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Abstract

For a Dirichlet series g, we study the Volterra operator T, f (s) = — f :roo f(w)g' (w)
dw, acting on a class of weighted Hilbert spaces H2w of Dirichlet series. We obtain
sufficient / necessary conditions for T to be bounded (resp. compact), involving BMO
and Bloch type spaces on some half-plane. We also investigate the membership of 7,
in Schatten classes. Moreover, we show that if 7, is bounded, then g is in H{L, the
L?-version of Hi, forevery 0 < p < oo. We also relate the boundedness of 7, to the

boundedness of a multiplicative Hankel form of symbol g, and the membership of g
in the dual of M. .
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1 Introduction

Dirichlet series are functions of the form

+o00
f(s) = Zann—S, with s € C. (1.1)
n=1
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For a real number 6, Cy stands for the half-plane {s, Ns > 6}, and D for the unit disk.
D denotes the class of functions f of the form (1.1) in some half-plane Cy, and P is
the space of Dirichlet polynomials.

The increasing sequence of prime numbers will be denoted by (p;);>1, and the
set of all primes by P. Given a positive integer n, n = p* will stand for the prime
number factorization n = p{' p5? -+ pi?, which associates uniquely to n the finite
multi-index « (n) = (k1, k2, ..., kg). The number of prime factors in n is denoted by
2 (n) (counting multiplicities), and by w(n) (without multiplicities).

The space of eventually zero complex sequences cqg consists in all sequences which
have only finitely many non zero elements. We set Dgi = D> N cop and Ng§ =
N§° N coo, where Ng = N U {0} is the set of non-negative integers.

Let F : DgY — C be analytic, i.e. analytic at every point z € D> separately with
respect to each variable. Then F can be written as a convergent Taylor series

F@)y= ) cat® z€D.

aeNgfﬁn
The truncation A,, F of F onto the first m variables is defined by
AnF(2)=F(z1,...,2m,0,0,...).

For z, x in D>, we set z.x := (z1x1.22X2,...), and p* := (p7, p3,...) for a real
number x, .
The Bohr lift [11] of the Dirichlet series f(s) = Z+°° apn~* is the power series

n=1

“+o00
Bf() =Y anx*™ = Y aux® whered, =ay, x € Df,

n=l1 Cl{ENSQﬁn

with the multiindex notation x* = x| x5* - - -
Given a sequence of positive numbers w = (w,), = (w(n)),, one considers the
Hilbert space (see [21,23])

+00 +0o0 |a |2
— n
HE = Eannszg—<+oo
Wn
n=1 n=1

The choice w;, = 1 corresponds to the space H2, introduced in [19].
The weights considered in this article satisfy w, = O (n¢) for every € > 0; from
the Cauchy-Schwarz inequality, Dirichlet series in sz absolutely converge in Cy /2.

We are interested in the Volterra operator T, of symbol g(s) = :;xf b,n—%,
defined by

+00
T, f(s) = —f fw)g (w)dw, Rs > % (1.2)
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On the unit disk D, the Volterra operator, whose symbol is an analytic function g,
is given by

T f(2) :=/0'f(u)g’(u)du, zeD. (1.3)

Pommerenke [26] showed that J, (1.3) is bounded on the Hardy space H 2(D) if
and only if g is in BMOA(D). Let o0 be the Haar measure on the unit circle T.
Fefferman’s duality Theorem states that BM O A(DD) is the dual space of H (D). Thus
the boundedness of J, is equivalent to the boundedness of the Hankel form

Ho(f, h) :=fo(u)h(u)Mdo(u), f.h e H* (D). (1.4)

Let V be the Lebesgue measure on C, normalized such that V(D) = 1.
Many authors, in particular [2], have studied Volterra operators on Bergman spaces
of D. The classical Bergman space A)Z,UD)), y > 0, is associated to the measure

dimy(z) =y (1— |z|2)y_1 dV (z). Jg is bounded on A)z, (D) if and only if g is in the
Bloch space, which is the dual of A, (ID).
The Bergman space of the finite polydisk A]2, (D9), d > 1, corresponds to the measure

dvy, (z) :=dmy (z1) X -+ x diy (2q).

The boundedness of the Hankel form
Hy(f h) = fD S @h@@dV @), f.h e A D, (1.5)

is equivalent to the membership of g to the Bloch space (see [17]), defined by

Bloch(DY) := {f : D - C holomorphic : max sup |0 f (c.2)| (1 = |zD)* < —i—oo} ,

k€ld ;epd
where Z; denotes the set of multi-indices ¥ = (k1, ..., kg4), with entries in {0, 1}, and
2= (z1,.-y24), 3 =97 -9z, (L —1zD" = (A = |z - (A = |za)™ .

Recall that for 0 < p < oo, the Hardy space of Dirichlet series H? is the space of
Dirichlet series f € D such that Bf is in H? (D*°), endowed with the norm

l/p
I fllpgr == 1Bl gp ooy = (/Tm IBf(z)|Pdooo(z)> ,

0o being the Haar measure of the infinite polytorus T<°.

@ Springer



250 H. Bommier-Hato

The norm in the space H> := H*°(Cy) N D is

[ fll3go0 = sup [ f(s)].

s€Co

Let H°°(ID*°) be the space of series F which are finitely bounded, i.e.

IFllgoemey =  sup  [AnF(2)] < oo.
méeNy,zeD>®

Via the Bohr isomorphism, we have [16,19]
I f 1l = 1B SN goomeey - (1.6)

Several abscissae are related to a function g in D, of the form g(s) = Y725 b,n™*:

. . +o0 s
the abscissa of convergence o, = inf {a elR : E | byn~° converges } ;
n=

. . +o00 s
the abscissa of absolute convergence o, = inf {O’ eR : E ) |bp|n~° converges } ;
n—=
the abscissa of uniform convergence

+
oy = inf [9 eR : E O(l)bnn_s converges uniformly in (Cg] .
n=

The abscissa of regularity and boundedness, denoted by oy, is the infimum of those 6
such that g(s) has a bounded analytic continuation, to the half-plane R(s) > 0 + e,
for every € > 0.
We have —oo < 0, < 0y, < 0, < 400, and, if any of the abscissae is finite
o, — 0. < 1. Moreover, it is known that o, = 0, [11] ,and 6, — 0, < %
Volterra operators (1.2) on the spaces H” have been investigated in [13]. Our aim
is to study similar questions for the spaces leu, associated to specific weights w in the

class WV defined below.

Definition 1 Let 8 > 0. A sequence w belongs to W if it has one of the following
forms:

(1) w, = [d(n)]P, where d(n) is the number of divisors of the integer n. Then
M, =B},

(2) w, = dg11(n), where d, (n) are the Dirichlet coefficients of the power of the
Riemann zeta function, namely ¢7 (s) = 7 d, (n)n™*. Then H2, := A%.

As in the case of H? [13], we obtain sufficient/necessary conditions for 7, to be
bounded on the Hilbert spaces 2. However, due to the lack of information of the
behavior of the symbols in the strip 0 < Ms < 1/2, it seems difficult to get an
if and only if” condition. In the Hardy space setting, it is shown that 7, is bounded
on H? provided that g in BM O A(Cy). Since the spaces A% and Bé (see Sect. 2)
locally behave like Bergman spaces of the half plane Cp, we would expect that the
membership of g in Bloch(Cy) (resp. Blochg(Cp)) would imply the boundedness (resp.

@ Springer



Volterra operators and Hankel forms on Bergman spaces. .. 251

compactness) of T, on sz. ‘We obtain such a sufficient condition when Bg depends
on a finite number of variables zy, ..., z4. However, our method specfically uses that
d is finite, and we do not know whether the same result holds if Bg is a function of
infinitely many variables.

Le 91, be the set of positive integers which are multiples of the primes p1, ..., pg,

Dy:=3f€D: f(s)= Z azn™* ¢, and Hf;’w =HENDy.

némd
One of our main results is the following.

Theorem 1 Let Ty be the operator defined by (1.2) for some Dirichlet series g in D.
(a) If g(s) = :;’g byn™* is in Dy N Bloch(Cy), then T, is bounded on 'Hﬁj and

|| Te || L(Huw) S 18l Broch(co) -
(b) If g isin BM O A(Cy), then Ty is bounded on H2, and

| T Hﬁ(Hw) Sllglsmoacy) -

(c) If Tg is bounded on H2

w» then g is in Bloch(Cy ) and
gl Biochcciy S 1 Tell e, -

Via the Bohr lift, lev are L>-spaces of functions on the polydisk D*. Precisely,
there exists a probability measure 11, on D such that

113 = fDm IBS @) dp (2).

Analogously to the spaces H”, we define the space HY,, 0 < p < oo (see Sect. 2),
as the closure of Dirichlet polynomials under the norm (quasi-norm if 0 < p < I)

1/l = 1B fllLr @, ) -

Let Xy, =X (Hi) be the space of symbols g giving rise to bounded operators Ty
on Hg). Our study provides the following strict inclusions:

BMOA(Co) N'D Cx Xy C Mo<p<ocHE.

We will also compare &, with other spaces of Dirichlet series, in particular with
the dual of Hllu, and the space of symbols g generating a bounded Hankel form

Hg(fh) :=(fh, g
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on the weak product H2 © H2,. As in the case of 2 [13], we only get partial results.
For Dirichlet series involving d primes, we have

Dy N Bloch(Cy) € Dy N X,y Cx B~ Bloch(DY).

The paper is organized as follows. Section 2 starts by presenting some properties
of the spaces sz. As a space of analytic functions on the half-plane C; s, Hﬁ, is con-
tinuously embedded in a space of Bergman type of Cy>. In view of the Bohr lift, the
norm of sz can be expressed in terms of a probability measure (., on the polydisk.
For 0 < p < oo, we consider the Bohr—Bergman space H,, and derive equivalent
norms for these spaces.

In Sect. 3, we present some properties of the Dirichlet series which belong
to a BMO or Bloch space of some half-plane Cy. In particular, we relate
the Carleson measures for both spaces of Dirichlet series and Bergman type

spaces.
Section 4 is devoted to the proof of Theorem 1. First we consider the case
when g is a function of p;™*, ..., p;*. To prove (b), we observe that the bound-

edness of T, on H2 implies the boundedness of 7, on Hi. On another hand,
combining the fact that sz is embedded in a Bergman type space of the
half-plane C;,; with some characterizations of Carleson measures, we establish
that

Xy C B]OCh((Cl/z).

Compactness and Schatten classes are considered in Sects. 5 and 6.

In Sect. 7, we consider some specific symbols: fractional primitives of translates of
a “weighted zeta”-function and homogeneous symbols. These examples will be used
in Sect. 8.

In Sect. 8, we investigate the relationship between the boundedness of the Volterra
operator Tg, the boundedness of the Hankel form

Hy(fh) = (fh. g)p -

and the membership of g in the dual of 7} . In particular, we study examples of Hankel
forms on Bergman spaces of Dirichlet series, which are the counterparts of the Hilbert
multiplicative matrix [12].

Additionally, we show the strictness of the inclusions derived previously

BMOA(Cy)ND C# Xy C# ﬂo<,,<oon;},
and compare the space Dy N &), with Bloch spaces.
For two functions f, g, the notation f = O(g) or f < g, means that there exists

a constant C such that f < Cg . If f = O(g) and g = O(f), we write f =
8.
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2 The Bohr-Bergman spaces 2, .Af,

2.1 The spaces B2, .Af;

These spaces are related to number theory. The number of divisors of the integer 7,
dn),isd(n) = (k1 +1)--- (kg + 1) when n = p*. We consider the following scale
of Hilbert spaces

1

+o00 n=1 2 2
2 _ -5 . - |a”|
B; = f(s)_’;ann Sl = (% [d(n)]ﬁ) <oot, forp >0.

The case 8 = 0 corresponds to the Hardy space 2. The reproducing kernels of Bé
are

+00
K5 (s, u) = gp(s + 1), where g5(s) = Y [d(m)1F 0™,
n=1

Itis shown in [30] that there exists ¢g(s), an Euler product which converges absolutely
in Cy, such that

£4(s) = ()1 ¢p(s). and gp(1) # 0.

Another family of spaces arises from the so-called generalized divisor function.
For y > 0, the numbers d), (n) are defined by the relation

+o00
gr(s) =Y dymn*.
n=1

A computation involving Euler products shows that we have

yy+D--(y+r—1

' , for p € P, and any integer r.
r!

dy (r") =

From its definition, d,, is a multiplicative function, i.e. d,, (kl) = d,, (k)d,, (1) if k and

[ are relatively prime. Thus, d), (1) can be computed explicitly from the decomposition
K

n = p*“.
We define the spaces

1

+00 n=1 la |2 2
A2 = (s) = ann” |l g2 = 1 <ooyg, forp >0,
A E e e A T
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2
with reproducing kernels K A (s,u) = cPHl(s + ).
Notice that, in each case, the reproducing kernel has the form

KMo (s, 1) = Zu(s +70),

where Z,,(s) := ,'1":0(1’ w,n~* has a singularity at s = 1, with an estimate of the type
Zu(s) = Cu(s = D™V [1+ 0] Q.1

2.2 Bohr-Bergman spaces on D>

The Bohr correspondence is an isometry between Hﬁ} and the weighted Bergman
space of the infinite polydisk

2
lay|
H,%(Doo)z E a7’ : E wL<oo , wherewvznw,)j.
v .
J

00 v
VeNO,ﬁn

In particular, the space 72 is identified with the Hardy space H>(T>°) [19].
Let us consider the following probability measures on the unit disk D,
dmy(2) == M(z])dV (2),
-1
s (0g DTN it w, = [P

here M(r) =
where M (r) {ﬁ(l — bl if wy, = dg+1(n)

On the finite polydisk D¢ (d € N), the corresponding Bergman spaces Hl% (D7) -
specifically Bé (D4) and Alz3 (D9)- are the L>—closures of polynomials with respect to
the norm

1/2
1 ez ey = </Dl G za) P dmy(zn) x - x dmw(Zd)>

If f(z) =Y, e an2" is defined on D?, we have

|an
1 e =D ——
B (D) % (n+1)F

| 2

n'
and || 1|

— 2 :
o = Ll GG G 2

When d is finite, the estimate

n!

B+DEB+2)---(B+n)

=1+ n)_’3
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yields that, the spaces Bg (D) and A%(]D)d) coincide as sets, with equivalent norms.
However, the norms are no longer equivalent in the case of infinitely many variables.
The sz -norm will be computed via the rotation invariant probability measure

ditw(x) = dmy(x1) X dmy(x2) X dmy,(x3) X -+ on D,

Applying the Bohr lift to a Dirichlet series f(s) = ;,L;"{ apn~*, and using (2.2) for

each variable, one obtains the following formula (see [5] in the case of Bé)
2 lay |2 2
| BIOOP diu(x) = > =1l
n=1

Definition2 For 0 < p < oo, the Bohr—Bergman spaces of Dirichlet series Bg and

Ag - denoted by 7, - are the completions of the Dirichlet polynomials in the norm
(quasi norm when 0 < p < 1)

LI :=f BfCOIP ditw(x)-
w ID)OO
The Kronecker flow of the point x = (x1, x2, ...) € C* is given by
7.(x) = (2_”)(1, 375,57 X3 ) , 1R,

which defines an ergodic flow on T® by Kronecker’s theorem.
Therefore, it follows from Fubini’s Theorem that, for any rotation invariant proba-
bility measure dv on ID°° and any probability measure dA on R, we have

171 ey = [D § /R (B (TN dr@n)dv (). 23)

2.3 On the half-plane C, ),
For 6 € R, let 7y be the following mapping from ID to Cyp,

1
w0(z) = 0 + 1+Z’ (2.4)

For § > 0, the conformally invariant Bergman space A; 5 (Ci/2) is the space of those
functions f which are analytic in Cy 2, and such that

-y

’25+2dm(s) < 00.

2 . 2 8 2
115 ey = 1 0 m12l a2y = 48 /C £ )]
/2

: s+
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The weights w of the class WV satisfy a Chebyshev-type estimate

Z w, X X (logx)3 , where § = 6(w) :=

n<x

26— 1 ifw, =[dn)?,
B if w, = dg+1(n).
(2.5)

For any real number 7, set S; = [%, 1] X [T, T + 1]. As mentioned in the introduc-

tion, the Dirichlet series which belong the H2w absolutely converge in Cy ». The space
HIZU is locally embedded in A; 5(y) ((C1/2) [23,25], which means

(05"

sup [ 1£ )P ’25+2dm<s> <c(H2) I/

teRJS, |s + %

Since functions in sz are uniformly bounded in Cj, these embeddings are global
(see [5,8]).

Lemma 1 Let § = §(w) be defined in (2.5). Then sz is continuously embedded in
Ais (Cip2).

2.4 Generalized vertical limits

Every x = (x1, x2, . ..) in C* defines a completely multiplicative function by the
formula x (n) = x*, where n = p*. For f of the form (1.1), the twisted Dirichlet
series [5,6], is defined by

+o0
fr($) = anx(mn~". (2.6)
n=1

Notice that if x € T, f, is the vertical limit of f, introduced in [19].
We also consider the translations fs5(s) = f (s +8), § € R. For those x € D and
s = o + it for which the series (2.6) converges, we have

fx(s) = BfsTy) (). 2.7

When f is in sz, the Cauchy-Schwarz inequality implies that (2.7) holds whenever

s €Cypand x € D™. By the Rademacher-Menchov Theorem (see [22]), (2.7) can
be extended in the following way (the argument given in [5] for Bé remains true for

A%).

Lemma2 If fisin sz, the Dirichlet series fy as defined in (2.6) converges in Co for
almost every x € D, with respect to [iy,.

Recall that 79, 6 € R, is the conformal mapping defined in (2.4). For 0 < p < oo,
the conformally invariant Hardy space Hip (Cy), is the space of those functions f
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such that f o 7y is in H?(T), the usual Hardy space of the unit disk. Setting dA(?) =
a1+ )~ ldr, we get

e

1
1y = [\ @il dae = 5= [ 17 0wl du, for £ € HY o)

-7

Let f bein HE . In view of relation (2.3), and using the same argument as in [6,19],
one can prove that for almost all x, withrespect to iy, , fy canbe extended analytically
on Cy to an element of Hl.p (Cp).The norm of f in HL, can be expressed as

£l = /D il gy @m0 2.8)

2.5 A Littlewood-Paley formula

We now derive another expression for the norm in 2.

Proposition 1 Let A be a probability measure on R, and p > 1.

(a) If f € HE . then ||f||;’i,",) =< Ip(f), where

I,(f) == | f(+00)|?
+o00 3 2
+4/w/R/O |/ +in]” 2‘f)/((y+it)) ydydA()d ().

When p = 2, we have ||f||§ﬁ) = L(f).

(b) Let f € D, f(s) = Z::(xf apn=", such that f and f, converge on Cy for a.a.
x € D®.IfI,(f) < 0o, then f € M.

Proof Since the real variable ¢ corresponds to a rotation in each variable of D, the
rotation invariance of i, entails that /,(f) does not depend on the choice of the
probability measure A. For general p > 1, we prove (a), by using (2.8). We adapt
the argument from [10] (for H?), by integrating over the polydisk D> instead of the
polytorus T,

Suppose f is in sz, and take y > 0. From (2.3) and the rotation invariance, we
obtain

/f \f;(y+n>\2duw<x>dx(t>=f \Bf;u)(zduw(x)
R JIDoe Doe

+00 |a |2
n _
= E (logn)®n=2.
Wp
n=1

Integration against y on (0, +00) gives the formula (see details in [7] for the case of
H?).
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If f is as in (b), the integrand in I, (f) is measurable. For x € ID*°, the change of
variables s = y + it = w(z) = 2}% transfers the Littlewood—Paley formula from D
to (Co,

2
T
/%'fx(ltﬂ @@
Sl

2
+ [ (1=127) I | e el ave
D
=K@l

+0o0
/ (y+2)2+t2 |f o +in|"” ‘f (y+lt)‘ dtdy

S e

y N
_— t
+f0 /R]_i_t2|fx(y+z)|

where f*(s) := Y% |a,| n~* is bounded on C,.
Integrating on D with respect to (i, and using (2.3), we get that

2
'y + it)( didy,

”Bf”LP(]DJOC H) ™~ ”f ||L°°((C ) + II’(f) < <.

Therefore, Bf € LP(ID*°, y). The martingale (A, Bf),, (with respect to the increas-
ing sequence of o-algebras of the sets D™ x {0}) converges in L?(ID*°, uy,) to Bf.
Polynomial approximation in the Bergman spaces of the finite polydisks D" shows
that B f is in BHL,.

O

3 Spaces of symbols of Volterra operators in half-planes

If g is in D, the definition (1.2) of T, shows that we can assume that g (+00) = 0, i.e.

“+00
gs) =Y byn".
n=2

As in the study of Volterra operators on Bergman spaces the unit disk [2], and on the
space of Dirichlet series H? [13], the boundedness of T, on sz will be related to
Carleson measures, and to the membership of g to a BMO space or a Bloch space.

Let Y be either sz or the Bergman space A; s ((C1 /2), 8 > 0. A positive Borel
measure 1 on Cy; is called a Carleson measure for Y if there exists a constant C such
that,
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/ |f12du < C|fI3 forall f €Y.
Cip2

The smallest such constant, denoted by |||l cas(y), is called the Carleson constant
for u with respect to Y. A Carleson measure p is a vanishing Carleson measure for Y
if we have

lim | fel?du =0,

k— o0 Cip

for every weakly compact sequence (fx)x in ¥ (which means that || fi ||y is bounded
and fi(s) — 0 on every compact set of Cy 7).

3.1 BMO spaces of Dirichlet series

The space BM O A(Cy) consists of holomorphic functions g in the half-plane Cq
which satisfy

dt < oo.

1
g +ir) — m/g(@ +it)dt
I

1
lgllBpocc,) = sup —/
1cr 1 Jg

Any g in DN BM O A(Cyp) has an abscissa of boundedness o, < 0 (Lemma 2.1 of
[13D).
The space VM O A(Cy) consists in those functions g in BM O A(Cyp) such that

1

Fit) — —/f(ir)dr di = 0.
1] Jg

1
lim sup —/
s—0t 11<s 1 J1
3.2 Bloch spaces of Dirichlet series

The Bloch space Bloch(Cy) consists of holomorphic functions in the half-plane Cqy
which satisfy

lgllBloch(cy) == sup (o —6) |f/(<7 + it)| .
o+iteCy

Lemma 3 If g be in D N Bloch(Cy).

(a) Its abscissa of boundedness satifies o < 0.
(b) Forevery x € D*, g, is in Bloch(Cyp), and ||gX “Bloch(Co) < gl Brocn(cy)-
(c) Suppose that yo > % Then there exists a constant C = C(yg), such that,

g+ it)‘ < C27V gl gioen(cy) » forall x e D*, t € R, y > yo.
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Proof Lete > 0.If s = o + it is in Cy, the definition of the Bloch-norm implies that

elg'e+9)] < (e+0) g€ +5)| < lglprocncy) -
It follows that g’, and then g is bounded in C; (a) is proved.
Now fix o > 0. Let m > 1 be an integer, and z = (21, -- ., Zm» Zm+1s---), X IN
D°°. From the properties of H> and the proof of (a), we have

| AnB(2,) 5 @] = |AnB8, 0| < [Bg) | yoeroey = 15 |30

and | (g,)y ||H°° = ||B(g,)x ||HOO(TOO) < |e. ”HOC' Therefore, (g)y is in H™; (b)
holds, due to

(e

g, (0 + it)‘ < lglliocnicyy - forallt € R, x € T, o > 0.

f0<é<y— %, the Cauchy-Schwarz inequality and Parseval’s relation induce
that

[STE%Y
+
ol—
~—

N

|

—
=
|
=
|
=<
=
S~—
)

2 +o0o 2 400 s
g;(y+n)\ < (Z |bn|(logn)n>'> = (Z |bu| (logn)n =2 n (
n=2

n=2

L2
Bga/z‘

< (14827 )
S¢d+6) 2T

We now get (c¢) from the chain of inequalities

2
852 HHw = 5 lgllBioch(c) -

’ ’ _
LR P T PR

]

Now, recall several characterizations of Bloch functions, which are extracted from
[2,18].
Lemma 4 Assume § > 0. For g holomorphic in Cy, the following are equivalent:

(a) g € Bloch(Cy);
(b) h =g oty € Bloch(D);

(¢) The measure djicy,¢(s) = ‘g’(a + it)|2 %dcdt is a Carleson measure
for Ai 5(Co);

(d) The measure dup p(z) = |h/(z)|2 (1 — |z|2)6+1 dm1(z) is a Carleson measure
for A3(D);

(e) The operator Jy, given by
V4
Inf2) = /0 f(Oh' (1)t

is bounded on A%(]D)).
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Moreover, the quantities

I8 Btochcce) » 1ol cpecy) Ve ”L(Ag(m))

are comparable.

The little Bloch space is the space
Blochy(Cy) = {f € Bloch(Cy) : lime (c—0)|g'(s)| = o} )
o—

The membership in Blochg(Cy) is characterized by a little oh version of Lemma 4,
involving vanishing Carleson measures.

We show that Dirichlet polynomials are dense in D N Blochy(Cyp). For g(s) =
> -1 bun™*, the partial sum operator is defined by Syg(s) = Zflvzl byn—".

Proposition 2 Let g be in Blochy(Co) N'D, and € > 0. Then there exists P in P such
that

& — Pllgioch(cy) = €-
If in addition g is in Dy, P can be chosen in Dy.

Proof Forevery§ > 0, gs = g(§+.) is also in Bloch(Cp). As § tends to 0, (gs5)s con-
verges to g uniformly on compact sets of Cp, and lim,, _, g+ o |g(’S (s)| = 0, uniformly
with respect to § € (0, 1). It then follows from [3] that lims_, o+ g — gslIBloch(cy) =
0. Thus, we can choose § > 0 such that ||g — gs IIBloch(CO) < % Since
op(g) = ou(g) < 0, the partial sums (Syg)y converge uniformly to g in Cs,
limpy oo ISy 8s — &5ll7yc = 0. For large N, the triangle inequality implies that

g — SngsllBloch(cy) < 118 — &sllBloch(cy) T 185 — SN &slIB1och(Cy)

IA

€
3 +2(ISvgs — gsllye < €.

3.3 Carleson measures on the half-plane C, ,

On Cy 2, we consider Carleson squares

1
O(so) = <§,Uoj| X [t() — %, to + %] , where so = oo +itg € Ci2

is the midpoint of the right edge of the square and € = o9 — %

We need the following property (see Section 7.2 in [31]).
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Lemma5 Let § > 0 and let . be a Borel measure on Cyjy. Then  is a Carleson
measure for A; s ((Cl/z) if and only if, for every square Q(sg), with so = oo + itg, we
have

1 +
1 (Q(s0)) = O ((200 — 1)8+1> as oy — <§> .

In addition, [ is a vanishing Carleson measure for A; s ((Cl/z) if and only if, uniformly
fortyinR,

1 1"
1 (Q(s0)) =o ((200 — 1) ) as og — (§> )

ByLemma 1, H%) is embedded in the Bergman-type space A; s ((C1 /2), the exponent

8 = §(w) being defined in (2.5). Bounded Carleson measures for both spaces sz and
Ai s (Ci1/2) have been compared in [8,23,24]. We extend their results.

Lemma6 Let u be a positive Borel measure on Cy ;.

(1) If wis a Carleson measure (resp. vanishing Carleson measure) for 'Hﬁ), then w is
a Carleson measure (resp. vanishing Carleson measure) for A; s ((Cl /2) and

Il em(a (i) S litllem(rz)-

(2) Assume that u has bounded support. If i is a Carleson measure (resp. vanishing

Carleson measure) for A; s ((Cl /2), then p is a Carleson measure (resp. vanishing

2

2 and

Carleson measure) for H

lellemrez)y S Illenras(cp)) -

Proof Suppose that  is a Carleson measure for sz ,and let QO (so) be a small Carleson
square in Cy /5. For the test function f,(s) = K M, (s, s0), we have

2 2 H2 2
ol dn = [ sl de = can |k 50|, < Zuoiso.
0O(s0) Cipn H

w

From the estimate of Z,, (2.1) and Lemma 5, u is a Carleson measure for A; ; ((C 1 /2),
since

—2(84+1) —(8+1)
N 1 1
Moo — 3 1 (@G0 S (M0 — 5 .

For p a Carleson measure for A; 5 (C1 /2) with bounded support, (2) holds [23,24].
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As for vanishing Carleson measures, the reasoning used in [8] for Bé can be trans-
fered to the spaces A%, with the test functions

KM (s, 50)
Ji(s) = Tore .
[l
where sp = 1/2 + €, + it is a sequence in Cy /5 such that ¢, — 0. m]

We also require an equivalent norm for A; s ((C1 /2), when § > 0. For Bergman
spaces of the unit disk, recall the following consequence of Stanton’s formula [28,29]:

s+l
||h||,245(D) = |h(0)? +/ |h’(z)|2 (1 - |z|2) dV(z), for h holomorphic on ID.
D

Via the mapping 71,2, we obtain that, for any f holomorphic on Cy 2,

) 1 §+1
+/ £ ()] =3 v, G.1)
Cip2

‘S + 1‘254-2
2

3
””%mmxhy

4 Boundedness of T,

In this section, we characterize functions in &, and prove Theorem 1.

4.1 Carleson measure characterization

The boundedness of T, on H2, can be described in terms of Carleson measures. This
generalizes the setting of the Hardy space H? [13].
Recall that Hﬁ) is associated to the probability measure ., on the polydisk D>,

Proposition 3 T, is bounded on sz if and only if there exists a constant C = C(g)
such that

HTﬂzv/‘/mew+mf’w+mf””% o0
g HZ‘UA]D)OORO X 8y l+l2HwX
< Clfl3g - @.1)
or, equivalently
o 2|y 2 2 2
/D /O | £ (0)] gX(O)‘ ododu,(x) < C* £l - 4.2)

The smallest constant C satisfying (4.1) is such that C < || T, || LOR)
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Proof Applying the Littlewood—Paley formula (Proposition 1) to the measure dA(t) =
7711 + 1?)~'dr and the function T, f, we get (4.1).
The rotation invariance of the measure d iy, (x) gives (4.2).

4.2 Proof of Theorem 1 (a): Bg depends on a finite number of variables
For 1 < g andd > 1, recall that f € Hg’w if and only if f is in HY and Bfisa
function of zy, ..., z4.

When needed, we shall identify z = (z1, ..., 24) € D? with (z,0) € D9 x {0}.
If g(s) = Zj;’g b,n"% isin H(Zi’w, we observe that for z € D,

d
Bg'(z)=) logp; ¥ bae;z* = RBg(2),
Jj=1 aeNd

where R is the operator

d
RG(i.....za) = Y _(log pj)zj0;G ..., 2a).
j=1

We define the set

A¢ = {Zz(zl,...,Zd)GDd’ vj,

zj| <pj_E], fore > 0.

Take x > 0,7 € R, and z € D“. By construction, z € Ay ;) and o(p~*.z) >

log pi
o(2) +x10gpd'

For g € Dy, we write g;(x) = g(;,0)(x) = Bgx(z). Since g is in Bloch(Cy), we
apply (1.6) to g, and get

gl(x +it)| = |Bg(Ti)| = sup  [Bg'(©)]
{EAa(p*X,z)
1
— ap g < 0g pd ”g”Bloch((Co)’ 43)
scC logpr x+0(2)
o(p7X.2)

Proof of Theorem 1(a) Let f(s) = ), a,n~° be in H%), and, for x = (z,7) €
D9 x D>,

Bf(x)= Z Ca2®2® = Z ch,(z)z%, where ¢, (7)) = Z Caar?® .

(a,a’)eNdegf’ﬁn aeNd o' eNgGy
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In view of Proposition 3, we aim to estimate || T, f ”;2 = 11 + 1, where

1 2
7, ::/ / |10 [g, 0| xdxdpun o,
Do JO

+0o0 ) , 2
and 7, = /Doofl | £ (0] )gX(X)( xdxd py (X).

By (4.3), the rotation invariance and Fubini’s Theorem, we have

1
1
7 5 lglly fo/—
8lbloch(Co) | f o i ko)
2

o) (zipr ) (zapg )| dpw (2. 2 )dx

aeNd

< 1B / f 3 e Te(odxdpn @),

aeNd

where

1 —x12a Y
I = - x L. x d d .
o (x) /Dd o |z1p77| |zapg ™[ dpa ()

Using the rotation invariance again as well as the fact that p; > 1, and setting J :=
fol xIy(x)dx, we get

2
dpy (@) | dx

7 < ”g”Bloch(Co) Z / xIy(x) /Dm ‘an,a/(p/x-z’)“’
a/

aeNd
(\/];)OC

< ”g”Bloch(Co) Z (pad“) (p(rx") '

a0 d+1

’
o
Z

2
dity (Z/)>

R

-1
For the moment, we admit that 7, < C(d, w) [H 1 w(pl )] , which will be
proved in Lemma 7. Hence,

aa|

2 2
T1 < 181 Bioch(co) ZW I8 IBtoehcco 11/ 1342 -
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Combining Lemma 3 with the following observation,

2

/ |fx(X)\2du«w(x)=/ Zann_"x“ dpw(X)
D> D> n=p®

2 —2x
la,|“n 2
= —_— <
> =l

n>1

we estimate 75,

+o00
_ 2
VRS /1 x /D NglBioeney 4™ [ O dpwGOdx S gl IBiochcco 1 £ 133 -

Recall that
Iy (x) = f ;2 ’lefx’ml |de;x}2ad duw(), « e N, 0 <x < 1.
D4 [x + 0 (2)]

Lemma 7 There exists a constant C = C(w, d), such that

1 d
1
Ta = /0 xIly,(x)dx < C 1_[ —
j=1wi\p j
The proof of Lemma 7 relies on technical computations (Lemma 8).

log T

oz p and K =

Lemma8 For 0 < T < 1, and a real number p > 2, set L := —
min(1, L). There exists a constant C = C(p, w) > 0, such that

K
J(p,T) = (1ogT)—2/ M (Tp2X> dx
0

_ {M(T) ifB=lor(B<1,p2<T <1,
M(Tp) ifB<1,0<T <p~.

Proof When p=2 < T < 1, the change of variables u = Tp?* gives
J(p.T) = (og T)2 — /110 “ gy
,T) = —_— —Mu)—.

P £ @uogp? Jr P

Sincelog % <logtand 1 < 1 <1 < p?,

1 N\ Y1 1
J(p,T) < (logT)2 (21 ) / log — M (u)—du < M(T).
ogp T T u
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Next suppose that 0 < T < p~2. Since (log T)* > 4(log p)?, we notice that

{fol M(T)dx if B > 1,

1

J(p.T) S f xM(Tp*)dx S {77
0 Jo M(Tp*)dxif B < 1

[m}

Proof of Lemma 7 Resorting to polar coordinates, and using changes of variables, we
have

d
xt¢
. 5/ ( M (pu p,%x> dxdty - --dig,
"o [xto (pivi..... pi V)] 1!:[1 ( )

where Q = {(x,t) cO.1)x (0, 1), Vk=1.d,0 <1, < p,;ZX}.

Fort = (t1,...,17) € (0, 9, set
log # .
L (t) == —————, Ky :=min(1,}), 1 <k <d,
2log pk

[(¢t) := min [;(¢), K :=min(l,]).
Q) 12{12(1"()’ min(L, /)

We observe that Q = {(x,7) € (0, 1) x (0, DY, 0 < x < K()}. Now, for 1 <
k <d,weset Q :={(x,1), t € (0, D9, I(t) =k (t), 0 < x < K()}.
Let (x, t) be in Q. We have

log py

Tog k.
0<tf <Tyy:= tkogpl‘

<1, forl <l <d. 4.4

In addition, since 0 < x < [(?), (4.4) implies p;/1; < pf"(t)\/ﬁ < 1, and we see

that ﬁ > pfk(t)_x > pll"(')_x. Thus

(log pa)o (pi~/11, ..., Pj/1a) = log min (

1 l —-X),
min, )2 og p1 k(1) — x)

1
N

and x + o (p{ /11, ..., p{/1a) 2 —logt.
Set df]; =dt; -- 'd[k—ldtk-i-l ---dty, and

Qi = {(x,t), O<tr <1, O0<ty <Ti,forl #k, O<x<Kk(l)}.

It follows that Jo < ¢, Jux» where

d

xt¢
Tk :/~ ( M (p¥1 )dxdt.
Ok [X+U(17fx/ﬁv’17)16«/5)]2 E ( l )
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We will obtain the Lemma by showing that
d 1
Tk < [ [1w ()]

=1

4.5)

When 8 > 1, we use that, for (x,?) € Qk, and [ # k, M (plz"tl) < M (1)),
altogether with Lemma 8. We derive (4.5) from

Ky (1)
Juk S / / t“ f x (log 1) M (p*ae) dx [ Mdsz | d
O<ze<l1 l_[j#((o‘rk,j) 0 Ik

5/ 1M (1) l_[/ t’M (1)) dt; dtk<H/t]Mt] dt;.

O<ze<l1
J#k

Next, suppose 0 < 8 < 1.If (x, 1) € Oy, notice that, for I # k, tlpl" < t[pzl"(’)

1; this shows that M (pzxtg) <M (p2l"(’) ) Hence, we see that Ty x < Ji + Ja,

where, by Lemma 8 and the relation pzz"(t) Tk_ll,

Ji 5/ tkkM(pktk) 1_[/ th t] )dt, dty,
0<lk<Pk otk

J25/72 1 M (1) 1_[/ t’M t] )dtj dty.
Dy <<l ]7&]{

A change of variables provides the desired estimate.

4.3 Proof of Theorem 1(b) and (c)

If f(s) = X ayn™ and g(s) = Y1 byn ", we have
1
T, f(s) = Z Togn Z axbn i n—*

n=2 kln,k<n

As in the case of H2, the operator

o o0
a; + Za,,n_s = a + Zan(logn)_ln_s

n=2
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is compact on H,,. Thus, set by = 1, and our study will be unchanged if we replace
T, by

00

- 1 _

T f(s) = E Togn E akbpi | n 5,
n=2 kln

Lemma9 If T, is bounded on H2, then g is in Xy, and the operator norms satisfy

1Tel ey < 1Tl ey -

Proof If f(s) = 25 a,n™ is in H2, the function f(s) = > " aywy, 0 isin
H? and ||f||H§, = H fHHZ' Since w; < wy for any integers k, [, the Lemma is proven
by the inequality
2
2 — 2 ~12 =12
“Tgf”Hg, <) (logn) > wi Cab| = HTgf‘Hf
n=2 kln,k<n
O

We will also use the sufficient condition proved in Theorem 2.3 in [13], stating that
if gisin BM O A(Cp) ND, then T, is bounded on H2, with

1T |52 S M8llBmoaccs) - (4.6)
Proof of Theorem 1(b) and (c) 1f g is in BM O A(Cy), T, is bounded on H2, and (b) is
a consequence of (4.6) and Lemma 9.

To prove (c), we use that (T, )’ = fg’, and that H?2 is embedded in A; s (C]/z),
with § = §(w) > 0. We set

5 (O’ . 1)84—1
dvg(s) = |g'(s)] %dvm.
|s + 3|

Now formula (3.1), the boundedness of T, on H%, and Lemma 1 induce that
2 2 2
[C IFOPAve) S ITef T, 0y <€ [ Tef 5 <) [ Tell iy 1715
|/2 ’ w w w

Thus, v, is a Carleson measure for H2 and || v, | CM(H2) ST ZE(H%) .By Lemma 6,

Vg is also a Carleson measure for A; s ((C1 /2) and

2
“vg ||CM(Ai,a((C1/2)) S ” T, ”5(7'(%)) ’
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We conclude by the characterization of the Bloch space given in Lemma 4.
]

We get a result which is in agreement with the situation for Hardy spaces [15],
Bergman spaces [2] or the Hardy space of Dirichlet series 7 [13], with the same
proof.

Corollary 1 If g is in X, then g is in mO<p<ooH5)y and there exists ¢ > 0, such that

the function e“1Bsl s integrable on D°, with respect to d iy,.

5 Compactness

We now present a little oh version of Theorem 1.
If the symbol is a vector of the standard orthonormal basis of Ha, that is

1/2 —
g(s) = ewn(s) == wy*n

the operator 7 T, is diagonal, and its eigenvalues

22 W, Wk logn 2
kT wa \logn + logk

tend to 0 as k — +o00. Thus T}, is compact. It follows that every Dirichlet polynomial
generates a compact Volterra operator on Hﬁ,.

5.1 Case when Bg depends on a finite number of variables

We approximate a symbol g which is in Blochg(Cp) N D, by a Dirichlet polynomial
P in the Bloch(Cp)-norm. From Theorem 1(a), T, is approximated in the operator
norm by the compact operator Tp.

Theorem 2 [f g is in Blocho(Co) N Dy, then T, is compact on Hi).

5.2 Sufficient/necessary conditions for compactness

s

In general, if the symbol g(s) = anz b,n™" satisfies an inequality of the form
H T, HZL(H2) < anz Ibnl2 W(n) < oo, we approximate T in the operator norm by
the compact operator T, . Therefore, T, is compact (see [13]).

The little oh version of Theorem 1 is related to the properties of VM O A(Cp) N D,

and with the concept of vanishing Carleson measures.

Theorem 3 Let g be in D.

(1) If g isin VM O A(Cy) ND, then Ty is compact on Hi).
(2) If T, is compact on H%), then g is in Blocho(Cy 2).
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Proof In order to prove (1), we use that VM O A(Cpy) N D is the closure of Dirich-
let polynomials in BM O A(Cp) (see [13]), and that, from Theorem 1, we have
|7, ”g(H%) S gllsmoaccy):

Recall that Hﬁj isembeddedin A; 5(Cy2),8 = 6(w) being defined in (2.5). Assume
that 7, is compact on Hﬁ), and consider the measure

5 (O‘ _ l)8+1
dvg(s) = |g/(9)] dem.

2

Let ( fi)r be a weakly compact sequence in sz. Formula (3.1), and Lemma 1 imply
that

2 2
A UOP v = Tefelly oy S et

By the compactness of T, v, is a vanishing Carleson measure for A; 5(Cy/2), with

limf | fi(s)]> dvg(s) = 0.
k— 00 (Cl/z

Now, g is in Blochg(Cj2), by the characterization of vanishing Carleson measures
(Lemma 5).
O

6 Membership in Schatten classes

Let g be a non constant symbol. As in the case of 2, the Volterra operator T, on H2,
does not belong to any Schatten class.

Theorem 4 If the Dirichlet series g(s) = Y_, -, byn™" is not 0, then Ty : H2 — H2
is not in the Schatten class S, for any 0 < p < oc.

Proof Recall that (e, ), is an orthonormal basis of Hg). We follow the reasoning of
Theorem 7.2 [13]. Using that wy, < wyw,, we see that, for N > n,

~

+00 2 2 2 2 2 2
2 |bk|” (log k)™ w |by |~ (log N)= w lbn | (log N)~ 1
[Teeunllg =3 2l COBIY tn, Pal Cos 8y, o Ion)-Coe D) L

(log(km))? wrn —  (log(Nm)? wy, ~  (2logn)>  wy

k=2

For p > 2, we obtain

+o00
17ells, = D [Teewn]f = +oo.
n=N
Therefore T, is not in S, for p > 2, neither for 0 < p < 0. O
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7 Examples

In this section, we study the boundedness of T, on ’sz , for specific symbols g.
We consider fractional primitives of translates of the weighted Zeta function Z,, and
homogeneous symbols, which are the counterparts of the symbols presented in [13]
in the 72 setting. The techniques of proof, as well as the results are similar to theirs,
and we omit the details.

7.1 Fractional primitives of translates of Z,,

Proposition 4 With the notation of (2.5), take 1/2 <a < 1,2y > §(w) — 1. If

o —a

n —S
Ss) = Wyp—— 1"
gls) =) S—

n=2

then Ty is unbounded on H2,.

Proof Abel summation and the Chebyshev estimate induce that g is in sz. If f(s) =

Yoo yann ™ and g(s) = Y oo, lfg”nn_‘v, we set Ay = 3y, dn/kbr, 50 that

s 1
[7:s],. =2 oA

(wn log n)2

We adapt the test functions of [13], and take f;(s) = ]_[jj-zl (1 + wé/zpj ) for

J > 1. By construction, it satisfies || fy ||sz = 27/2 Now, for J a non-empty subset
of {1,...,J}, wesetny = Hjej pj,and observe that

1T1-k _ 171
Ang = Z wy 7 [log (pji -+~ pi)] " wh (P pi) " Hwy
1<k<|T 1 pjy s P }CT

First assume that y > 0. From the prime number Theorem, we obtain that

N‘C}

Angy 2wy [Jlogj] T+ Z wlzd2 (le "'ij)

L<k<I T pjy iy JCT

Therefore, it follows again from the prime number Theorem that

i,z X (710877 TT (1 +wdp;¢)

Telimigi=12 (logny) jeg

> /-1 [/ log J]_zy min 2 l_[ (1 + w;/zp]_“>
\T121/2 (logng)” je7
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lful —a 2
> e e D 2
H

w

for some constant ¢ > 0, and 7, is unbounded. The case when y < 0 is similar. O

7.2 Homogeneous symbols

An m-homogeneous Dirichlet series has the form

g(s) = Z b,n~".

Q(n)=m
We extend Theorem 4.2 in [13] to the spaces Hi.

Proposition 5 There exist weights W, (n) such that for g(s) = ZQ(n):m byn—*,

1/2
1Tel agy < | Do 1oalP W) | (7.1)
Q(n)y=m
Precisely, there exist absolute constants Cy, for which
Cq form =1,
logn _
Wn(n) = { Ciogyn  form=2,
Cmao';n% form > 3.

Moreover, when m = 2, log, n cannot be replaced in (7.1) by (10g2 n)l+8 for any
e > 0.

Proof If a linear symbol (m = 1) g(s) = Y_ pep bp p~* belongs to H2, we observe
that ||g||%12 =2 IIgII%,2 =B+1 ||g||f42 . Hence, it follows from Theorem 4.1 in
i B

[13] and Lemma 9 that 7}, is bounded on H%) and || T, ”L(H%,j) < || T, ||£(H2) . One can

choose C| = max ((/3 + D7t 2_/3).

(7.1) is a consequence of Theorem 4.2 in [13] and Lemma 9. We now prove the
sharpness of the factor log, n. We assume that for some ¢ > 0, every 2-homogeneous
Dirichlet series g satisfies

1/2

I
1Tl o, <C2| 30 1alP —20 ] (7.2)
‘ Q(n)=m (1082 n)
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For x alarge real number, and g ~ ¢* a prime number, the symbol considered in [13]
is

3 (log,(pg)) "
P

gx(s) = (pg)".

x/2<p<x
We take as test functions
400
fX(S) = Zann* = 1_[ (1 + wl/2 7S) .
n=1 x/2<p<x

If Sy denotes the set of square-free integers generated by the primes x/2 < p < x,

we have ||fx||H2 = |S¢| = 2¥™ where N (x) := m(x) — m(x/2). Now,
| T, f ||’;’1(2 (log (pq))l+£/2 2

x 2
R Z w,, (og(ng)~* | Y log(pg)——————ay/,

1/ ll3 x| oS ana p
$om—11 @™

If n € Sy, and p|n, we have a,/p, = w; s Wy = wy , and wyg = wywy.
Thus,

2
”TgxfoHi - L(logx)”s Zw(n)z.
Ifelfe IS X2

nesy

Now 3, cs. wn)? = Z/ivz(’f) (N(x)) = N(x)?2N® and (7.2) does not hold, due to

172 Sl
= (1 e,
iy, ~ 0020

m}

We will exhibit an homogeneous symbol g which is in sz N Blochy(Cj /2), but not
in X,,. In fact, we observe that g is in every HJ.

Lemma 10 If g is an m-homogeneous Dirichlet series in 'sz, then g isin ﬂo<p<ooH5
and, for any 0 < p < 09, there exists ¢ = c(m, p) such that

gl < cliglize, - (7.3)

Proof It is enough to consider the case p > 2. We first prove the inequality for p = 2K,
k being a positive integer, by an induction argument.
Obviously, it holds for k = 1.
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Our proof is inspired of Lemma 8 in [27]. For any integer m, there exists a constant
C(m), such that max (wy,, d(n)) < C(m), whenever Q(n) = m.
If f(s) = ) ,aun™* is m-homogeneous, then f2(s) = > ban™ is 2m-

homogeneous, and |bn|2 <d(n) Zk\n |ak|2 |a,,/k|2 . Since w;, > /wg/Wayk,

2
10 = |72, = X2 dowy | Dl fanul?
kin

v Q(n)=2m
|ax |? ’an/k|
< C(Q@2m)
sw;::zm %: VERVART

2\ 2
= C@m) (Z %) < CQmCm) | fll3p -

k

Now, suppose that, for some k, an m-homogeneous Dirichlet series / satisfies
2k 2k
”h”,leL{< < K(@m,k) IIhIIH%, for any m.

We obtain that

2k+1

2k
1 gter = | 2] < K@m RO | £2 H = KQm ) £

2k+1

k-1

= K@m, k) [c@m)Com) ||f||;‘ﬁ,]

For general p, (7.3) is a consequence of Holder’s inequality. O
For our construction, we need two technical Lemmas.

Lemma 11 Assume that 0 < § < 1l and 0 < n. For j = 1.3, we set hj(s) =
2123 oj pp~°, where

=3 —

arp = (logy p) ", a2 p =log, p. a3, =log p(log, p) "

For a real number o > 1, set o’ 1= ﬁ Then we have

hi(o) < (logo’)l_a; ha(o) < log, (cr’); hi(o) < o’ (logo’)_n, aso — 1T,
(7.4)

Proof These asymptotics will follow from computations inspired by [4,20]. Recall
that

ALt = Z ! =log, 1 + O(1). (7.5)

3<p=t
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PGa))

(logy 1)°”

we have

Setting f1(¢) =

p—(U—l) +o0
h1<o)=2ﬁ=—/3 Ao £t + 0(1)
p=3 P\10g p

+00 s
= (o0 — 1)/ (10g2 t) t=%dt
3

o’ 400
=(—1 f +/ (logx)' =% e~ =Dy,
log3 o’

Using integration by parts (for the first integral), and a change of variable (for the
second one), we obtain

U/

+0o0
hi(o) = (o — 1) (logx)' ™ dx + / (logy +logs’)' ~* e™Vdy
log3 1

= (0 —1) [x (1ogx)1—3]

1-6

oo 1-5
+ / [(log '8 + (loga”) ]e_ydy
x=log3 1
= (logo”)
The functions A7 and /3 are handled similarly. For x > 3, summation by parts and
(7.5) induce that,

1 Ap(x) /" Ap(2)
A = = dt+0(1) <1 .
200 Z plog, p 10g2x+ 3 tlogt(log, 1)? O = logs x

3<p=x

Set f2(t) := ¢t~ Then,

+00 +0
ho(o) =< —/ A1) f5()dt + 0(1) < (o — 1)/ (logz 1)t~ dt
3 3
eo’ +00
=@ —1) / +/ (log, x)e~ =D gy,
log3 eo’
Now
eo’ eo’
(o —1) (log, x)e @Dy = (0 — 1) (log, x)dx
log 3 log3

< (o0 — Dea’ (log, (ea’)) < logy o’

We perform a change of variable in the integral over [ec’, +00).

400 +o0
Ly = (o — l)f (log, x)e~ @~ D¥gx = / [log (log y +logo’)] e Vdy
eo’ e
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+00
> (log, 0/)[ edy 2 logy o',
e
Since log(a + b) < logaloghb + 1, fora > e and b > e, we obtain
+00
Iy < / [(log2 y)(log, o) + 1] eVdy Slogy o',
e
and I » =< log, o’. It follows that 2(0) =< log, o”.
We now focus on h3. By Mertens’ first Theorem, Asz(x) := Z3§p§x loep _

P
log x + O(1), and putting f3(¢) :=¢~©~D (logz t)_" , we see that

h3(o)

400
- /3 A3 i) + 0(1)

X

+00
(o — 1)/ (logt)t™7 (logy t) " dt
3

o’ +o0
=(@-—-1) / +/ xe (@~ Dx (logx) "dx.
log3 o’

Integration by parts gives that

o,/

Iy:=(—-1 xe” @D (logx) " dx
log3
O_/

= (o —1) x (logx)"dx = o’ (loga’) "

log3

Next, (7.4) is a consequence of

+00
Iy := (0 — 1)/ xe”@TDX (Jog x) 7 dx
O./

1

+00 B
= / ye™ (logy +loga’) " dy
o—1 1

400 -y
<o / Y gy,
1 (loga)"

Lemma12 If2n > land § +n > 1, we have

S = Z ! X

propnimebpy =3 P1P2p3 (1og p1)™ (logy p2)”

(log p3)?
2n )
(logy p3)™" dog(pip2p3)

< Q.
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Proof For pi,p» > 3, we set L := log(pip2) and S3(p1, p2) =
(log ps)® Then, we have
L p3(log; p3)”" (log p3+L)> ’
1
S = Z 553(p1, p2)-

p1.p2.p3 P1P2 (logz 171)2(S (10g2 D2

Under the condition 25 > 1, the sum S3(p1, p2) converges, and

+o00 d
S3(p1, p2) = —f A1)~
3 dr | (log, 1)*" (log 1 + L)2

o(1 o0 1
< oM ~|—/ og! dt
L2 5 t(log, 1)2"(logt + L)?

_om (/L +/+°°) xdx
o2 023 JiL (log x)*" (x + L)*

Integration by parts gives

/ /L xdx 1 /L xdx (log L)~2"
3.1 i= = — ——— =< (log .
log3 (logx)?" (x + L)* ~ L? Jiog3 (logx)*"

2
(log 1) } e 0L<21>

We handle the second integral via a change of variable:

. oo xdx L oo ydy
Iy = % 7 = + ) 2
L (logx)™(x + L) 1 L (1+y) (ogy+logL)

1 La to g
S T f & +/ 9 5 = (logL)l_zn.
(log )" Ji y L y(ogy)="

Therefore

S3(p1, p2) S (log L)'™1, L =log(p1 p2).

We next put M = log p1, and deal with

1
Sp =Y ————Si(pr.p) S Y
o, P2(10g; ) 7 p(log, p)? [log (log p + M)]

2n—1"

-1
With the notation f»(r) 1= [(log2 t)2 [log (log? + M)]zn*l] , we obtain that

o(l)
(log M)*1~!

o)

S2(p1) = (log )71

+o00
—/ A1) fr(dt S + DL+ o,
3
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where
+00 dt
b= / 2 1
3 tlogt (10g2 t) [log (logt + M)]
+00 dt
o= f e
3 t(logyt) (logr + M) [log (logt + M)]
We derive

M +00 dx
= ([ f,) —
g3 Ju ) x (logx)? [log (x + M)

M
< 12 1/ dx ;
[logM]™"" Jiog3 x (log x)
+00

+ (log M) =27 / ————— < (logM)' ™27
M x (logx)

The second integral is estimated in the same way:

M oo dx
e[ 2,7
log3  Jm (x + M)(log x) [log(x + M)]

1 /M dx 1 /+°° dx
+ -
M(og M)?"1 Jiog3 logx — (log M)?1=1 [y x(logx)?

1 x=M M 2 -2
i |: X ] +/ X (ogv) = 0
M(log M)~ \ [ logx | _joe3  Jiog3 2 *

1 1
T log )21 = (log b)21°

A

X

Therefore, we have

S2(p1) S M =1log pi.

(log M)21= 1

It follows that

1
SS) ———————S (PSS ) —————, e:=2+2n—1.
%: pi(logy p)% ; p(log, p)¢

Again, partial summation gives that when ¢ > 1,
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1 +oo log, ¢
—Exsf 9% €+1dt<oo.
= p(og, p) 3 t(logt)(log, t)

Proposition 6 There exists a 3-homogeneous function g which is in (ﬁo<p<oo'H5) N
Blochy(Cy 2), such that T, is unbounded on sz.

Proof Using Lemma 11, we see that, if g’ = —(h1h2h3)%, g’ is convergent on Cj 7,

and its estimate near the line s = % is determined by the behavior of the functions
h; near the line s = 1. Then g is in Blocho(Cj 2), because of

1-6—n
, 1 1 1 n
\g (o)| = T | log 7 log, 7], aso — 1/27.
o 2 g — 2 o — 2

On another hand, the 3-homogeneous function

o o o
g&)=Y b= —11(’)”‘( 2.2 3’;’3 (P1p2p3)”"
n P1,p2,D3 elP1p2p3

is in H3, by Lemma 12, since lIgll3,, =Y, 1bal>w, ' < 3, 1bal® < S < oc.

By Lemma 10, g is in ﬁo<p<oo'H5,.
It remains to prove that 7}, is unbounded on H%;- We again choose as test functions
(cf the proof of Proposition 5)

fr(s) = 1_[ (1 + wé/zp_s) = Zann_s.

%<p§x n>1

Sy is the set of square free integers generated by 7 < p < x. Set V, =
[ne s wm =N}
Forn € V,, set

Ani= Y by pyps (log(pipaps))a_n__

r1r2r3
pip2p3ln
The coefficients in A,, satisfy

log x

x3/2 (log, x)n+5+1 '

by, paps og(p1p2p3)) 2

Since || fx ||%_[2 = | V|, we see that

|7 fel3p = 3wy (ogm™ A2

neVy
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pe Z wz_w(") (w(n) log)c)f2 X

neVy

2
log X a)(n) 1/2 o(m)—3
|:x3/2 (log2 x)n+8+l ( 3 ) <w2 ) :|

4
1

znfxn%( ) ,

Hi \ log x x3(log2x)2(8+n+l)

and the proof is complete. O

8 Comparison of X, with other spaces of Dirichlet series

The previous results enable us to derive some inclusions involving X},.

In the context of the unit disk, the space of symbols g for which the Volterra operator
Jg (1.3) is bounded on Ag (D) is Bloch(D). It coincides with the space of holomorphic
g such that the Hankel form (1.5) is bounded, and with the dual space of Ai D).

We shall study the counterparts of these facts for X,.

8.1 Bounded Hankel forms

The Hilbert space sz is equipped with the inner product (., ->H§J . The Hankel form
of symbol g € D is defined on H2 by

Hy(fh) == (fh. g - 8.1

We say that H is bounded on H2, x 'H2 if there is a constant C such that

w
|He(f)] < C 1 flgg, IIhllz, for f,h € Hy,.

The weak product H2 © H2 is the Banach space defined as the closure of all finite
sums F =Y, fihi, where fi, hy € Hi, under the norm

1Fllg ora = inf Y Il filla Ikllpe, -
k

Here the infimum is taken over all finite representations of F' as F =), fihx.

Let Y be a Banach space of Dirichlet series in which the space of Dirichlet polyno-
mials P is dense. We say that a Dirichlet series ¢ is in the dual space }* if the linear
functional induced by ¢ via the Hﬁ)—pairing is bounded. In other words, ¢ € )* if and
only if

v (f)={f. O . [ €P.
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extends to a bounded functional on ).
From its definition, H, (8.1) is bounded on {2 if and only if g € (K2, © H2)".
We aim to relate Hankel forms and Volterra operators. The primitive of f € D with
constant term O is denoted by

+00

3 f(s) =~ f(u)du,

N

We observe that

Hy(fh) = f (+00) h (+00) g (+00) + (07! (f').g) L +(07"(F)g), . -

The Banach space 3~ (B'H%} ©} H%)) is the completion of the space of Dirichlet series
F whose derivatives have a finite sum representation F' = ) « S h;{ under the norm

IF g1 1z 022y = 1F(+00) + D Il fillzez, Wekllzez,
k

where the infimum is taken over all finite representations. The product rule (fg)" =
f'g + fg' implies that

HEOH2 9! (aH; © Hi) ,
and then
—1 2 2)\* 2 2\*
(7 (2 0m)) c (o) . (8.2)
It has been shown in [14] that, for the space H(z) = {f e H? : f(+00) = 0}, the
inclusion (8_1 (BH% ®© H%))* - (H% o)} 'H%)* is strict. As for the space sz, the
question whether the inclusion is strict remains open.

The membership of g in (8’] (8H3) ©) leu)))k is equivalent to the boundedness of
the so-called “half-Hankel form”

VORI G FEON (83)

As in the case of 12, the boundedness of T, implies the boundedness of H.

Theorem 5 If the Volterra operator T, is bounded on sz, then the Hankel form H,
is bounded.

Proof We adapt the proof of Corollary 6.2 in [13] to the framework of the polydisk
D®°. Polarizing the Littlewood—Paley formula (1), we get

+ -
(f. 82 = f(+00)g(+00)+4/Dw/Rf0 oof)/((0+il)g§<(0+if)0daliittzduw(x)-
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Then, we derive an expression of the half-Hankel form

+00
(a_l(f/h) g?—ﬂ = /OO// fX(a+1t)hx(a+ll)gx(o'—|—ll)o'da de(X)

Since T is bounded on Hﬁ), the Carleson measure characterization (4.1) induces that
the form (8.3) is also bounded. Then H, is bounded on Hﬁ) O] sz by the inclusion
(8.2). |

The previous Theorem states that we have
2 2\*
Xy (M oM) .
The rest of the section is devoted to study the reverse inclusion.
Let lfu denote the Hilbert space of complex sequences a = (ay,), such that

172

2
. lan|
lallg = |2 2~ <o°

n>1 n
A sequence (p,), generates the following multiplicative Hankel form

+00 +00

plab) =33 anby 2™ a b el (8.4)

mn

n=1m=1

The symbol of the form is the Dirichlet series g(s) = an | Pun”%. The form p is
said to be bounded if there is a constant C such that

lo(a.b)| < Cllallz 1612 .
If f and h are Dirichlet series with coefficients a and b, respectively, we have
Hy(fh) = ([h. gk = p(a.b).
When the symbol g has non negative coefficients, there is equivalence between the
boundedness of H, and the half-Hankel form (8.3). In fact, the proof given for H2 in

[14] is valid for the spaces Hi.

Proposition7 Let g(s) = Zn>1 pnn~* be in H2 The linear functional defined on
M)

ve(f) = (f, &)
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is bounded on 3~" (E)H%} O} H%}) if and only if the weighted form

“+00 +00

1
Jg(a, b) — Z Z ambn ogn Pmn

logm + logn wy,

n=1m=1

(where it is understood that for m = n = 1, the summand is 0) is bounded on 12, O 2.
The norms are equivalent, i.e.

gl -1 @rg.ora )y =< [vell =< 101l + [ Je ] -

If p = 0 forall k, then g € (37" (912, © H2))" if and only if g € (H2, © H2)",
with equivalent norms.

Proposition 7 will enable us to provide examples of symbols g for which the Hankel
form Hg and the half-Hankel form (8.3) are bounded, but the Volterra operator 7, is
unbounded (see the proof of Proposition 9). This differs from the case of weighted
Dirichlet spaces on the unit disk, for which the boundedness of H, the form (8.3) and
T, are equivalent [1].

For convergence reasons, we will consider Hankel forms defined on Dirichlet series
without constant term. So we will work on the space

sz,oz{feﬁzw : f(+oo)=o}.

We have seen in Lemma 1 that the space le,j is embedded in a Bergman space of
the form A; s ((Cl /2). For § > 0, it is thus natural to define the Hankel form

+00

)
H®(fh) = f(o)h(o) (a - %) do, f.heM . (8.5)
1/2

Such multiplicative forms have been considered in the context of H? [12] and on A%
[91.

Since KM (s,u)—1= anz wyn"“n~" is the reproducing kernel of Hﬁ)’o, we
see that H®)(fh) = (fh, ¢s)7s2 , where

_ +00 KH%U . 1 zSd _+oo wh, ~
o= [, [t =] (r=3) a0 = 8 i

n=2

Proposition 8 Let § > 0 as in (2.5). Then H®) defined in (8.5) is a multiplicative
Hankel form with symbol ¢s, which is bounded on Hﬁ)’o © sz,O'
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Proof The proofis similar to that of Theorem 13 in [9]. The Cauchy-Schwarz inequal-
ity ensures that

+o0 1 8 172 +o0 1 3
ERIDIE / |f @) (o - —) do / (@) (a - —) do
1/2 2 1/2 2

If f(s) = ;3 apn—*, notice the pointwise estimate

1/2

+00
IF@F < 1f3z (Z wnn—2“> SISl 470, foro = 1.

n=2

Since the bounded measure du(o +it) = xy1,2,11(0) (a — %)6 do, supported on the
real line, is Carleson for A; s ((C1 /2), wu is Carleson for sz by Lemma 6, and

+00 5 1 8 1 +00 5 1 ) )
[, vel (o-5) d"=</1/2+/1 @i (o= 3) do <1

m}

We next exhibit symbols giving rise to bounded Hankel forms and bounded half-
Hankel forms, though the associated Volterra operator is unbounded.

Proposition 9 We have the strict inclusions

XL ) o (Ha 01 ,) s

Xw Cx (Hi @'Hi})*.

Proof 1Tt just remains to check the strictness of the inclusions. For the exponent § =
8(w) and % < a < 1, consider the symbol in sz 0

+00

Wp —
8= o
i n (logn)

From Proposition 8 and the fact that the coefficients are positive, g isin (Hﬁ) 0® H,QU ’0)*
for any % < a < 1. In fact, the half Hankel form corresponding to g is bounded. We
have seen in Proposition 4 that T}, is not bounded on ’H%}. Since T, 1 = g, g does not
belong to X(leu,o)-

In order to prove that g € (sz © lev)*, we consider the associated multiplicative

form p (8.4). Let f, h be Dirichlet series with coefficients a, b, belonging to sz.
Since
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P = 0 =
a,b) = E amby 2 + E by +b E ay—=
:0( ) m nwmn+ 1 nwn"l‘ 1 mwm
m,n>2 n=1 m=1

— Hy (f = f (00)) (g — 8 (00))) + f (00) (B, g}y + g (00) (f . 8)re2

the first part of the proof entails that H, is bounded on H2 © H2,. |

8.2 X, and the dual of ],
Keeping in mind the results known for Bergman spaces of the unit disk, it is natural

to compare X, and (H})".
In general, the dual of H}H is not known. However, it is shown in [9] that

Kc(al) (8.6)

+00
n=1

S A,
Y lanl? <00
= dn)]

The following consequence of this inclusion will stress upon the difference between
the finite and infinite dimensional setting.

Proposition 10 (.A%)* is not contained in X (.A%)

where K is the space of Dirichlet series f(s) = a,n~—* such that

Proof By Abel summation and the Chebyshev estimate, the symbol

=X dm) 1
g(s) = ;Wnﬂ, fOI‘E <a<l,

is in K, and thus in (.A{f< However, T is unbounded on A% (Proposition 4). O

8.3 X}, and the spaces H',,J,,

It has been shown in [13] that BMOA(Co) N D C X (H?) Cx Mo<p<coHP. We
have an analogue for Bergman spaces of Dirichlet series.

Theorem 6 We have the strict inclusions
BMOA(Cp) N'D Cx Xy C No<p<ocHP.

Proof The inclusions have been proved in Theorem 1 and Corollary 1. As observed

in [13], the symbols g(s) = Z;ﬁ'og :ﬁg’g %, where 1 is the completely multiplicative

function defined on the primes by ¥ (p) := Ap~'logp, 0 < A < I, are in X (H?),
and satisfy
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=X log p 1
Zl/f(n)n_” = exp <AZ 1+a) = exp <A;>, o> 0.
n=1

Hence, they are not in BM O A(Cy), though they belong to X, (Lemma 9).
The second inclusion is strict by Proposition 6. O

—a

With the method of Proposition 4, one can show that g(s) = anz ﬁl)ﬂn’s ,1/2 <

a < 1, isnot in X, though it belongs to BM O A(C_,) [13]. Therefore, we have the
strict inclusion

Xuw Cx Bloch(Cy2).

8.4 X, N D, and Bloch spaces
Theorem 7 Let d be a positive integer. The following inclusions hold
Dy N Bloch(Co) C Dy N X,y Cx B~ Bloch(DY).
Proof The first inclusion has been shown in Theorem 1(a).
If g is in Dy N &y, Theorem 5 implies that H, is bounded on sz. Therefore,
the form Hp, (1.4) is bounded on the Bergman space H2 (D). From [17], Bg is in

Bloch(D9).
Here is a function g which is not in X, such that Bg is in Bloch(ID?). Suppose that

1 1
/!
g'(s) = 1_2_slog(1_3_s>, s € Co.

Straightforward computations show that Bg € Bloch(D?). The norms ||. | Afg 2) and

Il B3(D?) being equivalent, our setting will be the space A% (D?). Now, for

F(z)—zw —Zanz,ze]D)

define f(s) = F275)F(37"), for s € Cy. We have

oo

2
1
=||F
||f||Hz [ ||A2 ) <’; (n+ 1) (log(n + 1))2> -

Putting

hi(z1) = F(z1)

1 o
—— =) Anzl, u €D,
! m=0
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l o0
ha(z2) = F(z2) log <1—22) = Z Bz, 20 €D,

n=0
5 pt
we have A, 2 ({g;(lT)H) and B, 2 (n + 1) 2 . Therefore,
2 2
2 -1 2 |Am| |Bn|
T - HR hih ‘ =
17l 18] 2 2, m;:] (m+n+12m + DFn + 1)F
1 1 1 1
2Y Gt =Y =+
+=1 (log(m + 1)) (m+1) = (m+ 1)log(m + 1)
which proves the claim. O

A consequence of Theorems 1 and 6 is that
Bloch(Cy) N D, C 00<p<ooH5,w-

This inclusion can be viewed as a counterpart of the situation of the disk, where
Bloch(D) C No<p<coAfy (D).
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