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Abstract
For a Dirichlet series g, we study the Volterra operator Tg f (s) = − ∫ +∞

s f (w)g′(w)

dw, acting on a class of weighted Hilbert spaces H2
w of Dirichlet series. We obtain

sufficient / necessary conditions for Tg to be bounded (resp. compact), involving BMO
and Bloch type spaces on some half-plane. We also investigate the membership of Tg
in Schatten classes. Moreover, we show that if Tg is bounded, then g is in Hp

w, the
L p-version ofH2

w, for every 0 < p < ∞. We also relate the boundedness of Tg to the
boundedness of a multiplicative Hankel form of symbol g, and the membership of g
in the dual of H1

w.

Keywords Volterra operator · Dirichlet series · Hankel forms

Mathematics Subject Classification Primary 31B10 · 32A36; Secondary 30B50 ·
30H20

1 Introduction

Dirichlet series are functions of the form

f (s) =
+∞∑

n=1

ann
−s, with s ∈ C. (1.1)
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For a real number θ ,Cθ stands for the half-plane {s, �s > θ}, andD for the unit disk.
D denotes the class of functions f of the form (1.1) in some half-plane Cθ , and P is
the space of Dirichlet polynomials.

The increasing sequence of prime numbers will be denoted by (p j ) j≥1, and the
set of all primes by P. Given a positive integer n, n = pκ will stand for the prime
number factorization n = pκ1

1 pκ2
2 · · · pκd

d , which associates uniquely to n the finite
multi-index κ(n) = (κ1, κ2, . . . , κd). The number of prime factors in n is denoted by
�(n) (counting multiplicities), and by ω(n) (without multiplicities).

The space of eventually zero complex sequences c00 consists in all sequences which
have only finitely many non zero elements. We set D∞

fin = D
∞ ∩ c00 and N

∞
0,fin =

N
∞
0 ∩ c00, where N0 = N ∪ {0} is the set of non-negative integers.
Let F : D∞

fin → C be analytic, i.e. analytic at every point z ∈ D
∞
fin separately with

respect to each variable. Then F can be written as a convergent Taylor series

F(z) =
∑

α∈N∞
0,fin

cαz
α, z ∈ D

∞
fin.

The truncation AmF of F onto the first m variables is defined by

AmF(z) = F(z1, . . . , zm, 0, 0, . . .).

For z, χ in D
∞, we set z.χ := (z1χ1, z2χ2, . . .), and px := (px1 , p

x
2 , . . .) for a real

number x , .
The Bohr lift [11] of the Dirichlet series f (s) = ∑+∞

n=1 ann
−s is the power series

B f (χ) =
+∞∑

n=1

anχ
κ(n) =

∑

α∈N∞
0,fin

ãαχα, where ãα = apα , χ ∈ D
∞
fin,

with the multiindex notation χα = χ
α1
1 χ

α2
2 · · · .

Given a sequence of positive numbers w = (wn)n = (w(n))n , one considers the
Hilbert space (see [21,23])

H2
w :=

{+∞∑

n=1

ann
−s :

+∞∑

n=1

|an|2
wn

< +∞
}

.

The choice wn = 1 corresponds to the space H2, introduced in [19].
The weights considered in this article satisfy wn = O(nε) for every ε > 0; from

the Cauchy-Schwarz inequality, Dirichlet series inH2
w absolutely converge in C1/2.

We are interested in the Volterra operator Tg of symbol g(s) = ∑+∞
n=1 bnn

−s ,
defined by

Tg f (s) := −
∫ +∞

s
f (w)g′(w)dw, �s >

1

2
. (1.2)
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On the unit disk D, the Volterra operator, whose symbol is an analytic function g,
is given by

Jg f (z) :=
∫ z

0
f (u)g′(u)du, z ∈ D. (1.3)

Pommerenke [26] showed that Jg (1.3) is bounded on the Hardy space H2(D) if
and only if g is in BMOA(D). Let σ be the Haar measure on the unit circle T.
Fefferman’s duality Theorem states that BMOA(D) is the dual space of H1(D). Thus
the boundedness of Jg is equivalent to the boundedness of the Hankel form

Hg( f , h) :=
∫

T

f (u)h(u)g(u)dσ(u), f , h ∈ H2(D). (1.4)

Let V be the Lebesgue measure on C, normalized such that V (D) = 1.
Many authors, in particular [2], have studied Volterra operators on Bergman spaces

of D. The classical Bergman space A2
γ (D), γ > 0, is associated to the measure

dm̃γ (z) := γ
(
1 − |z|2)γ−1

dV (z). Jg is bounded on A2
γ (D) if and only if g is in the

Bloch space, which is the dual of A1
γ (D).

The Bergman space of the finite polydisk A2
γ (Dd), d ≥ 1, corresponds to the measure

d ν̃γ (z) := dm̃γ (z1) × · · · × dm̃γ (zd).

The boundedness of the Hankel form

Hg( f , h) :=
∫

Dd
f (z)h(z)g(z)d ν̃γ (z), f , h ∈ A2

γ (Dd), (1.5)

is equivalent to the membership of g to the Bloch space (see [17]), defined by

Bloch(Dd) :=
{

f : Dd → C holomorphic : max
κ∈Id

sup
z∈Dd

∣
∣∂κ f (κ.z)

∣
∣ (1 − |z|)κ < +∞

}

,

where Id denotes the set of multi-indices κ = (κ1, . . . , κd), with entries in {0, 1}, and

z = (z1, . . . , zd) , ∂κ = ∂κ1
z1 · · · ∂κd

zd , (1 − |z|)κ = (1 − |z1|)κ1 · · · (1 − |zd |)κd .

Recall that for 0 < p < ∞, the Hardy space of Dirichlet seriesHp is the space of
Dirichlet series f ∈ D such that B f is in H p(D∞), endowed with the norm

‖ f ‖Hp := ‖B f ‖H p(D∞) =
(∫

T∞
|B f (z)|p dσ∞(z)

)1/p

,

σ∞ being the Haar measure of the infinite polytorus T∞.
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250 H. Bommier-Hato

The norm in the space H∞ := H∞(C0) ∩ D is

‖ f ‖H∞ = sup
s∈C0

| f (s)| .

Let H∞(D∞) be the space of series F which are finitely bounded, i.e.

‖F‖H∞(D∞) = sup
m∈N0,z∈D∞

|AmF(z)| < ∞.

Via the Bohr isomorphism, we have [16,19]

‖ f ‖H∞ = ‖B f ‖H∞(D∞) . (1.6)

Several abscissae are related to a function g inD, of the form g(s) = ∑+∞
n=1 bnn

−s :

the abscissa of convergence σc = inf
{
σ ∈ R :

∑+∞
n=1

bnn
−σ converges

}
;

the abscissa of absolute convergence σa = inf
{
σ ∈ R :

∑+∞
n=1

|bn | n−σ converges
}

;
the abscissa of uniform convergence

σu = inf
{
θ ∈ R :

∑+∞
n=1

bnn
−s converges uniformly in Cθ

}
.

The abscissa of regularity and boundedness, denoted by σb, is the infimum of those θ

such that g(s) has a bounded analytic continuation, to the half-plane �(s) > θ + ε,
for every ε > 0.

We have −∞ ≤ σc ≤ σu ≤ σa ≤ +∞, and, if any of the abscissae is finite
σa − σc ≤ 1. Moreover, it is known that σb = σu [11] , and σa − σu ≤ 1

2 .
Volterra operators (1.2) on the spaces Hp have been investigated in [13]. Our aim

is to study similar questions for the spacesH2
w, associated to specific weights w in the

classW defined below.

Definition 1 Let β > 0. A sequence w belongs to W if it has one of the following
forms:

(1) wn = [d(n)]β , where d(n) is the number of divisors of the integer n. Then
H2

w := B2
β .

(2) wn = dβ+1(n), where dγ (n) are the Dirichlet coefficients of the power of the
Riemann zeta function, namely ζ γ (s) = ∑+∞

n=1 dγ (n)n−s . Then H2
w := A2

β .

As in the case of H2 [13], we obtain sufficient/necessary conditions for Tg to be
bounded on the Hilbert spaces H2

w. However, due to the lack of information of the
behavior of the symbols in the strip 0 < �s < 1/2, it seems difficult to get an “
if and only if” condition. In the Hardy space setting, it is shown that Tg is bounded
on H2 provided that g in BMOA(C0). Since the spaces A2

β and B2
β (see Sect. 2)

locally behave like Bergman spaces of the half plane C0, we would expect that the
membership of g inBloch(C0) (resp. Bloch0(C0))would imply the boundedness (resp.

123
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compactness) of Tg on H2
w. We obtain such a sufficient condition when Bg depends

on a finite number of variables z1, . . . , zd . However, our method specfically uses that
d is finite, and we do not know whether the same result holds if Bg is a function of
infinitely many variables.

LeNd be the set of positive integers which are multiples of the primes p1, . . . , pd ,

Dd :=
⎧
⎨

⎩
f ∈ D : f (s) =

∑

n∈Nd

ann
−s

⎫
⎬

⎭
, and Hp

d,w := Hp
w ∩ Dd .

One of our main results is the following.

Theorem 1 Let Tg be the operator defined by (1.2) for some Dirichlet series g in D.

(a) If g(s) = ∑+∞
n=2 bnn

−s is in Dd ∩ Bloch(C0), then Tg is bounded on H2
w and

∥
∥Tg

∥
∥L(Hw)

� ‖g‖Bloch(C0)
.

(b) If g is in BMOA(C0), then Tg is bounded onH2
w and

∥
∥Tg

∥
∥L(Hw)

� ‖g‖BMOA(C0)
.

(c) If Tg is bounded on H2
w, then g is in Bloch(C1/2) and

‖g‖Bloch(C1/2)
�
∥
∥Tg

∥
∥L(Hw)

.

Via the Bohr lift, H2
w are L2-spaces of functions on the polydisk D

∞. Precisely,
there exists a probability measure μw on D∞ such that

‖ f ‖2H2
w

=
∫

D∞
|B f (z)|2 dμw(z).

Analogously to the spacesHp, we define the spaceHp
w, 0 < p < ∞ (see Sect. 2),

as the closure of Dirichlet polynomials under the norm (quasi-norm if 0 < p < 1)

‖ f ‖Hp
w

= ‖B f ‖L p(D∞,μw) .

Let Xw = X (H2
w) be the space of symbols g giving rise to bounded operators Tg

onH2
w. Our study provides the following strict inclusions:

BMOA(C0) ∩ D ⊂
= Xw ⊂
= ∩0<p<∞Hp
w.

We will also compare Xw with other spaces of Dirichlet series, in particular with
the dual of H1

w, and the space of symbols g generating a bounded Hankel form

Hg( f h) := 〈 f h, g〉H2
w
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252 H. Bommier-Hato

on the weak productH2
w �H2

w. As in the case ofH2 [13], we only get partial results.
For Dirichlet series involving d primes, we have

Dd ∩ Bloch(C0) ⊂ Dd ∩ Xw ⊂
= B−1Bloch(Dd).

The paper is organized as follows. Section 2 starts by presenting some properties
of the spacesH2

w. As a space of analytic functions on the half-plane C1/2,H2
w is con-

tinuously embedded in a space of Bergman type of C1/2. In view of the Bohr lift, the
norm of H2

w can be expressed in terms of a probability measure μw on the polydisk.
For 0 < p < ∞, we consider the Bohr–Bergman space Hp

w, and derive equivalent
norms for these spaces.

In Sect. 3, we present some properties of the Dirichlet series which belong
to a BMO or Bloch space of some half-plane Cθ . In particular, we relate
the Carleson measures for both spaces of Dirichlet series and Bergman type
spaces.

Section 4 is devoted to the proof of Theorem 1. First we consider the case
when g is a function of p−s

1 , . . . , p−s
d . To prove (b), we observe that the bound-

edness of Tg on H2 implies the boundedness of Tg on H2
w. On another hand,

combining the fact that H2
w is embedded in a Bergman type space of the

half-plane C1/2 with some characterizations of Carleson measures, we establish
that

Xw ⊂ Bloch(C1/2).

Compactness and Schatten classes are considered in Sects. 5 and 6.
In Sect. 7, we consider some specific symbols: fractional primitives of translates of

a “weighted zeta”-function and homogeneous symbols. These examples will be used
in Sect. 8.

In Sect. 8, we investigate the relationship between the boundedness of the Volterra
operator Tg , the boundedness of the Hankel form

Hg( f h) = 〈 f h, g〉H2
w

,

and themembership of g in the dual ofH1
w. In particular, we study examples of Hankel

forms on Bergman spaces of Dirichlet series, which are the counterparts of the Hilbert
multiplicative matrix [12].

Additionally, we show the strictness of the inclusions derived previously

BMOA(C0) ∩ D ⊂
= Xw ⊂
= ∩0<p<∞Hp
w,

and compare the space Dd ∩ Xw with Bloch spaces.
For two functions f , g, the notation f = O(g) or f � g, means that there exists

a constant C such that f ≤ Cg . If f = O(g) and g = O( f ), we write f �
g.
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2 The Bohr–Bergman spacesB2
ˇ,A2

ˇ

2.1 The spacesB2
ˇ,A2

ˇ

These spaces are related to number theory. The number of divisors of the integer n,
d(n), is d(n) = (κ1 + 1) · · · (κd + 1) when n = pκ . We consider the following scale
of Hilbert spaces

B2
β =

⎧
⎪⎨

⎪⎩
f (s) =

+∞∑

n=1

ann
−s : ‖ f ‖B2

β
:=

(
n=1∑

+∞

|an|2
[d(n)]β

) 1
2

< ∞

⎫
⎪⎬

⎪⎭
, for β > 0.

The case β = 0 corresponds to the Hardy space H2. The reproducing kernels of B2
β

are

KB2
β (s, u) = ζβ(s + u), where ζβ(s) =

+∞∑

n=1

[d(n)]β n−s .

It is shown in [30] that there exists φβ(s), an Euler product which converges absolutely
in C1/2, such that

ζβ(s) = [ζ(s)]2
β

φβ(s), and φβ(1) 
= 0.

Another family of spaces arises from the so-called generalized divisor function.
For γ > 0, the numbers dγ (n) are defined by the relation

ζ γ (s) =
+∞∑

n=1

dγ (n)n−s .

A computation involving Euler products shows that we have

dγ (pr ) = γ (γ + 1) · · · (γ + r − 1)

r ! , for p ∈ P, and any integer r .

From its definition, dγ is amultiplicative function, i.e. dγ (kl) = dγ (k)dγ (l) if k and
l are relatively prime. Thus, dγ (n) can be computed explicitly from the decomposition
n = pκ .

We define the spaces

A2
β =

⎧
⎪⎨

⎪⎩
f (s) =

+∞∑

n=1

ann
−s : ‖ f ‖A2

β
:=

(
n=1∑

+∞

|an|2
dβ+1(n)

) 1
2

< ∞

⎫
⎪⎬

⎪⎭
, for β > 0,
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254 H. Bommier-Hato

with reproducing kernels KA2
β (s, u) = ζ β+1(s + u).

Notice that, in each case, the reproducing kernel has the form

KH2
w(s, u) = Zw(s + u),

where Zw(s) := ∑+∞
n=1 wnn−s has a singularity at s = 1, with an estimate of the type

Zw(s) = Cw(s − 1)−(δ+1) [1 + O(1)] . (2.1)

2.2 Bohr–Bergman spaces onD∞

The Bohr correspondence is an isometry between H2
w and the weighted Bergman

space of the infinite polydisk

H2
w(D∞) =

⎧
⎨

⎩

∑

ν∈N∞
0,fin

aνz
ν :

∑

ν

|aν |2
wν

< ∞
⎫
⎬

⎭
, where wν =

∏

j

wν j .

In particular, the space H2 is identified with the Hardy space H2(T∞) [19].
Let us consider the following probability measures on the unit disk D,

dmw(z) := M(|z|2)dV (z),

where M(r) =
{

1
�(β)

(
log 1

r

)β−1
, if wn = [d(n)]β ,

β(1 − r)β−1, if wn = dβ+1(n)
β > 0.

On the finite polydisk D
d (d ∈ N), the corresponding Bergman spaces H2

w(Dd) -
specifically B2

β(Dd) and A2
β(Dd)- are the L2−closures of polynomials with respect to

the norm

‖ f ‖H2
w(Dd ) :=

(∫

Dd
| f (z1, . . . , zd)|2 dmw(z1) × · · · × dmw(zd)

)1/2

If f (z) = ∑
n∈Nd anzn is defined on Dd , we have

‖ f ‖2
B2

β(D)
=
∑

n∈N

|an|2
(n + 1)β

and ‖ f ‖2
A2

β(D)
=
∑

n∈N
|an|2 n!

(β + 1)(β + 2) · · · (β + n)
. (2.2)

When d is finite, the estimate

n!
(β + 1)(β + 2) · · · (β + n)

� (1 + n)−β
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yields that, the spaces B2
β(Dd) and A2

β(Dd) coincide as sets, with equivalent norms.
However, the norms are no longer equivalent in the case of infinitely many variables.

The H2
w-norm will be computed via the rotation invariant probability measure

dμw(χ) = dmw(χ1) × dmw(χ2) × dmw(χ3) × · · · on D∞.

Applying the Bohr lift to a Dirichlet series f (s) = ∑+∞
n=1 ann

−s , and using (2.2) for
each variable, one obtains the following formula (see [5] in the case of B2

β )

∫

D∞
|B f (χ)|2 dμw(χ) =

+∞∑

n=1

|an|2
wn

= ‖ f ‖2H2
w

.

Definition 2 For 0 < p < ∞, the Bohr–Bergman spaces of Dirichlet series B p
β and

Ap
β - denoted by Hp

w - are the completions of the Dirichlet polynomials in the norm
(quasi norm when 0 < p < 1)

‖ f ‖p
Hp

w
:=

∫

D∞
|B f (χ)|p dμw(χ).

The Kronecker flow of the point χ = (χ1, χ2, . . .) ∈ C
∞ is given by

Tt (χ) =
(
2−i tχ1, 3

−i tχ2, 5
−i tχ3, . . .

)
, t ∈ R,

which defines an ergodic flow on T
∞ by Kronecker’s theorem.

Therefore, it follows from Fubini’s Theorem that, for any rotation invariant proba-
bility measure dν on D∞ and any probability measure dλ on R, we have

‖ f ‖p
L p(D∞,dν)

=
∫

D∞

∫

R

|(B f ) (Ttχ)|p dλ(t)dν (χ) . (2.3)

2.3 On the half-planeC1/2

For θ ∈ R, let τθ be the following mapping from D to Cθ ,

τθ (z) = θ + 1 + z

1 − z
. (2.4)

For δ > 0, the conformally invariant Bergman space Ai,δ
(
C1/2

)
is the space of those

functions f which are analytic in C1/2, and such that

‖ f ‖2Ai,δ(C1/2)
:= ∥

∥ f ◦ τ1/2
∥
∥2
A2

δ (D)
= 4δδ

∫

C1/2

| f (s)|2
(
σ − 1

2

)δ−1

∣
∣s + 1

2

∣
∣2δ+2 dm(s) < ∞.
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The weights w of the class W satisfy a Chebyshev-type estimate

∑

n≤x

wn � x (log x)δ , where δ = δ(w) :=
{
2β − 1 if wn = [d(n)]β ,

β if wn = dβ+1(n).

(2.5)

For any real number τ , set Sτ = [ 1
2 , 1

]× [τ, τ + 1]. As mentioned in the introduc-
tion, the Dirichlet series which belong theH2

w absolutely converge inC1/2. The space
H2

w is locally embedded in Ai,δ(w)

(
C1/2

)
[23,25], which means

sup
τ∈R

∫

Sτ

| f (s)|2
(
σ − 1

2

)δ−1

∣
∣s + 1

2

∣
∣2δ+2 dm(s) ≤ c

(
H2

w

)
‖ f ‖2H2

w
.

Since functions in H2
w are uniformly bounded in C1, these embeddings are global

(see [5,8]).

Lemma 1 Let δ = δ(w) be defined in (2.5). Then H2
w is continuously embedded in

Ai,δ
(
C1/2

)
.

2.4 Generalized vertical limits

Every χ = (χ1, χ2, . . .) in C
∞ defines a completely multiplicative function by the

formula χ(n) = χκ , where n = pκ . For f of the form (1.1), the twisted Dirichlet
series [5,6], is defined by

fχ (s) =
+∞∑

n=1

anχ(n)n−s . (2.6)

Notice that if χ ∈ T
∞, fχ is the vertical limit of f , introduced in [19].

We also consider the translations fδ(s) = f (s + δ), δ ∈ R. For those χ ∈ D
∞ and

s = σ + i t for which the series (2.6) converges, we have

fχ (s) = (B fσTt ) (χ). (2.7)

When f is in H2
w, the Cauchy-Schwarz inequality implies that (2.7) holds whenever

s ∈ C1/2 and χ ∈ D
∞
. By the Rademacher-Menchov Theorem (see [22]), (2.7) can

be extended in the following way (the argument given in [5] for B2
β remains true for

A2
β ).

Lemma 2 If f is inH2
w, the Dirichlet series fχ as defined in (2.6) converges inC0 for

almost every χ ∈ D
∞, with respect to μw.

Recall that τθ , θ ∈ R, is the conformal mapping defined in (2.4). For 0 < p < ∞,
the conformally invariant Hardy space H p

i (Cθ ), is the space of those functions f
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such that f ◦ τθ is in H p(T), the usual Hardy space of the unit disk. Setting dλ(t) =
π−1(1 + t2)−1dt , we get

‖ f ‖p
H p
i (Cθ )

=
∫

R

| f (θ + i t)|p dλ(t) = 1

2π

∫ π

−π

| f ◦ τθ (u)|p du, for f ∈ H p
i (Cθ ).

Let f be inHp
w. In view of relation (2.3), and using the same argument as in [6,19],

one can prove that for almost allχ , with respect toμw , fχ can be extended analytically
on C0 to an element of H p

i (C0).The norm of f inHp
w can be expressed as

‖ f ‖p
Hp

w
=
∫

D∞

∥
∥ fχ

∥
∥p
H p
i (C0)

dμw(χ). (2.8)

2.5 A Littlewood–Paley formula

We now derive another expression for the norm in Hp
w.

Proposition 1 Let λ be a probability measure on R, and p ≥ 1.

(a) If f ∈ Hp
w, then ‖ f ‖p

Hp
w

� Ip( f ), where

Ip( f ) := | f (+∞)|p

+4
∫

D∞

∫

R

∫ +∞

0

∣
∣ fχ (y + i t)

∣
∣p−2

∣
∣
∣ f ′

χ (y + i t)
∣
∣
∣
2
ydydλ(t)dμw(χ).

When p = 2, we have ‖ f ‖2H2
w

= I2( f ).

(b) Let f ∈ D, f (s) = ∑+∞
n=1 ann

−s, such that f and fχ converge on C0 for a.a.
χ ∈ D

∞. If Ip( f ) < ∞, then f ∈ Hp
w.

Proof Since the real variable t corresponds to a rotation in each variable of D∞, the
rotation invariance of μw entails that Ip( f ) does not depend on the choice of the
probability measure λ. For general p ≥ 1, we prove (a), by using (2.8). We adapt
the argument from [10] (for Hp), by integrating over the polydisk D

∞ instead of the
polytorus T∞.

Suppose f is in H2
w, and take y > 0. From (2.3) and the rotation invariance, we

obtain

∫

R

∫

D∞

∣
∣
∣ f ′

χ (y + i t)
∣
∣
∣
2
dμw(χ)dλ(t) =

∫

D∞

∣
∣
∣B f ′

y(χ)

∣
∣
∣
2
dμw(χ)

=
+∞∑

n=1

|an|2
wn

(log n)2n−2y .

Integration against y on (0,+∞) gives the formula (see details in [7] for the case of
H2).
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If f is as in (b), the integrand in Ip( f ) is measurable. For χ ∈ D
∞, the change of

variables s = y + i t = ω(z) = 21+z
1−z transfers the Littlewood–Paley formula from D

to C0,

∫

R

∣
∣ fχ (i t)

∣
∣p 2

π(22 + t2)
dt

� ∣
∣ fχ (2)

∣
∣p

+
∫

D

(
1 − |z|2

) ∣
∣ fχ (ω(z))

∣
∣p−2

∣
∣
∣ f ′

χ (ω(z))
∣
∣
∣
2 ∣
∣ω′(z)

∣
∣2 dV (z)

� ∣
∣ fχ (2)

∣
∣p

+
∫ +∞

0

∫

R

2y

(y + 2)2 + t2
∣
∣ fχ (y + i t)

∣
∣p−2

∣
∣
∣ f ′

χ (y + i t)
∣
∣
∣
2
dtdy

�
∥
∥ f ∗∥∥p

L∞(C2)

+
∫ +∞

0

∫

R

y

1 + t2
∣
∣ fχ (y + i t)

∣
∣p−2

∣
∣
∣ f ′

χ (y + i t)
∣
∣
∣
2
dtdy,

where f ∗(s) := ∑+∞
n=1 |an| n−s is bounded on C2.

Integrating on D
∞ with respect to μw, and using (2.3), we get that

‖B f ‖p
L p(D∞,μw)

�
∥
∥ f ∗∥∥p

L∞(C2)
+ Ip( f ) < ∞.

Therefore,B f ∈ L p(D∞, μw). Themartingale (AmB f )m (with respect to the increas-
ing sequence of σ -algebras of the sets Dm × {0}) converges in L p(D∞, μw) to B f .
Polynomial approximation in the Bergman spaces of the finite polydisks Dm shows
that B f is in BHp

w.
��

3 Spaces of symbols of Volterra operators in half-planes

If g is inD, the definition (1.2) of Tg shows that we can assume that g (+∞) = 0, i.e.

g(s) =
+∞∑

n=2

bnn
−s .

As in the study of Volterra operators on Bergman spaces the unit disk [2], and on the
space of Dirichlet series H2 [13], the boundedness of Tg on H2

w will be related to
Carleson measures, and to the membership of g to a BMO space or a Bloch space.

Let Y be either H2
w or the Bergman space Ai,δ

(
C1/2

)
, δ > 0. A positive Borel

measureμ onC1/2 is called a Carleson measure for Y if there exists a constant C such
that,
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∫

C1/2

| f |2 dμ ≤ C ‖ f ‖2Y for all f ∈ Y .

The smallest such constant, denoted by ‖μ‖CM(Y ), is called the Carleson constant
for μ with respect to Y . A Carleson measure μ is a vanishing Carleson measure for Y
if we have

lim
k→∞

∫

C1/2

| fk |2 dμ = 0,

for every weakly compact sequence ( fk)k in Y (which means that ‖ fk‖Y is bounded
and fk(s) → 0 on every compact set of C1/2).

3.1 BMO spaces of Dirichlet series

The space BMOA(Cθ ) consists of holomorphic functions g in the half-plane Cθ

which satisfy

‖g‖BMO(Cθ ) := sup
I⊂R

1

|I |
∫

I

∣
∣
∣
∣g(θ + i t) − 1

|I |
∫

I
g(θ + iτ)dτ

∣
∣
∣
∣ dt < ∞.

Any g in D ∩ BMOA(C0) has an abscissa of boundedness σb ≤ 0 (Lemma 2.1 of
[13]).

The space V MOA(C0) consists in those functions g in BMOA(C0) such that

lim
δ→0+ sup

|I |<δ

1

|I |
∫

I

∣
∣
∣
∣ f (i t) − 1

|I |
∫

I
f (iτ)dτ

∣
∣
∣
∣ dt = 0.

3.2 Bloch spaces of Dirichlet series

The Bloch space Bloch(Cθ ) consists of holomorphic functions in the half-plane Cθ

which satisfy

‖g‖Bloch(Cθ ) := sup
σ+i t∈Cθ

(σ − θ)
∣
∣ f ′(σ + i t)

∣
∣ .

Lemma 3 If g be in D ∩ Bloch(C0).

(a) Its abscissa of boundedness satifies σb ≤ 0.
(b) For every χ ∈ D

∞, gχ is in Bloch(C0), and
∥
∥gχ

∥
∥
Bloch(C0)

≤ ‖g‖Bloch(C0)
.

(c) Suppose that y0 > 1
2 . Then there exists a constant C = C(y0), such that,

∣
∣
∣g′

χ (y + i t)
∣
∣
∣ ≤ C2−y ‖g‖Bloch(C0)

, for all χ ∈ D
∞, t ∈ R, y ≥ y0.
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Proof Let ε > 0. If s = σ + i t is in C0, the definition of the Bloch-norm implies that

ε
∣
∣g′(ε + s)

∣
∣ ≤ (ε + σ)

∣
∣g′(ε + s)

∣
∣ ≤ ‖g‖Bloch(C0)

.

It follows that g′, and then g is bounded in Cε ; (a) is proved.
Now fix σ > 0. Let m ≥ 1 be an integer, and z = (z1, . . . , zm, zm+1, . . .), χ in

D
∞. From the properties of H∞ and the proof of (a), we have

∣
∣AmB(g′

σ )χ (z)
∣
∣ = ∣

∣AmBg′
σ (z.χ)

∣
∣ ≤ ∥

∥Bg′
σ

∥
∥
H∞(T∞)

= ∥
∥g′

σ

∥
∥H∞ ,

and
∥
∥(g′

σ )χ
∥
∥H∞ = ∥

∥B(g′
σ )χ

∥
∥
H∞(T∞)

≤ ∥
∥g′

σ

∥
∥H∞ . Therefore, (g′

σ )χ is in H∞; (b)
holds, due to

σ

∣
∣
∣g′

χ (σ + i t)
∣
∣
∣ ≤ ‖g‖Bloch(C0)

, for all t ∈ R, χ ∈ T
∞, σ > 0.

If 0 < δ < y0 − 1
2 , the Cauchy-Schwarz inequality and Parseval’s relation induce

that

∣
∣
∣g′

χ (y + i t)
∣
∣
∣
2 ≤

(+∞∑

n=2

|bn | (log n)n−y

)2

=
(+∞∑

n=2

|bn | (log n)n− δ
2 n

−
(

δ
2+ 1

2

)

n
−
(
y− 1

2−δ
))2

� ζ(1 + δ)2−2y
∥
∥
∥Bg′

δ/2

∥
∥
∥
2

H2(T∞)
.

We now get (c) from the chain of inequalities

∥
∥
∥Bg′

δ/2

∥
∥
∥
H2(T∞)

≤
∥
∥
∥Bg′

δ/2

∥
∥
∥
H∞(T∞)

=
∥
∥
∥g′

δ/2

∥
∥
∥H∞ ≤ 2

δ
‖g‖Bloch(C0)

,

��
Now, recall several characterizations of Bloch functions, which are extracted from

[2,18].

Lemma 4 Assume δ > 0. For g holomorphic in Cθ , the following are equivalent:

(a) g ∈ Bloch(Cθ );
(b) h = g ◦ τθ ∈ Bloch(D);

(c) The measure dμCθ ,g(s) = ∣
∣g′(σ + i t)

∣
∣2 (σ−θ)δ+1

|s−θ+1|2δ+2 dσdt is a Carleson measure

for Ai,δ(Cθ );

(d) The measure dμD,h(z) = ∣
∣h′(z)

∣
∣2 (1 − |z|2)δ+1

dm1(z) is a Carleson measure
for A2

δ (D);
(e) The operator Jh, given by

Jh f (z) =
∫ z

0
f (t)h′(t)dt,

is bounded on A2
δ (D).
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Moreover, the quantities

‖g‖Bloch(Cθ ) ,
∥
∥μCθ ,g

∥
∥
CM(Cθ )

,
∥
∥Jg

∥
∥L(A2

δ (D)
)

are comparable.

The little Bloch space is the space

Bloch0(Cθ ) =
{

f ∈ Bloch(Cθ ) : lim
σ→θ

(σ − θ)
∣
∣g′(s)

∣
∣ = 0

}

.

The membership in Bloch0(Cθ ) is characterized by a little oh version of Lemma 4,
involving vanishing Carleson measures.

We show that Dirichlet polynomials are dense in D ∩ Bloch0(C0). For g(s) =∑
n≥1 bnn

−s , the partial sum operator is defined by SN g(s) = ∑N
n=1 bnn

−s .

Proposition 2 Let g be in Bloch0(C0) ∩ D, and ε > 0. Then there exists P in P such
that

‖g − P‖Bloch(C0)
≤ ε.

If in addition g is in Dd , P can be chosen in Dd .

Proof For every δ > 0, gδ = g(δ+ .) is also in Bloch0(C0). As δ tends to 0, (gδ)δ con-
verges to g uniformly on compact sets of C0, and limσ→0+ σ

∣
∣g′

δ(s)
∣
∣ = 0, uniformly

with respect to δ ∈ (0, 1). It then follows from [3] that limδ→0+ ‖g − gδ‖Bloch(C0)
=

0. Thus, we can choose δ > 0 such that ‖g − gδ‖Bloch(C0)
≤ ε

2 . Since
σb(g) = σu(g) ≤ 0, the partial sums (SN g)N converge uniformly to g in Cδ ,
limN→+∞ ‖SN gδ − gδ‖H∞ = 0. For large N , the triangle inequality implies that

‖g − SN gδ‖Bloch(C0)
≤ ‖g − gδ‖Bloch(C0)

+ ‖gδ − SN gδ‖Bloch(C0)

≤ ε

2
+ 2 ‖SN gδ − gδ‖H∞ ≤ ε.

��

3.3 Carlesonmeasures on the half-planeC1/2

On C1/2, we consider Carleson squares

Q(s0) =
(
1

2
, σ0

]

×
[
t0 − ε

2
, t0 + ε

2

]
, where s0 = σ0 + i t0 ∈ C1/2

is the midpoint of the right edge of the square and ε = σ0 − 1
2 .

We need the following property (see Section 7.2 in [31]).
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Lemma 5 Let δ > 0 and let μ be a Borel measure on C1/2. Then μ is a Carleson
measure for Ai,δ

(
C1/2

)
if and only if, for every square Q(s0), with s0 = σ0 + i t0, we

have

μ (Q(s0)) = O
(
(2σ0 − 1)δ+1

)
as σ0 →

(
1

2

)+
.

In addition,μ is a vanishing Carleson measure for Ai,δ
(
C1/2

)
if and only if, uniformly

for t0 in R,

μ (Q(s0)) = o
(
(2σ0 − 1)δ+1

)
as σ0 →

(
1

2

)+
.

ByLemma1,H2
w is embedded in theBergman-type space Ai,δ

(
C1/2

)
, the exponent

δ = δ(w) being defined in (2.5). Bounded Carleson measures for both spacesH2
w and

Ai,δ
(
C1/2

)
have been compared in [8,23,24]. We extend their results.

Lemma 6 Let μ be a positive Borel measure on C1/2.

(1) If μ is a Carleson measure (resp. vanishing Carleson measure) forH2
w, then μ is

a Carleson measure (resp. vanishing Carleson measure) for Ai,δ
(
C1/2

)
and

‖μ‖CM(Ai,δ(C1/2)) � ‖μ‖CM(H2
w).

(2) Assume that μ has bounded support. If μ is a Carleson measure (resp. vanishing
Carleson measure) for Ai,δ

(
C1/2

)
, thenμ is a Carleson measure (resp. vanishing

Carleson measure) for H2
w and

‖μ‖CM(H2
w) � ‖μ‖CM(Ai,δ(C1/2)) .

Proof Suppose thatμ is a Carleson measure forH2
w, and let Q(s0) be a small Carleson

square in C1/2. For the test function fs0(s) = KH2
w(s, s0), we have

∫

Q(s0)

∣
∣ fs0

∣
∣2 dμ ≤

∫

C1/2

∣
∣ fs0

∣
∣2 dμ ≤ C(μ)

∥
∥
∥KH2

w(., s0)
∥
∥
∥
2

H2
w

� Zw (�s0) .

From the estimate of Zw (2.1) and Lemma 5, μ is a Carleson measure for Ai,δ
(
C1/2

)
,

since

(

�s0 − 1

2

)−2(δ+1)

μ (Q(s0)) �
(

�s0 − 1

2

)−(δ+1)

.

For μ a Carleson measure for Ai,δ
(
C1/2

)
with bounded support, (2) holds [23,24].
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As for vanishing Carleson measures, the reasoning used in [8] for B2
β can be trans-

fered to the spaces A2
β , with the test functions

fk(s) = KH2
w(s, sk)∥

∥
∥KH2

w(., sk)
∥
∥
∥H2

w

,

where sk = 1/2 + εk + iτk is a sequence in C1/2 such that εk → 0. ��
We also require an equivalent norm for Ai,δ

(
C1/2

)
, when δ > 0. For Bergman

spaces of the unit disk, recall the following consequence of Stanton’s formula [28,29]:

‖h‖2Aδ(D) � |h(0)|2 +
∫

D

∣
∣h′(z)

∣
∣2
(
1 − |z|2

)δ+1
dV (z), for h holomorphic on D.

Via the mapping τ1/2, we obtain that, for any f holomorphic on C1/2,

‖ f ‖2Ai,δ(C1/2)
�
∣
∣
∣
∣ f (

3

2
)

∣
∣
∣
∣

2

+
∫

C1/2

∣
∣ f ′(s)

∣
∣2
(
σ − 1

2

)δ+1

∣
∣s + 1

2

∣
∣2δ+2 dV (s). (3.1)

4 Boundedness of Tg

In this section, we characterize functions in Xw, and prove Theorem 1.

4.1 Carlesonmeasure characterization

The boundedness of Tg on H2
w can be described in terms of Carleson measures. This

generalizes the setting of the Hardy space H2 [13].
Recall that H2

w is associated to the probability measure μw on the polydisk D
∞.

Proposition 3 Tg is bounded on H2
w if and only if there exists a constant C = C(g)

such that

∥
∥Tg f

∥
∥2H2

w
�
∫

D∞

∫

R

∫ +∞

0

∣
∣ fχ (σ + i t)

∣
∣2
∣
∣
∣g′

χ (σ + i t)
∣
∣
∣
2 σdσdt

1 + t2
dμw(χ)

≤ C2 ‖ f ‖2H2
w

, (4.1)

or, equivalently

∫

D∞

∫ +∞

0

∣
∣ fχ (σ )

∣
∣2
∣
∣
∣g′

χ (σ )

∣
∣
∣
2
σdσdμw(χ) ≤ C2 ‖ f ‖2H2

w
. (4.2)

The smallest constant C satisfying (4.1) is such that C � ∥
∥Tg

∥
∥L(H2

w)
.
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Proof Applying the Littlewood–Paley formula (Proposition 1) to themeasure dλ(t) =
π−1(1 + t2)−1dt and the function Tg f , we get (4.1).

The rotation invariance of the measure dμw(χ) gives (4.2).
��

4.2 Proof of Theorem 1 (a):Bg depends on a finite number of variables

For 1 ≤ q and d ≥ 1, recall that f ∈ Hq
d,w if and only if f is in Hq

w and B f is a
function of z1, . . . , zd .

When needed, we shall identify z = (z1, . . . , zd) ∈ D
d with (z, 0) ∈ D

d × {0}.
If g(s) = ∑+∞

n=2 bnn
−s is inH2

d,w, we observe that for z ∈ D
d ,

Bg′(z) =
d∑

j=1

log p j

∑

α∈Nd

b̃αα j z
α = RBg(z),

where R is the operator

RG(z1, . . . , zd) =
d∑

j=1

(log p j )z j∂ j G(z1, . . . , zd).

We define the set

�ε :=
{
z = (z1, . . . , zd) ∈ D

d , ∀ j,
∣
∣z j
∣
∣ < p−ε

j

}
, for ε > 0.

Take x > 0, t ∈ R, and z ∈ D
d . By construction, z ∈ �σ(z) and σ(p−x.z) ≥

σ(z) + x log p1
log pd

.
For g ∈ Dd , we write gz(x) = g(z,0)(x) = Bgx (z). Since g is in Bloch(C0), we

apply (1.6) to g′
x , and get

∣
∣g′

z(x + i t)
∣
∣ = ∣

∣Bg′
x (Tt z)

∣
∣ ≤ sup

ζ∈�σ(p−x .z)

∣
∣Bg′(ζ )

∣
∣

= sup
s∈Cσ(p−x .z)

∣
∣g′(s)

∣
∣ ≤ log pd

log p1

‖g‖Bloch(C0)

x + σ(z)
, (4.3)

Proof of Theorem 1(a) Let f (s) = ∑
n≥1 ann

−s be in H2
w, and, for χ = (z, z′) ∈

D
d × D

∞,

B f (χ) =
∑

(α,α′)∈Nd×N
∞
0,fin

cα,α′ zαz′α′ =
∑

α∈Nd

c′
α(z′)zα, where c′

α(z′) =
∑

α′∈N∞
0,fin

cα,α′ z′α′
.
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In view of Proposition 3, we aim to estimate
∥
∥Tg f

∥
∥2H2

w
� I1 + I2, where

I1 :=
∫

D∞

∫ 1

0

∣
∣ fχ (x)

∣
∣2
∣
∣
∣g′

χ (x)
∣
∣
∣
2
xdxdμw(χ),

and I2 :=
∫

D∞

∫ +∞

1

∣
∣ fχ (x)

∣
∣2
∣
∣
∣g′

χ (x)
∣
∣
∣
2
xdxdμw(χ).

By (4.3), the rotation invariance and Fubini’s Theorem, we have

I1 � ‖g‖2Bloch(C0)

∫ 1

0
x
∫

D∞

∫

Dd

1

[x + σ(z)]2
∣
∣
∣
∣
∣
∣

∑

α∈Nd

c′
α(p′−x.z′)

(
z1 p

−x
1

)α1 · · · (zd p−x
d

)αd

∣
∣
∣
∣
∣
∣

2

dμw(z, z′)dx

� ‖g‖2Bloch(C0)

∫

D∞

∫ 1

0
x
∑

α∈Nd

∣
∣c′

α(p′−x.z′)
∣
∣2 Iα(x)dxdμw(z′),

where

Iα(x) :=
∫

Dd

1

[x + σ(z)]2
∣
∣z1 p

−x
1

∣
∣2α1 · · · ∣∣zd p−x

d

∣
∣2αd dμw(z).

Using the rotation invariance again as well as the fact that p j ≥ 1, and setting Jα :=
∫ 1
0 x Iα(x)dx , we get

I1 � ‖g‖2Bloch(C0)

∑

α∈Nd

∫ 1

0
x Iα(x)

⎛

⎝
∫

D∞

∣
∣
∣
∣
∣

∑

α′
cα,α′(p′−x.z′)α′

∣
∣
∣
∣
∣

2

dμw(z′)

⎞

⎠ dx

� ‖g‖2Bloch(C0)

∑

α,α′

∣
∣cα,α′

∣
∣2 Jα

(∫

D∞

∣
∣
∣z′α

′ ∣∣
∣
2
dμw(z′)

)

� ‖g‖2Bloch(C0)

∑

α,α′

∣
∣cα,α′

∣
∣2 Jα

w
(
pαd+1
d+1

) · · · w (
pαr
r
) .

For the moment, we admit that Jα ≤ C(d, w)
[∏d

j=1 w(p
α j
j )
]−1

, which will be

proved in Lemma 7. Hence,

I1 � ‖g‖2Bloch(C0)

∑

α,α′

∣
∣cα,α′

∣
∣2

w(p(α,α′))
� ‖g‖2Bloch(C0)

‖ f ‖2H2
w

.
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Combining Lemma 3 with the following observation,

∫

D∞

∣
∣ fχ (x)

∣
∣2 dμw(χ) =

∫

D∞

∣
∣
∣
∣
∣
∣

∑

n=pα

ann
−xχα

∣
∣
∣
∣
∣
∣

2

dμw(χ)

=
∑

n≥1

|an|2 n−2x

wn
≤ ‖ f ‖2H2

w
,

we estimate I2,

I2 �
∫ +∞

1
x
∫

D∞
‖g‖2Bloch(C0)

4−x
∣
∣ fχ (x)

∣
∣2 dμw(χ)dx � ‖g‖2 |Bloch(C0) ‖ f ‖2H2

w
.

��
Recall that

Iα(x) =
∫

Dd

1

[x + σ(z)]2
∣
∣z1 p

−x
1

∣
∣2α1 · · · ∣∣zd p−x

d

∣
∣2αd dμw(z), α ∈ N

d , 0 < x < 1.

Lemma 7 There exists a constant C = C(w, d), such that

Jα :=
∫ 1

0
x Iα(x)dx ≤ C

d∏

j=1

1

w
(
p

α j
j

) .

The proof of Lemma 7 relies on technical computations (Lemma 8).

Lemma 8 For 0 < T < 1, and a real number p ≥ 2, set L := − log T
2 log p and K =

min(1, L). There exists a constant C = C(p, w) > 0, such that

J (p, T ) := (log T )−2
∫ K

0
xM

(
T p2x

)
dx

� C

{
M (T ) if β ≥ 1 or (β < 1, p−2 < T < 1),

M
(
T p2

)
if β < 1, 0 < T ≤ p−2.

Proof When p−2 < T < 1, the change of variables u = T p2x gives

J (p, T ) = (log T )−2 1

(2 log p)2

∫ 1

T
log

u

T
M(u)

du

u
.

Since log u
T ≤ log 1

T and 1 ≤ 1
u ≤ 1

T < p2,

J (p, T ) ≤ (log T )−2
(

1

2 log p

)2 ∫ 1

T
log

1

T
M(u)

1

u
du � M(T ).
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Next suppose that 0 < T ≤ p−2. Since (log T )2 ≥ 4(log p)2, we notice that

J (p, T ) �
∫ 1

0
xM(T p2x )dx �

{∫ 1
0 M(T )dx if β ≥ 1,
∫ 1
0 M(T p2)dx if β < 1

.

��
Proof of Lemma 7 Resorting to polar coordinates, and using changes of variables, we
have

Jα ≤
∫

Q

xtα
[
x + σ

(
px1

√
t1, . . . , px1

√
td
)]2

(
d∏

k=1

M
(
p2xk tk

)
p2xk

)

dxdt1 · · · dtd ,

where Q =
{
(x, t) ∈ (0, 1) × (0, 1)d , ∀k = 1..d, 0 < tk < p−2x

k

}
.

For t = (t1, . . . , td) ∈ (0, 1)d , set

lk(t) := − log tk
2 log pk

, Kk := min(1, lk), 1 ≤ k ≤ d,

l(t) := min
1≤k≤d

lk(t), K := min(1, l).

We observe that Q = {
(x, t) ∈ (0, 1) × (0, 1)d , 0 < x < K (t)

}
. Now, for 1 ≤

k ≤ d, we set Qk := {
(x, t), t ∈ (0, 1)d , l(t) = lk(t), 0 < x < Kk(t)

}
.

Let (x, t) be in Qk . We have

0 < tl ≤ Tk,l := t
log pl
log pk
k < 1, for 1 ≤ l ≤ d. (4.4)

In addition, since 0 < x < lk(t), (4.4) implies pxl
√
tl < plk (t)l

√
tl ≤ 1, and we see

that 1√
tl pxl

≥ plk (t)−x
l ≥ plk (t)−x

1 . Thus

(log pd)σ
(
px1

√
t1, . . . , p

x
d

√
td
) = log min

1≤l≤d

(
1√
tl pxl

)

≥ log p1 (lk(t) − x) ,

and x + σ
(
px1

√
t1, . . . , px1

√
td
)

� − log tk .
Set dt̂k = dt1 · · · dtk−1dtk+1 · · · dtd , and

Q̃k := {
(x, t), 0 < tk < 1, 0 < tl < Tk,l for l 
= k, 0 < x < Kk(t)

}
.

It follows that Jα �
∑d

k=1 Jα,k , where

Jα,k =
∫

Q̃k

xtα
[
x + σ

(
px1

√
t1, . . . , px1

√
td
)]2

(
d∏

l=1

M
(
p2xl tl

)
)

dxdt .
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We will obtain the Lemma by showing that

Jα,k �
d∏

l=1

[
w
(
pαl
l

)]−1
. (4.5)

When β ≥ 1, we use that, for (x, t) ∈ Q̃k , and l 
= k, M
(
p2xl tl

) ≤ M (tl),
altogether with Lemma 8. We derive (4.5) from

Jα,k �
∫

0<tk<1

⎛

⎝
∫

∏
j 
=k (0,Tk, j )

tα
∫ Kk (t)

0
x (log tk)

−2 M
(
p2xk tk

)
dx

∏

l 
=k

M(tl)dt̂k

⎞

⎠ dtk

�
∫

0<tk<1
tαkk M (tk)

⎛

⎝
∏

j 
=k

∫ Tk, j

0
t
α j
j M

(
t j
)
dt j

⎞

⎠ dtk �
d∏

j=1

∫ 1

0
t
α j
j M

(
t j
)
dt j .

Next, suppose 0 < β < 1. If (x, t) ∈ Q̃k , notice that, for l 
= k, tl p2xl ≤ tl p
2lk(t)
l ≤

1; this shows that M
(
p2xl tl

) ≤ M
(
p2lk (t)l tl

)
. Hence, we see that Jα,k � J1 + J2,

where, by Lemma 8 and the relation p2lk (t)l = T−1
k,l ,

J1 �
∫

0<tk<p−2
k

tαkk M(p2k tk)

⎛

⎝
∏

j 
=k

∫ Tk, j

0
t
α j
j M

(
t j T

−1
k, j

)
dt j

⎞

⎠ dtk,

J2 �
∫

p−2
k <tk<1

tαkk M(tk)

⎛

⎝
∏

j 
=k

∫ Tk, j

0
t
α j
j M

(
t j T

−1
k, j

)
dt j

⎞

⎠ dtk .

A change of variables provides the desired estimate.
��

4.3 Proof of Theorem 1(b) and (c)

If f (s) = ∑+∞
n=1 ann

−s and g(s) = ∑+∞
n=1 bnn

−s , we have

Tg f (s) =
∞∑

n=2

1

log n

⎛

⎝
∑

k|n,k<n

akbn/k

⎞

⎠ n−s .

As in the case of H2, the operator

a1 +
∞∑

n=2

ann
−s �→ a1 +

∞∑

n=2

an(log n)−1n−s
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is compact on Hw. Thus, set b1 = 1, and our study will be unchanged if we replace
Tg by

T̃g f (s) =
∞∑

n=2

1

log n

⎛

⎝
∑

k|n
akbn/k

⎞

⎠ n−s .

Lemma 9 If Tg is bounded on H2, then g is in Xw, and the operator norms satisfy

∥
∥Tg

∥
∥L(H2

w)
≤ ∥
∥Tg

∥
∥L(H2)

.

Proof If f (s) = ∑+∞
n=1 ann

−s is inH2
w, the function f̃ (s) = ∑+∞

n=1 anw
−1/2
n n−s is in

H2 and ‖ f ‖H2
w

=
∥
∥
∥ f̃

∥
∥
∥H2

. Since wk ≤ wkl for any integers k, l, the Lemma is proven

by the inequality

∥
∥Tg f

∥
∥2H2

w
≤

∞∑

n=2

(log n)−2

∣
∣
∣
∣
∣
∣

∑

k|n,k<n

w
−1/2
k akbn/k

∣
∣
∣
∣
∣
∣

2

=
∥
∥
∥Tg f̃

∥
∥
∥
2

H2
.

��
Wewill also use the sufficient condition proved in Theorem 2.3 in [13], stating that

if g is in BMOA(C0) ∩ D, then Tg is bounded on H2, with

∥
∥Tg

∥
∥H2 � ‖g‖BMOA(C0)

. (4.6)

Proof of Theorem 1(b) and (c) If g is in BMOA(C0), Tg is bounded on H2, and (b) is
a consequence of (4.6) and Lemma 9.

To prove (c), we use that (Tg f )′ = f g′, and that H2
w is embedded in Ai,δ

(
C1/2

)
,

with δ = δ(w) > 0. We set

dνg(s) = ∣
∣g′(s)

∣
∣2

(
σ − 1

2

)δ+1

∣
∣s + 1

2

∣
∣2(δ+1)

dV (s).

Now formula (3.1), the boundedness of Tg on H2
w and Lemma 1 induce that

∫

C1/2

| f (s)|2 dνg(s) �
∥
∥Tg f

∥
∥2
Ai,δ(C1/2)

≤ c (w)
∥
∥Tg f

∥
∥2
H2

w
≤ c (w)

∥
∥Tg

∥
∥2
L(H2

w)
‖ f ‖2H2

w
,

Thus, νg is a Carlesonmeasure forH2
w and

∥
∥νg

∥
∥
CM(H2

w)
�
∥
∥Tg

∥
∥2L(H2

w)
. ByLemma 6,

νg is also a Carleson measure for Ai,δ
(
C1/2

)
and

∥
∥νg

∥
∥
CM(Ai,δ(C1/2))

�
∥
∥Tg

∥
∥2L(H2

w)
.
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We conclude by the characterization of the Bloch space given in Lemma 4.
��

We get a result which is in agreement with the situation for Hardy spaces [15],
Bergman spaces [2] or the Hardy space of Dirichlet series H2 [13], with the same
proof.

Corollary 1 If g is in Xw, then g is in ∩0<p<∞Hp
w, and there exists c > 0, such that

the function ec|Bg| is integrable on D∞, with respect to dμw.

5 Compactness

We now present a little oh version of Theorem 1.
If the symbol is a vector of the standard orthonormal basis of H2

w, that is

g(s) = ew,n(s) := w
1/2
n n−s,

the operator T ∗
g Tg is diagonal, and its eigenvalues

λ2n,k = wnwk

wnk

(
log n

log n + log k

)2

tend to 0 as k → +∞. Thus Tg is compact. It follows that every Dirichlet polynomial
generates a compact Volterra operator on H2

w.

5.1 Case whenBg depends on a finite number of variables

We approximate a symbol g which is in Bloch0(C0) ∩ Dd by a Dirichlet polynomial
P in the Bloch(C0)-norm. From Theorem 1(a), Tg is approximated in the operator
norm by the compact operator TP .

Theorem 2 If g is in Bloch0(C0) ∩ Dd , then Tg is compact on H2
w.

5.2 Sufficient/necessary conditions for compactness

In general, if the symbol g(s) = ∑
n≥2 bnn

−s satisfies an inequality of the form
∥
∥Tg

∥
∥2L(H2

w)
≤ ∑

n≥2 |bn|2 W (n) < ∞, we approximate Tg in the operator norm by
the compact operator TSN g . Therefore, Tg is compact (see [13]).

The little oh version of Theorem 1 is related to the properties of V MOA(C0) ∩D,
and with the concept of vanishing Carleson measures.

Theorem 3 Let g be in D.

(1) If g is in V MOA(C0) ∩ D, then Tg is compact on H2
w.

(2) If Tg is compact on H2
w, then g is in Bloch0(C1/2).
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Proof In order to prove (1), we use that V MOA(C0) ∩ D is the closure of Dirich-
let polynomials in BMOA(C0) (see [13]), and that, from Theorem 1, we have∥
∥Tg

∥
∥L(H2

w)
� ‖g‖BMOA(C0)

.

Recall thatH2
w is embedded in Ai,δ(C1/2), δ = δ(w) being defined in (2.5). Assume

that Tg is compact on H2
w, and consider the measure

dνg(s) = ∣
∣g′(s)

∣
∣2

(
σ − 1

2

)δ+1

∣
∣s + 1

2

∣
∣2(δ+1)

dV (s).

Let ( fk)k be a weakly compact sequence inH2
w. Formula (3.1), and Lemma 1 imply

that
∫

C1/2

| fk(s)|2 dνg(s) � ∥
∥Tg fk

∥
∥2
Ai,δ(C1/2)

�
∥
∥Tg fk

∥
∥2H2

w
.

By the compactness of Tg , νg is a vanishing Carleson measure for Ai,δ(C1/2), with

lim
k→∞

∫

C1/2

| fk(s)|2 dνg(s) = 0.

Now, g is in Bloch0(C1/2), by the characterization of vanishing Carleson measures
(Lemma 5).

��

6 Membership in Schatten classes

Let g be a non constant symbol. As in the case ofH2, the Volterra operator Tg onH2
w

does not belong to any Schatten class.

Theorem 4 If the Dirichlet series g(s) = ∑
n≥2 bnn

−s is not 0, then Tg : H2
w → H2

w

is not in the Schatten class Sp, for any 0 < p < ∞.

Proof Recall that (ew,n)n is an orthonormal basis of H2
w. We follow the reasoning of

Theorem 7.2 [13]. Using that wNn � wNwn , we see that, for N ≥ n,

∥
∥Tgew,n

∥
∥2H2

w
=

+∞∑

k=2

|bk |2 (log k)2

(log(kn))2

wn

wkn
≥ |bN |2 (log N )2

(log(Nn))2

wn

wNn
� |bN |2 (log N )2

(2 log n)2

1

wN
.

For p ≥ 2, we obtain

∥
∥Tg

∥
∥pSp

≥
+∞∑

n=N

∥
∥Tgew,n

∥
∥pH2

w
= +∞.

Therefore Tg is not in Sp for p ≥ 2, neither for 0 < p < ∞. ��
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7 Examples

In this section, we study the boundedness of Tg on H2
w , for specific symbols g.

We consider fractional primitives of translates of the weighted Zeta function Zw and
homogeneous symbols, which are the counterparts of the symbols presented in [13]
in the H2 setting. The techniques of proof, as well as the results are similar to theirs,
and we omit the details.

7.1 Fractional primitives of translates of Zw

Proposition 4 With the notation of (2.5), take 1/2 ≤ a < 1, 2γ > δ(w) − 1. If

g(s) =
∞∑

n=2

wn
n−a

(log n)γ+1 n
−s,

then Tg is unbounded on H2
w.

Proof Abel summation and the Chebyshev estimate induce that g is inH2
w. If f (s) =

∑∞
n=1 ann

−s , and g(s) = ∑∞
n=2

bn
log n n

−s , we set An = ∑
k|n an/kbk , so that

∥
∥
∥T̃g f

∥
∥
∥
2

H2
w

=
∞∑

n=2

1

(wn log n)2
A2
n .

We adapt the test functions of [13], and take f J (s) = ∏J
j=1

(
1 + w

1/2
2 p−s

j

)
, for

J ≥ 1. By construction, it satisfies ‖ f J‖H2
w

� 2J/2. Now, for J a non-empty subset
of {1, . . . , J }, we set nJ = ∏

j∈J p j , and observe that

AnJ =
∑

1≤k≤|J |,{p j1 ,...,p jk

}⊂J
w

|J |−k
2

2

[
log

(
p j1 · · · p jk

)]−γ
wk
2

(
p j1 · · · p jk

)−a + w
|J |
2

2 .

First assume that γ ≥ 0. From the prime number Theorem, we obtain that

AnJ � w
|J |
2

2

[
J log J

]−γ

⎡

⎢
⎣1 +

∑

1≤k≤|J |,{p j1 ,...,p jk

}⊂J
w

k/2
2

(
p j1 · · · p jk

)−a

⎤

⎥
⎦ .

Therefore, it follows again from the prime number Theorem that

∥
∥
∥T̃g f J

∥
∥
∥
2

H2
w

�
∑

J⊂{1,...,J },|J |≥J/2

1
(
log nJ

)2
[
J log J

]−2γ ∏

j∈J

(
1 + w

1/2
2 p−a

j

)2

� 2J−1 [J log J
]−2γ min

|J |≥J/2

1
(
log nJ

)2
∏

j∈J

(
1 + w

1/2
2 p−a

j

)2
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� ecJ
1−a(log J )−a ‖ f J‖2H2

w
,

for some constant c > 0, and Tg is unbounded. The case when γ < 0 is similar. ��

7.2 Homogeneous symbols

An m-homogeneous Dirichlet series has the form

g(s) =
∑

�(n)=m

bnn
−s .

We extend Theorem 4.2 in [13] to the spaces H2
w.

Proposition 5 There exist weights Wm(n) such that for g(s) = ∑
�(n)=m bnn−s,

∥
∥Tg

∥
∥L(H2

w)
≤
⎛

⎝
∑

�(n)=m

|bn|2 Wm(n)

⎞

⎠

1/2

. (7.1)

Precisely, there exist absolute constants Cm for which

Wm(n) =

⎧
⎪⎪⎨

⎪⎪⎩

C1 for m = 1,

C2
log n
log2 n

for m = 2,

Cm
n
m−2
m

(log n)m−2 for m ≥ 3.

Moreover, when m = 2, log2 n cannot be replaced in (7.1) by
(
log2 n

)1+ε
for any

ε > 0.

Proof If a linear symbol (m = 1) g(s) = ∑
p∈P bp p−s belongs to H2, we observe

that ‖g‖2H2 = 2β ‖g‖2B2
β

= (β + 1) ‖g‖2A2
β

. Hence, it follows from Theorem 4.1 in

[13] and Lemma 9 that Tg is bounded onH2
w and

∥
∥Tg

∥
∥L(H2

w)
≤ ∥
∥Tg

∥
∥L(H2)

. One can

choose C1 = max
(
(β + 1)−1 , 2−β

)
.

(7.1) is a consequence of Theorem 4.2 in [13] and Lemma 9. We now prove the
sharpness of the factor log2 n. We assume that for some ε > 0, every 2-homogeneous
Dirichlet series g satisfies

∥
∥Tg

∥
∥L(H2

w)
≤ C2

⎛

⎝
∑

�(n)=m

|bn|2 log n
(
log2 n

)1+ε

⎞

⎠

1/2

. (7.2)
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For x a large real number, and q ∼ ex a prime number, the symbol considered in [13]
is

gx (s) =
∑

x/2<p≤x

(
log2(pq)

)1+ε/2

p
(pq)−s .

We take as test functions

fx (s) =
+∞∑

n=1

ann
−s =

∏

x/2<p≤x

(
1 + w

1/2
2 p−s

)
.

If Sx denotes the set of square-free integers generated by the primes x/2 < p ≤ x ,
we have ‖ fx‖2H2

w
� |Sx | = 2N (x), where N (x) := π(x) − π(x/2). Now,

∥
∥Tgx fx

∥
∥2H2

w

‖ fx‖2H2
w

� 1

|Sx |
∑

n∈Sx
w−1
nq (log(nq))−2

∣
∣
∣
∣
∣
∣

∑

pq|nq
log(pq)

(
log2(pq)

)1+ε/2

p
an/p

∣
∣
∣
∣
∣
∣

2

.

If n ∈ Sx , and p|n, we have an/p = w
1
2 [ω(n)−1]
2 , wn = w

ω(n)
2 , and wnq = wnwq .

Thus,

∥
∥Tgx fx

∥
∥2H2

w

‖ fx‖2H2
w

� 1

|Sx |
(log x)2+ε

x2
∑

n∈Sx
ω(n)2.

Now
∑

n∈Sx ω(n)2 = ∑N (x)
k=1

(N (x)
k

)
k2 � N (x)22N (x), and (7.2) does not hold, due to

∥
∥Tgx fx

∥
∥H2

w

‖ fx‖H2
w

� (log x)ε.

��
Wewill exhibit an homogeneous symbol g which is inH2

w ∩Bloch0(C1/2), but not
in Xw. In fact, we observe that g is in every Hp

w.

Lemma 10 If g is an m-homogeneous Dirichlet series inH2
w, then g is in∩0<p<∞Hp

w

and, for any 0 < p < ∞, there exists c = c(m, p) such that

‖g‖Hp
w

≤ c ‖g‖H2
w

. (7.3)

Proof It is enough to consider the case p ≥ 2.We first prove the inequality for p = 2k ,
k being a positive integer, by an induction argument.

Obviously, it holds for k = 1.
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Our proof is inspired of Lemma 8 in [27]. For any integerm, there exists a constant
C(m), such that max (wn, d(n)) ≤ C(m), whenever �(n) = m.

If f (s) = ∑
n ann

−s is m-homogeneous, then f 2(s) = ∑
n bnn

−s is 2m-

homogeneous, and |bn|2 ≤ d(n)
∑

k|n |ak |2
∣
∣an/k

∣
∣2 . Since wn ≥ √

wk
√

wn/k,

‖ f ‖4H4
w

=
∥
∥
∥ f 2

∥
∥
∥
2

H2
w

≤
∑

�(n)=2m

d(n)w−1
n

⎛

⎝
∑

k|n
|ak |2

∣
∣an/k

∣
∣2

⎞

⎠

≤ C(2m)
∑

�(n)=2m

⎛

⎝
∑

k|n

|ak |2√
wk

∣
∣an/k

∣
∣2

√
wn/k

⎞

⎠

= C(2m)

(
∑

k

|ak |2√
wk

)2

≤ C(2m)C(m) ‖ f ‖4H2
w

.

Now, suppose that, for some k, an m-homogeneous Dirichlet series h satisfies

‖h‖2kH2k
w

≤ K (m, k) ‖h‖2kH2
w
for any m.

We obtain that

‖ f ‖2k+1

H2k+1
w

=
∥
∥
∥ f 2

∥
∥
∥
2k

H2k
w

≤ K (2m, k)
∥
∥
∥ f 2

∥
∥
∥
2k

H2
w

= K (2m, k) ‖ f ‖2k+1

H4
w

≤ K (2m, k)
[
C(2m)C(m) ‖ f ‖4H2

w

]2k−1

.

For general p, (7.3) is a consequence of Hölder’s inequality. ��
For our construction, we need two technical Lemmas.

Lemma 11 Assume that 0 < δ < 1 and 0 < η. For j = 1..3, we set h j (s) =∑
p≥3 α j,p p−s , where

α1,p = (
log2 p

)−δ
, α2,p = log2 p, α3,p = log p

(
log2 p

)−η
.

For a real number σ > 1, set σ ′ := 1
σ−1 . Then we have

h1(σ ) � (
log σ ′)1−δ ; h2(σ ) � log2

(
σ ′) ; h3(σ ) � σ ′ (log σ ′)−η

, as σ → 1+.

(7.4)

Proof These asymptotics will follow from computations inspired by [4,20]. Recall
that

A1(t) :=
∑

3≤p≤t

1

p
= log2 t + O(1). (7.5)
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Setting f1(t) = t−(σ−1)

(log2 t)
δ , we have

h1(σ ) =
∑

p≥3

p−(σ−1)

p
(
log2 p

)δ = −
∫ +∞

3
A1(t) f

′
1(t)dt + O(1)

� (σ − 1)
∫ +∞

3

(
log2 t

)1−δ
t−σdt

= (σ − 1)

(∫ σ ′

log 3
+
∫ +∞

σ ′

)

(log x)1−δ e−(σ−1)xdx .

Using integration by parts (for the first integral), and a change of variable (for the
second one), we obtain

h1(σ ) � (σ − 1)
∫ σ ′

log 3
(log x)1−δ dx +

∫ +∞

1

(
log y + log σ ′)1−δ

e−ydy

� (σ − 1)
[
x (log x)1−δ

]x=σ ′

x=log 3
+
∫ +∞

1

[
(log y)1−δ + (

log σ ′)1−δ
]
e−ydy

� (
log σ ′)1−δ

.

The functions h2 and h3 are handled similarly. For x ≥ 3, summation by parts and
(7.5) induce that,

A2(x) :=
∑

3≤p≤x

1

p log2 p
= A1(x)

log2 x
+
∫ x

3

A1(t)

t log t(log2 t)2
dt + O(1) � log3 x .

Set f2(t) := t−(σ−1). Then,

h2(σ ) � −
∫ +∞

3
A2(t) f

′
2(t)dt + O(1) � (σ − 1)

∫ +∞

3
(log3 t)t

−σdt

= (σ − 1)

(∫ eσ ′

log 3
+
∫ +∞

eσ ′

)

(log2 x)e
−(σ−1)xdx .

Now

(σ − 1)
∫ eσ ′

log 3
(log2 x)e

−(σ−1)xdx � (σ − 1)
∫ eσ ′

log 3
(log2 x)dx

≤ (σ − 1)eσ ′ (log2
(
eσ ′)) � log2 σ ′.

We perform a change of variable in the integral over [eσ ′,+∞).

I2,2 := (σ − 1)
∫ +∞

eσ ′
(log2 x)e

−(σ−1)xdx =
∫ +∞

e

[
log

(
log y + log σ ′)] e−ydy
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≥ (log2 σ ′)
∫ +∞

e
e−ydy � log2 σ ′.

Since log(a + b) ≤ log a log b + 1, for a ≥ e and b ≥ e, we obtain

I2,2 ≤
∫ +∞

e

[
(log2 y)(log2 σ ′) + 1

]
e−ydy � log2 σ ′,

and I2,2 � log2 σ ′. It follows that h2(σ ) � log2 σ ′.
We now focus on h3. By Mertens’ first Theorem, A3(x) := ∑

3≤p≤x
log p
p =

log x + O(1), and putting f3(t) := t−(σ−1)
(
log2 t

)−η
, we see that

h3(σ ) = −
∫ +∞

3
A3(t) f

′
3(t)dt + O(1)

� (σ − 1)
∫ +∞

3
(log t) t−σ

(
log2 t

)−η
dt

� (σ − 1)

(∫ σ ′

log 3
+
∫ +∞

σ ′

)

xe−(σ−1)x (log x)−η dx .

Integration by parts gives that

I3,1 := (σ − 1)
∫ σ ′

log 3
xe−(σ−1)x (log x)−η dx

� (σ − 1)
∫ σ ′

log 3
x (log x)−η dx � σ ′ (log σ ′)−η

.

Next, (7.4) is a consequence of

I3,2 := (σ − 1)
∫ +∞

σ ′
xe−(σ−1)x (log x)−η dx

= 1

σ − 1

∫ +∞

1
ye−y (log y + log σ ′)−η

dy

� σ ′
∫ +∞

1

ye−y

(log σ ′)η
dy.

��
Lemma 12 If 2η > 1 and δ + η > 1, we have

S :=
∑

p1,p2,p3∈P,p j≥3

1

p1 p2 p3
(
log2 p1

)2δ (log2 p2
)2 ×

(log p3)2
(
log2 p3

)2η
(log(p1 p2 p3))2

< ∞.
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Proof For p1, p2 ≥ 3, we set L := log(p1 p2) and S3(p1, p2) :=
∑

p3
(log p3)2

p3(log2 p3)
2η

(log p3+L)2
. Then, we have

S =
∑

p1,p2,p3

1

p1 p2
(
log2 p1

)2δ (log2 p2
)2 S3(p1, p2).

Under the condition 2η > 1, the sum S3(p1, p2) converges, and

S3(p1, p2) = −
∫ +∞

3
A1(t)

d

dt

[
(log t)2

(
log2 t

)2η
(log t + L)2

]

dt + O(1)

L2

� O(1)

L2 +
∫ +∞

3

log t

t(log2 t)2η(log t + L)2
dt

= O(1)

L2 +
(∫ L

log 3
+
∫ +∞

L

)
xdx

(log x)2η (x + L)2
.

Integration by parts gives

I3,1 :=
∫ L

log 3

xdx

(log x)2η (x + L)2
� 1

L2

∫ L

log 3

xdx

(log x)2η
� (log L)−2η .

We handle the second integral via a change of variable:

I3,2 :=
∫ +∞

L

xdx

(log x)2η (x + L)2
=
(∫ L

1
+
∫ +∞

L

)
ydy

(1 + y)2 (log y + log L)2η

� 1

(log L)2η

∫ L

1

dy

y
+
∫ +∞

L

dy

y(log y)2η
� (log L)1−2η .

Therefore

S3(p1, p2) � (log L)1−2η , L = log(p1 p2).

We next put M = log p1, and deal with

S2(p1) :=
∑

p2

1

p2(log2 p2)2
S3(p1, p2) �

∑

p

1

p(log2 p)2
[
log (log p + M)

]2η−1 .

With the notation f2(t) :=
[(
log2 t

)2 [log (log t + M)
]2η−1

]−1
, we obtain that

S2(p1) = O(1)

(logM)2η−1 −
∫ +∞

3
A1(t) f

′
2(t)dt � O(1)

(logM)2η−1 + I2,1 + I2,2,
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where

I2,1 :=
∫ +∞

3

dt

t log t
(
log2 t

)2 [log (log t + M)
]2η−1 ;

I2,2 :=
∫ +∞

3

dt

t
(
log2 t

)
(log t + M)

[
log (log t + M)

]2η .

We derive

I2,1 =
(∫ M

log 3
+
∫ +∞

M

)
dx

x (log x)2
[
log (x + M)

]2η−1

� 1
[
logM

]2η−1

∫ M

log 3

dx

x (log x)2

+ (logM)1−2η
∫ +∞

M

dx

x (log x)2
� (logM)1−2η .

The second integral is estimated in the same way:

I2,2 =
(∫ M

log 3
+
∫ +∞

M

)
dx

(x + M)(log x)
[
log(x + M)

]2η

� 1

M(logM)2η

∫ M

log 3

dx

log x
+ 1

(logM)2η−1

∫ +∞

M

dx

x(log x)2

� 1

M(logM)2η

([
x

log x

]x=M

x=log 3
+
∫ M

log 3

x2

2

(log x)−2

x
dx

)

+ 1

(logM)2η
� 1

(logM)2η
.

Therefore, we have

S2(p1) � 1

(logM)2η−1 , M = log p1.

It follows that

S �
∑

p1

1

p1(log2 p1)2δ
S2(p1) �

∑

p≥3

1

p(log2 p)ε
, ε := 2δ + 2η − 1.

Again, partial summation gives that when ε > 1,
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∑

3≤p

1

p(log2 p)ε
� ε

∫ +∞

3

log2 t

t(log t)(log2 t)ε+1 dt < ∞.

��
Proposition 6 There exists a 3-homogeneous function g which is in

(∩0<p<∞Hp
w

) ∩
Bloch0(C1/2), such that Tg is unbounded on H2

w.

Proof Using Lemma 11, we see that, if g′ = −(h1h2h3) 1
2
, g′ is convergent on C1/2,

and its estimate near the line �s = 1
2 is determined by the behavior of the functions

h j near the line �s = 1. Then g is in Bloch0(C1/2), because of

∣
∣g′(σ )

∣
∣ � 1

σ − 1
2

(

log
1

σ − 1
2

)1−δ−η (

log2
1

σ − 1
2

)

, as σ → 1/2+.

On another hand, the 3-homogeneous function

g(s) =
∑

n

bnn
−s =

∑

p1,p2,p3

α1,p1α2,p2α3,p3

log(p1 p2 p3)
(p1 p2 p3)

−s

is inH2
w by Lemma 12, since ‖g‖2H2

w
= ∑

n |bn|2 w−1
n � ∑

n |bn|2 � S < ∞.

By Lemma 10, g is in ∩0<p<∞Hp
w.

It remains to prove that Tg is unbounded onH2
w. We again choose as test functions

(cf the proof of Proposition 5)

fx (s) :=
∏

x
2 <p≤x

(
1 + w

1/2
2 p−s

)
=
∑

n≥1

ann
−s .

Sx is the set of square free integers generated by x
2 < p ≤ x . Set Vx ={

n ∈ Sx , ω(n) ≥ N (x)
2

}
.

For n ∈ Vx , set

An :=
∑

p1 p2 p3|n
bp1 p2 p3 (log(p1 p2 p3)) a n

p1 p2 p3

The coefficients in An satisfy

bp1 p2 p3 (log(p1 p2 p3)) � log x

x3/2
(
log2 x

)η+δ+1 .

Since ‖ fx‖2H2
w

� |Vx |, we see that
∥
∥Tg fx

∥
∥2H2

w
≥
∑

n∈Vx
w−1
n (log n)−2 A2

n

123



Volterra operators and Hankel forms on Bergman spaces… 281

�
∑

n∈Vx
w

−ω(n)
2 (ω(n) log x)−2 ×

[
log x

x3/2
(
log2 x

)η+δ+1

(
ω(n)

3

)(
w

1/2
2

)ω(n)−3
]2

� ‖ fx‖2H2
w

(
x

log x

)4 1

x3
(
log2 x

)2(δ+η+1)
,

and the proof is complete. ��

8 Comparison ofXw with other spaces of Dirichlet series

The previous results enable us to derive some inclusions involving Xw.
In the context of the unit disk, the space of symbols g for which theVolterra operator

Jg (1.3) is bounded on A2
α(D) is Bloch(D). It coincides with the space of holomorphic

g such that the Hankel form (1.5) is bounded, and with the dual space of A1
α(D).

We shall study the counterparts of these facts for Xw.

8.1 Bounded Hankel forms

The Hilbert space H2
w is equipped with the inner product 〈., .〉H2

w
. The Hankel form

of symbol g ∈ D is defined onH2
w by

Hg( f h) := 〈 f h, g〉H2
w

. (8.1)

We say that Hg is bounded on H2
w × H2

w if there is a constant C such that

∣
∣Hg( f h)

∣
∣ ≤ C ‖ f ‖H2

w
‖h‖H2

w
for f , h ∈ H2

w.

The weak product H2
w � H2

w is the Banach space defined as the closure of all finite
sums F = ∑

k fkhk , where fk, hk ∈ H2
w, under the norm

‖F‖H2
w�H2

w
:= inf

∑

k

‖ fk‖H2
w

‖hk‖H2
w

.

Here the infimum is taken over all finite representations of F as F = ∑
k fkhk .

Let Y be a Banach space of Dirichlet series in which the space of Dirichlet polyno-
mials P is dense. We say that a Dirichlet series φ is in the dual space Y∗ if the linear
functional induced by φ via theH2

w-pairing is bounded. In other words, φ ∈ Y∗ if and
only if

vφ( f ) = 〈 f , φ〉H2
w

, f ∈ P,
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extends to a bounded functional on Y .
From its definition, Hg (8.1) is bounded onH2

w if and only if g ∈ (
H2

w � H2
w

)∗
.

We aim to relate Hankel forms and Volterra operators. The primitive of f ∈ D with
constant term 0 is denoted by

∂−1 f (s) := −
∫ +∞

s
f (u)du,

We observe that

Hg( f h) = f (+∞) h (+∞) g (+∞) +
〈
∂−1( f ′h), g

〉

H2
w

+
〈
∂−1( f h′), g

〉

H2
w

.

The Banach space ∂−1
(
∂H2

w � H2
w

)
is the completion of the space of Dirichlet series

F whose derivatives have a finite sum representation F ′ = ∑
k fkh′

k , under the norm

‖F‖∂−1(∂H2
w�H2

w) := |F(+∞)| +
∑

k

‖ fk‖H2
w

‖hk‖H2
w

,

where the infimum is taken over all finite representations. The product rule ( f g)′ =
f ′g + f g′ implies that

H2
w � H2

w ⊂ ∂−1
(
∂H2

w � H2
w

)
,

and then
(
∂−1

(
∂H2

w � H2
w

))∗ ⊂
(
H2

w � H2
w

)∗
. (8.2)

It has been shown in [14] that, for the space H2
0 = {

f ∈ H2 : f (+∞) = 0
}
, the

inclusion
(
∂−1

(
∂H2

0 � H2
0

))∗ ⊂ (
H2

0 � H2
0

)∗
is strict. As for the space H2

w, the
question whether the inclusion is strict remains open.

The membership of g in
(
∂−1

(
∂H2

w � H2
w

))∗
is equivalent to the boundedness of

the so-called “half-Hankel form”

( f , h) �→
〈
∂−1( f ′h), g

〉

H2
w

. (8.3)

As in the case of H2, the boundedness of Tg implies the boundedness of Hg .

Theorem 5 If the Volterra operator Tg is bounded on H2
w, then the Hankel form Hg

is bounded.

Proof We adapt the proof of Corollary 6.2 in [13] to the framework of the polydisk
D

∞. Polarizing the Littlewood–Paley formula (1), we get

〈 f , g〉H2
w

= f (+∞)g(+∞) + 4
∫

D∞

∫

R

∫ +∞
0

f ′
χ (σ + i t)g′

χ (σ + i t)σdσ
dt

1 + t2
dμw(χ).
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Then, we derive an expression of the half-Hankel form

〈
∂−1( f ′h), g

〉

H2
w

= 4
∫

D∞

∫

R

∫ +∞
0

f ′
χ (σ + i t)hχ (σ + i t)g′

χ (σ + i t)σdσ
dt

1 + t2
dμw(χ).

Since Tg is bounded onH2
w, the Carleson measure characterization (4.1) induces that

the form (8.3) is also bounded. Then Hg is bounded on H2
w � H2

w by the inclusion
(8.2). ��

The previous Theorem states that we have

Xw ⊂
(
H2

w � H2
w

)∗
.

The rest of the section is devoted to study the reverse inclusion.
Let l2w denote the Hilbert space of complex sequences a = (an)n such that

‖a‖l2w :=
⎛

⎝
∑

n≥1

|an|2
wn

⎞

⎠

1/2

< ∞.

A sequence (ρn)n generates the following multiplicative Hankel form

ρ(a, b) :=
+∞∑

n=1

+∞∑

m=1

ambn
ρmn

wmn
, a, b ∈ l2w. (8.4)

The symbol of the form is the Dirichlet series g(s) = ∑
n≥1 ρnn−s . The form ρ is

said to be bounded if there is a constant C such that

|ρ(a, b)| ≤ C ‖a‖l2w ‖b‖l2w .

If f and h are Dirichlet series with coefficients a and b, respectively, we have

Hg( f h) = 〈 f h, g〉H2
w

= ρ(a, b).

When the symbol g has non negative coefficients, there is equivalence between the
boundedness of Hg and the half-Hankel form (8.3). In fact, the proof given forH2 in
[14] is valid for the spaces H2

w.

Proposition 7 Let g(s) = ∑
n≥1 ρnn−s be in H2

w. The linear functional defined on
H2

w

vg( f ) := 〈 f , g〉H2
w
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is bounded on ∂−1
(
∂H2

w � H2
w

)
if and only if the weighted form

Jg(a, b) =
+∞∑

n=1

+∞∑

m=1

ambn
log n

logm + log n

ρmn

wmn
,

(where it is understood that for m = n = 1, the summand is 0) is bounded on l2w � l2w.
The norms are equivalent, i.e.

‖g‖(∂−1(∂H2
w�H2

w))
∗ � ∥

∥vg
∥
∥ � |ρ1| + ∥

∥Jg
∥
∥ .

If ρk ≥ 0 for all k, then g ∈ (
∂−1

(
∂H2

w � H2
w

))∗
if and only if g ∈ (

H2
w � H2

w

)∗
,

with equivalent norms.

Proposition 7 will enable us to provide examples of symbols g for which the Hankel
form Hg and the half-Hankel form (8.3) are bounded, but the Volterra operator Tg is
unbounded (see the proof of Proposition 9). This differs from the case of weighted
Dirichlet spaces on the unit disk, for which the boundedness of Hg , the form (8.3) and
Tg are equivalent [1].

For convergence reasons, we will consider Hankel forms defined on Dirichlet series
without constant term. So we will work on the space

H2
w,0 =

{
f ∈ H2

w : f (+∞) = 0
}

.

We have seen in Lemma 1 that the space H2
w is embedded in a Bergman space of

the form Ai,δ
(
C1/2

)
. For δ > 0, it is thus natural to define the Hankel form

H (δ)( f h) :=
∫ +∞

1/2
f (σ )h(σ )

(

σ − 1

2

)δ

dσ, f , h ∈ H2
w,0. (8.5)

Such multiplicative forms have been considered in the context of H2 [12] and on A2
1

[9].
Since KH2

w(s, u) − 1 = ∑
n≥2 wnn−un−s is the reproducing kernel of H2

w,0, we
see that H (δ)( f h) = 〈 f h, φδ〉H2

w
, where

φδ(s) =
∫ +∞

1/2

[
KH2

w(s, σ ) − 1
](

σ − 1

2

)δ

dσ =
+∞∑

n=2

wn√
n (log n)δ+1 n

−s .

Proposition 8 Let δ > 0 as in (2.5). Then H (δ) defined in (8.5) is a multiplicative
Hankel form with symbol φδ , which is bounded onH2

w,0 � H2
w,0.
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Proof The proof is similar to that of Theorem 13 in [9]. The Cauchy-Schwarz inequal-
ity ensures that

∣
∣
∣H (δ)( f h)

∣
∣
∣ ≤

(∫ +∞

1/2
| f (σ )|2

(

σ − 1

2

)δ

dσ

)1/2 (∫ +∞

1/2
|h(σ )|2

(

σ − 1

2

)δ

dσ

)1/2

.

If f (s) = ∑+∞
n=2 ann

−s , notice the pointwise estimate

| f (σ )|2 ≤ ‖ f ‖2H2
w

(+∞∑

n=2

wnn
−2σ

)

� ‖ f ‖2H2
w
4−σ , for σ ≥ 1.

Since the bounded measure dμ(σ + i t) = χ)1/2,1](σ )
(
σ − 1

2

)δ
dσ , supported on the

real line, is Carleson for Ai,δ
(
C1/2

)
, μ is Carleson for H2

w by Lemma 6, and

∫ +∞

1/2
| f (σ )|2

(

σ − 1

2

)δ

dσ =
(∫ 1

1/2
+
∫ +∞

1

)

| f (σ )|2
(

σ − 1

2

)δ

dσ � ‖ f ‖2H2
w

.

��
We next exhibit symbols giving rise to bounded Hankel forms and bounded half-

Hankel forms, though the associated Volterra operator is unbounded.

Proposition 9 We have the strict inclusions

X (H2
w,0) ⊂
=

(
H2

w,0 � H2
w,0

)∗ ;
Xw ⊂
=

(
H2

w � H2
w

)∗
.

Proof It just remains to check the strictness of the inclusions. For the exponent δ =
δ(w) and 1

2 ≤ a < 1, consider the symbol inH2
w,0

g(s) =
+∞∑

n=2

wn

na (log n)δ+1 n
−s .

FromProposition8 and the fact that the coefficients are positive, g is in
(
H2

w,0 ⊗ H2
w,0

)∗

for any 1
2 ≤ a < 1. In fact, the half Hankel form corresponding to g is bounded. We

have seen in Proposition 4 that Tg is not bounded on H2
w. Since Tg1 = g, g does not

belong to X (H2
w,0).

In order to prove that g ∈ (
H2

w � H2
w

)∗
, we consider the associated multiplicative

form ρ (8.4). Let f , h be Dirichlet series with coefficients a, b, belonging to H2
w.

Since
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ρ(a, b) =
∑

m,n≥2

ambn
ρmn

wmn
+ a1

+∞∑

n=1

bn
ρn

wn
+ b1

+∞∑

m=1

am
ρm

wm

= Hg (( f − f (∞)) (g − g (∞))) + f (∞) 〈h, g〉H2
w

+ g (∞) 〈 f , g〉H2
w

,

the first part of the proof entails that Hg is bounded on H2
w � H2

w. ��

8.2 Xw and the dual ofH1
w

Keeping in mind the results known for Bergman spaces of the unit disk, it is natural
to compare Xw and

(
H1

w

)∗
.

In general, the dual ofH1
w is not known. However, it is shown in [9] that

K ⊂
(
A1

1

)∗
, (8.6)

where K is the space of Dirichlet series f (s) = ∑+∞
n=1 ann

−s such that

+∞∑

n=1

d4(n)

[d(n)]2
|an|2 < ∞.

The following consequence of this inclusion will stress upon the difference between
the finite and infinite dimensional setting.

Proposition 10
(
A1

1

)∗
is not contained in X

(
A2

1

)
.

Proof By Abel summation and the Chebyshev estimate, the symbol

g(s) =
+∞∑

n=2

d(n)

na(log n)2
n−s, for

1

2
< a < 1,

is in K, and thus in
(
A1

1

)∗
. However, Tg is unbounded on A2

1 (Proposition 4). ��

8.3 Xw and the spacesHp
w

It has been shown in [13] that BMOA(C0) ∩ D ⊂
= X (H2) ⊂
= ∩0<p<∞Hp. We
have an analogue for Bergman spaces of Dirichlet series.

Theorem 6 We have the strict inclusions

BMOA(C0) ∩ D ⊂
= Xw ⊂
= ∩0<p<∞Hp
w.

Proof The inclusions have been proved in Theorem 1 and Corollary 1. As observed
in [13], the symbols g(s) = ∑+∞

n=2
ψ(n)
log n n

−s , where ψ is the completely multiplicative

function defined on the primes by ψ(p) := λp−1 log p, 0 < λ ≤ 1, are in X (H2),
and satisfy

123



Volterra operators and Hankel forms on Bergman spaces… 287

+∞∑

n=1

ψ(n)n−σ � exp

(

λ
∑

p

log p

p1+σ

)

� exp

(

λ
1

σ

)

, σ > 0.

Hence, they are not in BMOA(C0), though they belong to Xw (Lemma 9).
The second inclusion is strict by Proposition 6. ��

With the method of Proposition 4, one can show that g(s) = ∑
n≥2

n−a

log n n
−s , 1/2 ≤

a < 1, is not in Xw, though it belongs to BMOA(C1−a) [13]. Therefore, we have the
strict inclusion

Xw ⊂
= Bloch(C1/2).

8.4 Xw ∩ Dd and Bloch spaces

Theorem 7 Let d be a positive integer. The following inclusions hold

Dd ∩ Bloch(C0) ⊂ Dd ∩ Xw ⊂
= B−1Bloch(Dd).

Proof The first inclusion has been shown in Theorem 1(a).
If g is in Dd ∩ Xw, Theorem 5 implies that Hg is bounded on H2

w. Therefore,
the form HBg (1.4) is bounded on the Bergman space H2

w(Dd). From [17], Bg is in
Bloch(Dd).

Here is a function g which is not inXw, such that Bg is in Bloch(D2). Suppose that

g′(s) = 1

1 − 2−s
log

(
1

1 − 3−s

)

, s ∈ C0.

Straightforward computations show that Bg ∈ Bloch(D2). The norms ‖.‖A2
β(D2) and

‖.‖B2
β(D2) being equivalent, our setting will be the space A2

β(D2). Now, for

F(z) =
∞∑

n=1

(n + 1)
β−1
2

log(n + 1)
zn =

∞∑

n=0

anz
n, z ∈ D,

define f (s) = F(2−s)F(3−s), for s ∈ C0. We have

‖ f ‖2H2
w

= ‖F‖4
A2

β(D)
�
( ∞∑

n=1

1

(n + 1) (log(n + 1))2

)2

< ∞.

Putting

h1(z1) = F(z1)
1

1 − z1
=

∞∑

m=0

Amz
m
1 , z1 ∈ D,
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h2(z2) = F(z2) log

(
1

1 − z2

)

=
∞∑

n=0

Bnz
n
2, z2 ∈ D,

we have Am � (m+1)
β+1
2

log(m+1) and Bn � (n + 1)
β−1
2 . Therefore,

∥
∥Tg f

∥
∥2H2

w
=
∥
∥
∥R−1 (h1h2)

∥
∥
∥
2

A2
β(D2)

�
∑

m,n≥1

|Am |2 |Bn|2
(m + n + 1)2(m + 1)β(n + 1)β

�
∑

m≥1

m + 1

(log(m + 1))2
log(m + 1)

(m + 1)2
=
∑

m≥1

1

(m + 1) log(m + 1)
= +∞,

which proves the claim. ��
A consequence of Theorems 1 and 6 is that

Bloch(C0) ∩ Dd ⊂ ∩0<p<∞Hp
d,w.

This inclusion can be viewed as a counterpart of the situation of the disk, where
Bloch(D) ⊂ ∩0<p<∞Ap

β(D).
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