, . . . , t),

where b1 is the coefficient of x in H(x). Adding up the above identities, we obtain
tb1 = k(k − 1)/2 − j , so

b1 = 3k

2
− 3 j

k − 1
∈ Z.
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Observe that for any 0 ≤ j ≤ k − 1 the polynomials pk, j (x) and pk,k−1− j (x) can be
obtained from each other by a linear transformation. Hence, without loss of generality
wemay assume that j ≥ (k−1)/2. Thus,we obtain that only the following possibilities
may occur: k is even and

( j, b1) =
(
2k − 2

3
,
3k − 4

2

)
,

(
k − 1,

3k − 6

2

)
,

or k is odd and

( j, b1) =
(
k − 1

2
,
3k − 3

2

)
,

(
5k − 5

6
,
3k − 5

2

)
.

To handle these cases, we need to go deeper. For this, observe that (6) yields that
the elementary symmetric polynomials of any triple a3r−2, a3r−1, a3r , except for their
products, coincide. This implies that for any r with 1 ≤ r ≤ t we have

a1 + a2 + a3 = a3r−2 + a3r−1 + a3r and a21 + a22 + a23 = a23r−2 + a23r−1 + a23r .

Since j > 0, one of the ai -s is zero. Without loss of generality we may assume that
a1 = 0. Then we get

b2 := a22 + a23 =
(k−1)k(2k−1)

6 − j2

t
= k(2k − 1)

2
− 3 j2

k − 1
.

Further, now we also have

a2 + a3 = b1.

Thus a2 and a3 are roots of the polynomial

F(x) = x2 − b1x + b21 − b2
2

.

Now in view of the possible pairs ( j, b1), we obtain that F(x) is one of

x2 + 4 − 3k

2
x + 15k2 − 50k + 32

24
, x2 + 6 − 3k

2
x + 5k2 − 22k + 24

8
,

x2 + 3 − 3k

2
x + 5k2 − 13k + 6

8
, x2 + 5 − 3k

2
x + 15k2 − 59k + 50

24
.

A simple calculation shows that these polynomials have real roots only for k < 9, so
we may restrict to these cases. Recall that 3 | k − 1, so we have k = 4, 7. If k = 4,
then in a decomposition pk, j (x) = G(H(x)) with deg H = 3 we have degG = 1,
which is a trivial decomposition. So we are left with the only possibility k = 7. Here

123



Polynomial values of products of terms from an arithmetic progression 647

we easily get that the only case which gives rise to a decomposition is j = 3 and
(a1, a2, a3) = (0, 4, 5), (a4, a5, a6) = (1, 2, 6). Then we get the decomposition

p7,3(x) = (x3 + 9x2 + 20x + 6)2 − 36.

From the argument it is clear that any other decomposition of p7,3(x) of the form
G(H(x)) with deg H = 3 is equivalent to the above one. This immediately yields the
corresponding decomposability of f7,3(x).

Finally, let deg H = 4. Then we see that 4 | k − 1; let k − 1 = 4t . Further, now we
have

H(x) − γr = (x + a4r−3)(x + a4r−2)(x + a4r−1)(x + a4r ) (r = 1, . . . , t), (7)

where a1, a2, . . . , a4t is a permutation of 0, 1, . . . , j − 1, j + 1, . . . , k − 1. Writing
b1 for the coefficient of x in H(x) again, we get

a4r−3 + a4r−2 + a4r−1 + a4r = b1 (r = 1, . . . , t).

Adding up the above equalities, we conclude that

b1 = 2k − 4 j

k − 1
∈ Z.

In particular, k − 1 | 4 j . Further, similarly as in case of deg H = 3, we may assume
that j ≥ (k − 1)/2. Thus we are left with the following possibilities:

( j, b1) =
(
k − 1

2
, 2k − 2

)
,

(
3k − 3

4
, 2k − 3

)
, (k − 1, 2k − 4).

To handle these cases, observe that since all the elementary symmetric polynomials of
the quadruples a4r−3, a4r−2, a4r−1, a4r (1 ≤ r ≤ t) coincide except for their product,
for any � = 1, 2, 3 and 1 ≤ r ≤ t we have

b� := a�
1 + a�

2 + a�
3 + a�

4 = a�
4r−3 + a�

4r−2 + a�
4r−1 + a�

4r .

Adding up these identities for r = 1, . . . , t we obtain

b2 =
(k−1)k(2k−1)

6 − j2

t
= 2k(2k − 1)

3
− 4 j2

k − 1

and

b3 =
(

(k−1)k
2

)2 − j3

t
= (k − 1)k2 − 4 j3

k − 1
.
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Now we pick the quadruple a4r−3, a4r−2, a4r−1, a4r containing 0. Without loss of
generality wemay assume that here r = 1 and a1 = 0. Then we check the possibilities
in turn.

If ( j, b1) = ((k − 1)/2, 2k − 2) then we have

a2 + a3 + a4 = 2k − 2,

a22 + a23 + a24 = 4k2 − 5k + 3

3
,

a32 + a33 + a34 = 2k3 − 3k2 + 2k − 1

2
.

A simple calculation e.g. with Maple shows that this system of equations has no
solutions in distinct positive integers a2, a3, a4 for k ≥ 8. However, if k < 8 then
4 | k − 1 gives k = 5, when pk, j (x) cannot have a non-trivial decomposition of the
required form. Hence our claim follows in this case.

For ( j, b1) = ((3k − 3)/4, 2k − 3) we have

a2 + a3 + a4 = 2k − 3,

a22 + a23 + a24 = 16k2 − 35k + 27

12
,

a32 + a33 + a34 = 16k3 − 43k2 + 54k − 27

16
.

Now a (Maple) calculation, taking resultants and using symmetry in a2, a3, a4 gives
that a2, a3, a4 should be the (distinct positive integer) roots of the polynomial

48x3 + (144 − 96k)x2 + (64k2 − 218k + 162)x − 16k3 + 95k2 − 168k + 81.

This polynomial has its unique local maximum at

x1 := 8k − 12 − √
26k − 18

12
,

however, the value of the above polynomial at x1 is negative for k ≥ 7. So k ≤ 6, and
our statement follows similarly as before also in this case.

Finally, if ( j, b1) = (k − 1, 2k − 4) then we have

a2 + a3 + a4 = 2k − 4,

a22 + a23 + a24 = 4k2 − 14k + 12

3
,

a32 + a33 + a34 = k3 − 5k2 + 8k − 4.

Asimple (Maple) calculation shows that it is not possiblewith distinct positive integers
a2, a3, a4 for k ≥ 7. Hence, the proof of the theorem is complete. �	
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Now we turn to the proof of Theorem 2.2. For this, we need two lemmas (which
will be needed later on, as well), together with some new notation. Let f (x) ∈ Z[x]
of degree d and height (i.e, maximum of the absolute values of the coefficients) H ,
and A be a non-zero integer. Consider the equation

f (x) = Ayn, (8)

in x, y, n ∈ Z with n ≥ 2. Our first lemma is a result of Bérczes, Brindza and Hajdu
[3]. Note that the first result of this type is due to Tijdeman [25] and Schinzel and
Tijdeman [23].

Lemma 3.3 If f (x) has at least two different roots, then for all solutions x, y, n of (8)
with |y| > 1 we have

n < C1(A, d, H).

Here C1(A, d, H) is an effectively computable constant depending only on A, d and
H.

Our second lemma is the main result of Brindza [7]. To its formulation we need
some new notation. Let S be a finite set of primes, and letZS be the set of those rational
numbers whose denominators have no prime divisors outside S. By the height h(q) of
a rational number q we mean the maximum of the absolute value of its denominator
and numerator.

Lemma 3.4 Let f (x) ∈ Z[x] with

f (x) = a0

m∏

i=1

(x − γi )
ri ,

where a0 is the leading coefficient of f , and γ1, . . . , γm are the distinct complex roots
of f (x), with multiplicities r1, . . . , rm, respectively. Further, fix n with n ≥ 2, and set

ti = n

gcd(n, ri )
(i = 1, . . . ,m).

Suppose that (t1, . . . , tm) is not a permutation of any of the m-tuples

(t, 1, . . . , 1) (t ≥ 1), (2, 2, 1, . . . , 1).

Then for any finite set S of primes, the solutions x, y ∈ ZS of (8) satisfy

max (h(x), h(y)) < C2(A, n, d, H , S),

where C2(A, n, d, H , S) is an effectively computable constant depending only on
A, n, d, H , S.
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Now we are ready to give the proof of our effective result.

Proof of Theorem 2.2 By Lemma 3.3 it is sufficient to prove that the polynomial
fk, j (x) − b has more than two zeros of multiplicities coprime to n. Suppose to the
contrary that

fk, j (x) − b = p(x) · (q(x))n (9)

holds with some p(x), q(x) ∈ Q[x] and deg p ≤ 2. Since by Lemma 3.1 and (5)
all the roots of f ′

k, j (x) are simple, by taking derivative of (9) we immediately get
a contradiction for n ≥ 3. That is, we may assume that n = 2. Then, by taking
derivatives of both sides of the above equation, we obtain

f ′
k, j (x) = q(x)(p′(x)q(x) + 2p(x)q ′(x)).

Let α1, . . . , αk−2 be the roots of f ′
k, j (x). Observe that all the roots of q(x) are among

them. Further, if αi is a root of q(x), then (9) yields

fk, j (αi ) = b.

However, by Lemma 3.2, in view of (5) we see that the above formula may hold
for at most four αi -s. That is, we have deg q ≤ 4. Hence, we obtain that k − 1 =
deg fk, j (x) ≤ 10, so k ≤ 11. That is, we are left with the cases 8 ≤ k ≤ 11. Now
a simple and tedious computation with Maple shows that for these values of k, (9) is
not possible for any 0 ≤ j ≤ k − 1 and b ∈ Q. We illustrate it by an example. Let
k = 8, j = 3. Then letting X = x/d and B = b/d7 we have

f8,3(x) − b = d7(X(X + 1)(X + 2)(X + 4)(X + 5)(X + 6)(X + 7) − B).

The discriminant of X(X + 1)(X + 2)(X + 4)(X + 5)(X + 6)(X + 7) − B (with
respect to X ) is given by

−823543B6 − 116938944B5 + 40895276544B4 + 3554646736896B3

−448755174604800B2 − 10577549721600000B + 758487711744000000

which is irreducible over Q. That is, f8,3(x) − b has no double roots for any b ∈
Q, which proves our claim in this case. In all the other cases we came to similar
conclusions. Hence, the theorem follows. �	

Finally, we prove Theorem 2.1. For this we shall use a deep result of Bilu and Tichy
[6] concerning equations of the type

f (x) = g(y) (10)

in integers x, y, where f , g are polynomials with rational coefficients. To describe
this result, we need to introduce some notation.
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Table 1 Standard pairs

Kind Standard pair Parameter restrictions

First (xq , αxr v(x)q ) 0 ≤ r < q, (r , q) = 1, r + deg v(x) > 0

Second (x2, (αx2 + β)v(x)2) –

Third (Dμ(x, αν), Dν(x, αμ)) gcd(μ, ν) = 1

Fourth (α−μ/2Dμ(x, α), −β−ν/2Dν(x, β)) gcd(μ, ν) = 2

Fifth ((αx2 − 1)3, 3x4 − 4x3) –

Let α, β, δ be nonzero rational numbers, μ, ν, q be positive integers, and r be a
non-negative integer, and let v(x) ∈ Q[x] be a nonzero polynomial (which may be
constant). Then

Dμ(x, δ) :=
�μ/2�∑

i=0

dμ,i x
μ−2i where dμ,i = μ

μ − i

(
μ − i

i

)
(− δ)i

is the μ-th Dickson polynomial. Note that every second coefficient of a Dickson
polynomial is zero. For (many) other properties of these polynomials we refer to the
book [19].

The polynomials F,G ∈ Q[x] form a standard pair overQ, if one of (F(x),G(x))
and (G(x), F(x)) appears in Table 1.

Nowwe formulate the main result of [6], which will be a key ingredient in the proof
of Theorem 2.1.

Lemma 3.5 Let f (x), g(x) ∈ Q[x] be non-constant polynomials. Then the following
two assertions are equivalent.

(i) Equation (10) has infinitely many rational solutions x, y with a bounded denomi-
nator.

(ii) We have f = ϕ ◦ F ◦ λ and g = ϕ ◦ G ◦ κ , where λ(x), κ(x) ∈ Q[x] are linear
polynomials, ϕ(x) ∈ Q[x], and F(x),G(x) form a standard pair over Q such
that the equation F(x) = G(y) has infinitely many rational solutions x, y with a
bounded denominator.

Now we give the proof of our ineffective result.

Proof of Theorem 2.1 In case of deg g = 2 the statement easily follows from Theorem
2.2, in an effective form. Hence, in what follows, without loss of generality we may
assume that deg g ≥ 3. Suppose that Eq. (3) has infinitely many integer solutions.
Then by Lemma 3.5 there exist λ(x), κ(x), ϕ(x) ∈ Q[x] with deg λ = deg κ = 1
such that

fk, j (x) = ϕ(F(λ(x))) and g(x) = ϕ(G(κ(x))),

where F(x),G(x) form a standard pair over Q. By Theorem 2.3, we also have that
degϕ = 1, (k − 1)/2, k − 1.
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If degϕ = k − 1, then deg F = 1. Thus t(x) := F(λ(x)) is a linear polynomial
overQ. Then clearly, t−1(x) ∈ Q[x] is also a linear polynomial, and we have ϕ(x) =
fk, j (t−1(x)). Hence we just get part (i) of the statement. On the other hand, if g(y) is
of the form g(y) = fk, j (h(y)) with a non-constant h(y) ∈ Q[y], then (3) clearly has
infinitely many solutions. Thus, the discussion of this case is complete.

Let now degϕ = (k − 1)/2; then clearly, k is odd. By Theorem 2.3 we know that
then the decomposition fk, j (x) = ϕ(F(x)) is equivalent to one of

h∗
1

((
x + (k + 1)d

2

)2
)

, h∗
2

((
x + (k + 1)d

2

)2
)

, h∗
1

((
x + (k − 1)d

2

)2
)

,

according as j = 0, (k − 1)/2, k − 1, respectively. Thus, Lemma 3.5 shows that
if (3) has infinitely many integral solutions, then necessarily the equation G(y) =
X2 has infinitely many solutions with bounded denominator, where X is a linear
transformation of one of x + (k ± 1)d/2. Hence by Lemma 3.4 we obtain parts (ii)
and (iii) of the statement.

Finally, suppose that degϕ = 1. Recall that we have

fk, j (x) = ϕ(F(λ(x))), g(x) = ϕ(G(κ(x))),

where F(x),G(x) form a standard pair. We check the possibilities in turn.
First observe that as k ≥ 8 and deg g ≥ 3, F(x),G(x) cannot form a standard pair

of the second or fifth type.
If F(x),G(x) form a standard pair of the first type, then we have

fk, j (x) = u1(w1x + w2)
q + u2 or fk, j (x) = u1(w1x + w2)

rv(w1x + w2)
q + u2

with some rational numbers u1, u2, w1, w2 satisfying u1w1 �= 0. As by Lemma 3.1
and (5) the polynomial f ′

k, j (x) has no double roots, in either case we have q ≤ 2.
However, then as k ≥ 8 and deg g ≥ 3, neither of fk, j (x) and g(x) can be equivalent
to xq , thus this case cannot occur.

So we are left with the possibilities where F(x),G(x) form a standard pair of the
third or fourth kind. Observe that in both cases, in view of (5),

pk, j (w1x + w2) = u1Dμ(x, δ) + u2

holds with some positive integer μ and u1, u2, w1, w2, δ ∈ Q, u1w1δ �= 0. Observe
that here the leading coefficients arewk−1

1 and u1, respectively. So without loss of gen-
erality wemay assume thatw1 = u1 = 1. Further, we clearly haveμ = deg pk, j (x) =
k − 1. Hence, letting u = u2 and w = w2 we can write

pk, j (x + w) = Dk−1(x, δ) + u. (11)

Put

pk, j (x + w) = s1x
k−1 + s2x

k−2 + · · · + sk−1x + sk .
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Then, as every second coefficient of the Dickson polynomial is zero, using Maple we
get

s2 = 1

2
k2 +

(
w − 1

2

)
k − w − j = 0,

s4 = 1

48
k6 + 6w − 7

48
k5 + 12w2 − 38w − 6 j + 17

48
k4

+ 8w3 − 72w2 + 78w − 24 jw + 20 j − 17

48
k3

+ −24w3 + 66w2 − 29w − 12 jw2 + 48 jw + 12 j2 − 9 j + 3

24
k2

+ 22w3 − 18w2 + 3w + 30 jw2 + 12 j2w − 18 jw − 6 j2 + j

12
k

− (w + j)3 = 0.

Solving this equation system for j by Maple, we get that only the following cases are
possible:

( j, w) =
(
0,−k

2

)
,

(
k − 1

2
,
1 − k

2

)
,

(
k − 1,

2 − k

2

)
.

Write

Dk−1(x, δ) + u = t1x
k−1 + t2x

k−2 + · · · + tk−1x + tk .

We handle the possible pairs ( j, w) in turn, by comparing the coefficients of xk−3 and
xk−5 in (11). For this, note that as k ≥ 8 we have

t3 = (1 − k)δ, t5 = (k − 1)(k − 4)

2
δ2.

First take ( j, w) = (0,−k/2), (k−1, (2−k)/2). Then a simple Maple calculation
gives that in both cases we have

s3 = −k3 + 3k2 − 2k

24
,

and

s5 = 5k6 − 48k5 + 155k4 − 180k3 + 20k2 + 48k

5760
.

Now the equations t3 = s3, t5 = s5 yield k ≤ 4, which is a contradiction.
Let now ( j, w) = ((k − 1)/2, (1 − k)/2). Then we obtain

s3 = −k3 + k

24
,
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and

s5 = 5k6 − 18k5 − 10k4 + 60k3 + 5k2 − 42k

5760
.

Now from t3 = s3, t5 = s5 we get k ≤ 7, which is a contradiction again, and the
theorem follows. �	
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14. Győry, K., Hajdu, L., Saradha, N.: On the Diophantine equation n(n + d) · · · (n + (k − 1)d) = byl .
Canad. Math. Bull. 47, 373–388 (2004). Correction: ibid. 48, 636 (2005)
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