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Abstract
In this paper, we study some properties of Takagi functions and their level sets. We
show that for Takagi functions Ta,b with parameters a, b such that ab is a root of a
Littlewood polynomial, there exist large level sets. As a consequence, we show that for
some parameters a, b, the Assouad dimension of graphs of Ta,b is strictly larger than
their upper box dimension. In particular, we can find weak tangents of those graphs
with large Hausdorff dimension, larger than the upper box dimension of the graphs.

Keywords Assouad dimension · Littlewood polynomial · Level sets of Takagi
functions
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1 Introduction

In this paper, we study graphs of the following functions,

Ta,b(x) =
∞∑

n=0

anT (bnx),

where a, b are real parameters a, b such that a < 1, b > 1, ab ≥ 1 and T : R → R

is the tent map which has period 1 and defined on the unit interval as follows,

T (x) =
{
x x ∈ [

0, 1
2

]

1 − x x ∈ [ 1
2 , 1

]
.
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250 H. Yu

Such functions Ta,b are called Takagi functions. Originally the Takagi function was
referred to as T1/2,2 but no confusion should appear if we also call Ta,b to be a Takagi
function. There has been a lot of interest in theHausdorff and box counting dimensions
of the graphs of such functions. For the box dimensions we know from [14, Section 2]
and [4, Theorem 2.4] that the upper box dimension of graphs of these functions Ta,b

can be computed by the following formula

B = 2 + ln a

ln b
= 1 + ln ab

ln b
.

The Hausdorff dimensions of graphs of these functions are harder to obtain, see [19],
[5] and the references therein for more recent results on related questions.

One of the results of this paper is about the Assouad dimension of some Takagi
functions. In what follows, for a function f : R → R, we denote the following set

� f = {(x, y) ∈ R
2 : x ∈ [0, 1], y = f (x)},

to be the graph of f over the interval [0, 1].
Theorem 1.1 (Assouad dimension) Let a, b be positive numbers and the product ab >

1 be a root of a Littlewood polynomial of degree k − 1, namely

k−1∑

n=0

εn(ab)
n = 0,

for a sequence {εn}n∈{0,...,k−1} over {−1, 1}. Furthermore, if b is an integer greater
than 2, then we have the following result,

dimA�Ta,b ≥ 1 + 1

k
.

Remark 1.2 In fact, the proof of this theorem shows that

dim1/B
A �Ta,b ≥ 1 + 1

k
,

where B = ln(ab2)/ ln b and dim1/B
A is the Assouad spectrum with parameter 1/B.

In this paper, we focus only on the Assouad dimension. For more details on Assouad
spectrum, see [10].

Notice that by keeping the product ab unchanged and making b larger, this lower
bound can be larger than the upper box dimension ln ab2

ln b for large b. For example,

when we choose parameters such that ab =
√
5+1
2 , b = 8, then dimB�Ta,b ≈ 1.23 and

dimA�Ta,b ≥ 4/3.
One consequence ofTheorem1.1 is that there exist largeweak tangents of the graphs

of Takagi functions. See Sect. 4 for more details about the notions of dimensions, the
definition of weak tangent and some basic properties.
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Lemma 1.3 (Weak tangent) Let a, b be as in the statement of Theorem 1.1, then there
exists a weak tangent E of �Ta,b such that

dimHE = dimA�Ta,b ≥ dimB�Ta,b .

The rightmost inequality can be strict.

Theorem 1.1 follows from the existence of a large level set of graphs �Ta,b and we
think this result is interesting on its own.

Theorem 1.4 Let Ta,b be as in the statement of Theorem 1.1 but we also allow ab = 1.
For each y ∈ R we define the following level set

L(y) = {x ∈ [0, 1] : Ta,b(x) = y} × {y}.

There exists y ∈ R such that

dimHL(y) ≥ 1

k
.

The restriction of the product ab as a certain type of algebraic integers seems to
be strong. However, with some effort, we can show that those algebraic integers are
dense in [ 12 , 2].
Theorem Let L be the set of algebraic integers which are roots of Littlewood poly-
nomials namely, x ∈ C and there exist an integer k ≥ 1 and a finite sequence
εn ∈ {±1}, n ∈ {0, . . . , k − 1} such that

k−1∑

n=0

εnx
n = 0.

Then L ∩ [ 12 , 2] is dense in [ 12 , 2].
Proofs of the above result and its generalizations can be found in [2,3,18].

2 Discussions and future work

In this section, we give some backgrounds of Theorems 1.1 and 1.4. We also pose
some questions which are related to the results in this paper.

2.1 Assouad dimensions of graphs of functions

Theorem 1.1 deals with the Assouad dimension of some Takagi functions. It is natural
to think about the Assouad dimension of other nowhere differentiable functions, for
example, Weierstrass functions and graphs of the Wiener process. For the latter, we
have the following result ([12, Theorem 2.2]).
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252 H. Yu

Theorem 2.1 (HY17) The graph of the Wiener process W (.) over the unit interval has
Assouad dimension 2 almost surely.

We have not completely determined the Assouad dimension of any Takagi function
yet.We only showed that the Assouad dimension could be strictly larger than the upper
box dimension for graphs of Takagi functions.

Question 2.2 For a, b ∈ R
+ and ab > 1, determine the Assouad dimension for the

graph of Ta,b.

2.2 Level sets of Takagi functions

For more details about the level sets of Takagi functions, see [1,16]. Notice that if we
set a = 0.5, b = 2 then we can find level set of Ta,b with Hausdorff dimension at least
0.5. This is sharp, see [6]. For other values of a, b for example a = (

√
5+1)/16, b = 8

we see that we can find a level set with Hausdorff dimension at least 1/3 and we do
not know whether this is sharp.

Question 2.3 What is the largest Hausdorff dimension achieved by the level sets of
the Takagi function T√

5+1
16 ,8

?

3 Notation

1. For a real number x ∈ R we use the symbol x+ to denote a number x + ε where
ε > 0 is some fixed positive number whose value can be chosen freely and we
will point out the specific value of ε when necessary. Similarly, we use x− for a
number smaller but close to x .

2. For a function f : R → R, the following set

� f = {(x, y) ∈ R
2 : x ∈ [0, 1], y = f (x)},

is called the graph of f over the interval [0, 1].
3. For a real number x , we use 	x
 to denote the greatest integer that is not strictly

larger than x .

4 Preliminaries

We will now introduce some notions of dimensions which will be used in this paper.
We use Nr (F) for the minimal covering number of a bounded set F in R

n with balls
of side length r > 0.
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4.1 Hausdorff dimension

The Hausdorff dimension of F is defined to be

dimHF = inf

{
s : ∀δ > 0, ∃{Ui }∞i=1 such that

⋃

i

Ui ⊃ F,
∑

i

diam(Ui )
s < δ

}
.

4.2 Upper box dimension

The upper box dimension of F is

dimBF = lim sup
r→0

(
− log Nr (F)

log r

)
.

4.3 Assouad dimension and weak tangents

The Assouad dimension of F is

dimAF = inf

{
s ≥ 0 : (∃C > 0) (∀R > 0) (∀r ∈ (0, R)) (∀x ∈ F)

Nr (B(x, R) ∩ F) ≤ C

(
R

r

)s }

where B(x, R) denotes the closed ball of centre x and radius R.
An important tool for studying the Assouad dimension is weak tangents introduced

in [17] and microsets in [11]. The next definition appeared in [9, Definition 1.1].

Definition 4.1 Let X ∈ K(Rn) be a fixed reference set (usually the closed unit ball
or cube) and let E, F ⊂ R

n be compact sets. Suppose there exists a sequence of
similarity maps Tk : Rn → R

n such that dH(E, Tk(F) ∩ X) → 0 as k → 0. Then E
is called a weak tangent of F .

Here (K(Rn), dH) is a complete metric space with the Hausdorff metric, namely,
for two compact subsets A, B ⊂ R

n is defined by

dH(A, B) = inf{δ > 0 : A ⊂ Bδ, B ⊂ Aδ},

where for any compact set C ⊂ R
n

Cδ = {x ∈ R
n : |x − y| < δ for some y ∈ C}.

Lemma 1.3 is a direct consequence of Theorem 1.1 and the following result, see
[15, Proposition 5.7].
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Theorem 4.2 (KOR) Let F be a compact set with dimAF = s. Then there exist a weak
tangent E of F such that

dimHE = s.

In other words, we have

dimAF = max{dimHE : E is a weak tangent of F}.

4.4 Covering by disjoint cubes

For convenience, in this paper we will count covering number with disjoint squares
rather than balls. We denote S(a, R) for a ∈ R

2, R > 0 as the square centred at a with
side length 2R whose sides are parallel to the coordinate axis. Since we are dealing
with graph of functions, the choice of axis is natural.We denote the following covering
number,

N (F ∩ S(a, R), r) =
∣∣∣∣

{
(i, j) ∈ Z

2 ∩ [0, 	R/r
 + 1]2 :

S((a − R/2 + r/2 + ir , a − R/2 + r/2 + jr), r) ∩ F �= ∅
}∣∣∣∣.

This is equivalent to Nr (F∩B(a, R)) in the sense that there exists a constantC > 0
such that for all a ∈ F, 0 < r < R < 1 we have the following inequality,

C−1Nr (F ∩ B(a, R)) ≤ N (F ∩ S(a, R), r) ≤ CNr (F ∩ B(a, R)).

4.5 Some properties of Takagi functions

In this paper, we will use the following result whose proof can be found in [13], and
we use the version presented in [4, Theorem 2.4].

Lemma 4.3 Let T : R → R be a continuous piecewise C1 and periodic function.
Then the following function

Ta,b(x) =
∞∑

n=0

anT (bnx)

must satisfy either one of the two properties,

1: Ta,b is piecewise C1.
2: For a positive constant C > 0 and any interval J ⊂ R we have the following

inequality,

sup
x,y∈J

|Ta,b(x) − Ta,b(y)| ≥ C |J |− ln a
ln b .
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Weak tangent and level sets of Takagi functions 255

Notice that if a < 1, ab > 1 then − ln a
ln b ∈ (0, 1) and we see that if |J | < 1 then

sup
x,y∈J

|Ta,b(x) − Ta,b(y)| ≥ C |J |.

Remark 4.4 When T is the tent map defined in the beginning of the first section, it is
known that when a < 1, ab ≥ 1, the function Ta,b is nowhere differentiable therefore
only the second property of Lemma 4.3 can be true.

5 Large level sets, proof of Theorem 1.4

We show that there exist large level sets for function Ta,b with certain parameters a, b.
Since ab is a root of a Littlewood polynomial we see that

k∑

i=0

εi (ab)
i = 0

for an integer k ≥ 1 and some choice of εi ∈ {±1}. Next we consider the first k terms
partial sum

F1(x) =
k−1∑

n=0

anT (bnx).

The derivative of the above function is not continuous at x = mb−k for integers m.
Let us now assume that x is an irrational number then the derivative is

F ′
1(x) =

k−1∑

i=0

εi (x)(ab)
i ,

where εi (x) ∈ {±1} depends on the b-nary expansion of x . In particular, if

x = 0.b1b2 . . .

then

εi (x) =
{
1 bi ∈ [0, b/2]
−1 bi ∈ (b/2, 1].

Therefore we can find at least 2 disjoint intervals of length 1
2bk−1 where F ′

1(x) = 0
and F1(x) = a1 is for a constant a1 ≥ 0 on those two intervals. Indeed, when

k−1∑

i=0

εi (ab)
i = 0,
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we also have

−
k−1∑

i=0

εi (ab)
i = 0.

So there are at least two intervals we can find and the union is symmetric with respect
to the line {x = 0.5}. Then because F1 is also symmetric with respect to the line
{x = 0.5}we see that F1(.) takes the same value on those two intervals, say, I1 and I2.

We consider the next k terms sum

F2(x) =
2k−1∑

n=k

anT (bnx).

Then we can find b many intervals of length 1/2b2k−1 in I1, I2 such that the above
sum stays constant a2 ≥ 0 on those intervals. To see this, consider I1, which is an
interval of length 1/2bk . Now observe the following

F2(x) =
2k−1∑

n=k

anT (bnx) =
k∑

n=0

an+kT (bkbnx) = ak F1(b
kx).

Therefore the graph of F2 is an affine copy, or intuitively speaking, a narrowed version
of the graph of F1. Then we see that there are exactly b many intervals in I1 of length
1/2b2k−1 such that F2 equals to a2 on all those intervals. Indeed, over any interval the
form [l/bk−1, (l + 1)/bk−1] the graph of F2 has 2b many plateaux of the same level.
That is to say, we can find 2b many 1/2b2k−1 length intervals on which F2(x) = a2.
Since I1 is only a half 1/bk−1 length interval, therefore we can find b many plateaux
over I1. Here we used the mirror symmetry of F2.

We can apply the above argument to j-th k-terms partial sums for each j ≥ 2
and as a result we can find a Cantor set C such that Ta,b(C) = {c} for a constant
c. By construction, this Cantor set is obtained by first taking two intervals I1, I2
of length 1/2bk−1 then placing b-many intervals of length 1/2b2k−1 inside of each
I1, I2. Then, inside of those intervals of length 1/2b2k−1, we place b many intervals
of length 1/2b3k−1. This procedure goes on indefinitely and self-similarly (just like
the construction of the middle third Cantor set). As a result, the obtained Cantor set is
a self-similar set satisfying the open set condition and its Hausdorff dimension is 1/k
(the contraction ratio is 1/bk and branching number is b, see for example [7, Theorem
9.3]). Thus we have proved Theorem 1.4.

6 Squashing and counting, proof of Theorem 1.1

In order to deal with the Assouad dimension of graphs of Takagi functions we need
to handle the following quantity

N (S(x, R/2) ∩ �Ta,b , r).
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Weak tangent and level sets of Takagi functions 257

The situation is not too bad when we want to deal with the above quantity for � f+g

when one of the functions, say f , is Lipschitz continuous. The following result is a
localized and quantitative version of [8, Lemma 2.1,2.2].

Lemma 6.1 If f : [0, 1] → R is Lipschtz continuous with Lipschitz constant M > 0
and g : [0, 1] → R is continuous then we have the following inequality for 0 < r <

R < 1 whenever R
r is an integer,

sup
a∈[0,1]×R

N (S(a, R/2) ∩ � f +g, r)

≥ 1

M + 2
sup

a∈[0,1]×R

N (S(a, R/2) ∩ �g, r) − M + 2

	M
 + 2

R

r
.

Remark 6.2 For the case when R/r is not an integer, we can replace r with a larger
value

r ′ = R
1

	R/r
 .

As we will eventually choose R/r to be arbitrarily large, r ′ and r are essentially the
same. For any δ > 0, if R/r is large enough the following relation holds

(1 − δ)r < r ′ < (1 + δ)r .

Then the inequality of this theorem holds with 1/(M + 2) being replaced by some
other constant which depends only on M .

Proof of Lemma 6.1 Let a ∈ R
2 and consider the square S(a, R/2). For any r < R we

consider the following rectangles for i = 0, 1, . . . , R
r − 1

Si = [a − R/2 + ir , a − R/2 + (i + 1)r ] × [a − R/2, a + R/2] ⊂ S(a, R/2).

Each rectangle Si contains the following squares for j = 0, 1, . . . , R
r − 1

Si j = [a − R/2 + ir , a − R/2 + (i + 1)r ] × [a − R/2 + jr , a − R/2 + ( j + 1)r ].

Now if Si j ∩ �g �= ∅ we colour it black, otherwise we colour it white. Let ni ≥ 0
denote the number of black squares among Si j , j = 0, 1, 2, . . . , R

r − 1. By continuity
of g, the fact that we have ni black squares implies the following inequality

sup
x,y∈[a−R/2+ir ,a−R/2+(i+1)r ]

|g(x) − g(y)| ≥ (ni − 2)r .

By Lipschitz property of function f we see that

| f (x) − f (y)| ≤ M |x − y|,
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258 H. Yu

this implies that

sup
x,y∈[a−R/2+ir ,a−R/2+(i+1)r ]

| f (x) − f (y)| ≤ Mr .

Then we see that

sup
x,y∈[a−R/2+ir ,a−R/2+(i+1)r ]

| f (x) + g(x) − f (y) − g(y)| ≥ (ni − 2 − M)r .

So we see that to cover the set

{(x, y + f (x)) ∈ R
2 : (x, y) ∈ Si ∩ �g}

we need at least

ni − 2 − M

many squares of side length r . Summing over all i we see that to cover the set

{(x, y + f (x)) ∈ R
2 : (x, y) ∈ S(a, R/2) ∩ �g}

we need at least

∑

i

ni − (M + 2)
R

r

many squares with side length r .
The next fact to notice is that the following set

{(x, y + f (x)) ∈ R
2 : (x, y) ∈ S(a, R/2) ∩ �g}

is contained in a R × (M + 1)R rectangle. This rectangle can be covered by 	M
 + 2
squares with side length R, so for at least one of the 	M
 + 2 squares need at least

∑
i ni − (M + 2) Rr

	M
 + 2

many squares with side length r to cover.
It is then easy to see that

{(x, y + f (x)) ∈ R
2 : (x, y) ∈ S(a, R/2) ∩ �g} ⊂ � f +g.

This implies that

sup
a′∈[0,1]×R

N (S(a′, R/2) ∩ � f+g, r) ≥
∑

i ni − (M + 2) Rr
	M
 + 2

,
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and since R
r is integer we see that

∑

i

ni = N (S(a, R/2) ∩ �g, r).

It follows that

sup
a′∈[0,1]×R

N (S(a′, R/2) ∩ � f +g, r) ≥ 1

M + 2
N (S(a, R/2) ∩ �g, r) − M + 2

	M
 + 2

R

r
,

We can take the supreme of a on the right hand side of the above inequality and the
lemma concludes. ��

Now we can move on to dealing with the Assouad dimension of Takagi functions.
We shall need the following lemma.

Lemma 6.3 For any number 1 < β < 2 and all integers k, there exists a sequence εn
of ±1 such that |∑k

n=0 εnβ
n| ≤ 1

β−1 .

Proof Let k > 0 be an integer, consider the following two functions forming an IFS
(known as iterated function system, see for example [7, chapter 9]),

f−1(x) = βx − 1, f1(x) = βx + 1.

Then for any sequence εn ∈ {±1} with n = 0, 1, 2, . . . , k − 1 we can define an
iteration by

fε0 ◦ · · · ◦ fεk−2 ◦ fεk−1 ,

and notice that

fε0 ◦ · · · ◦ fεk−2 ◦ fεk−1(0) =
k−1∑

n=0

εnβ
n .

So as long as we can find an iteration of this IFS such that the trajectory of 0 stays
bounded by 1

β−1 the existence of a sequence εn will follow. Now since f1(0) = 1 <
1

β−1 which is the intersection of the line y = f1(x) and y = x , we can apply function

f1 before the value exceeds 1
β−1 and apply f−1 before the value drops below − 1

β−1 .
More precisely, we put x0 = 0 and if we find xi ∈ (−1/(β − 1), 1/(β − 1)) then
if f1(xi ) < 1/(β − 1) we set xi+1 = f1(xi ) otherwise we set xi+1 = f−1(xi ). We
need to check xi+1 ∈ (−1/(β − 1), 1/(β − 1)) as well. In fact, if xi+1 > 1/(β − 1)
then f−1(xi ) > 1/(β − 1) and this implies that xi > 1/(β − 1). If xi < −1/(β − 1)
then either f1(xi ) < −1/(β − 1) or f−1(xi ) < −1/(β − 1) in the first case we
have xi < −1/(β − 1). The latter case implies that xi < (2 − β)/β(β − 1) but then
f1(xi ) < 1/(β − 1). So in any case xi+1 ∈ (−1/(β − 1), 1/(β − 1)) as required. This
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procedure gives us an sequence εn , with n = 0, 1, 2, . . . , k − 1 for any integer fixed
k − 1 such that

∣∣∣∣∣

k−1∑

n=0

εnβ
n

∣∣∣∣∣ ≤ 1

β − 1
.

��
Notice that when β is a root of a Littlewood polynomial, it is necessary that 0.5 ≤

|β| ≤ 2. Therefore if parameters of Ta,b are as stated in Theorem 1.1 then 1 ≤ ab ≤ 2
and therefore the result of Lemma 6.3 holds for ab. Now we have all the ingredients
needed to prove Theorem 1.1 however, we find it convenient to introduce the following
general result.

Lemma 6.4 (Squash and count) Suppose Ta,b(x) : R → R is a function of the follow-
ing form

Ta,b(x) =
∞∑

n=0

anT (bnx),

where T (x) : R → R is a piecewise C1 continuous function with period 1 and
a > 0, b > 0, ab > 1. Suppose the following two conditions holds:

1, (interval with slow changing): There exists a positive constant C1 > 0 such that
for any integer M > 0, there is a integer k such that Jk = ( k

bM+1 ,
k+1
bM+1 ) and for

all x1, x2 ∈ Jk the following condition holds,

∣∣∣∣
M∑

n=0

anT (bnx1)) −
M∑

n=0

anT (bnx2))

∣∣∣∣ < C1|x1 − x2|.

2, (large level set): There exists a level set L ⊂ [0, 1] with lower box dimension at
least D, namely,

∃y ∈ R, dimBL(y) = dimB{x ∈ [0, 1] : Ta,b(x) = y} ≥ D.

Then we have the following result,

dimA�Ta,b ≥ D + 1.

Proof For any positive integer M > 0, we can find an integer k and x0 = k
bM+1 such

that (x0, x0 + 1
bM+1 ) ⊂ [0, 1] and on this subset we have the following condition for

the oscillation of the following M-th partial sum

∣∣∣∣
M∑

n=0

anT (bnx1)) −
M∑

n=0

anT (bnx2))

∣∣∣∣ < C1|x1 − x2|,
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Weak tangent and level sets of Takagi functions 261

where x1, x2 ∈ (x0, x0 + 1
bM+1 ). Then we can write that

Ta,b(x) =
∞∑

n=0

anT (bnx) =
M∑

n=0

anT (bnx) +
∞∑

n=M+1

anT (bnx)

= FM (x) + GM (x),

where the functions FM ,GM are the first sum and second sum in the third expression.
Then we see that the graph �GM is actually a ’squashed’ version of �Ta,b , namely we
have the following relation

XM (�Ta,b ) = �GM ,

where the linear transformation XM : R2 → R
2 is defined to be as follows

XM (x, y) =
( x

bM+1 , aM+1y,
)

.

We see that since ab > 1 this linear transformation squashes a square to a very thin
rectangle for large enough M . Now we concentrate on the strip

S =
(
x0, x0 + 1

bM+1

)
× R.

The graph �GM over this strip is the squashed version of the graph �Ta,b over [0, 1].
We want to find a 1

bM+1 -square contained in this strip such that we need a reasonably
large amount of r -squares to cover �GM , where r > 0 is number that will be specified
later. Now because of the bijective linear map XM , covering a 1

bM+1 -square with r -
square in �GM is the same thing as covering the original graph �Ta,b over [0, 1] inside
a 1 × 1

(ab)M+1 -rectangle with rbM+1 × r
am+1 -rectangles.

Now consider the level set L with lower box dimension D mentioned in the second
condition. For some real number y′ we have that

L = L(y′) = {x ∈ [0, 1] : Ta,b(x) = y′} × {y′},

thenwe do box counting in the 1× 1
(ab)M+1 -rectangle containing L . For any (x, y′) ∈ L

the graph �Ta,b intersects the middle axis of the rectangle at (x, y′), so by Lemma 4.3
we see that there exists a positive constant C3 > 0 such that the projection of graph
�Ta,b inside any

1
(ab)M+1 -square centred in L to the vertical axis has length at least

min

(
C3

1

(ab)M+1 ,
1

(ab)M+1

)
.

If M is large enough we need at least
( 1
ab

)−D−(M+1)
many 1

(ab)M+1 -square to cover

this 1 × 1
(ab)M+1 -rectangle because for covering the level set L we already need that
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many squares. Since each square is sufficiently occupied by �Ta,b in the sense that the
curve occupies at least min(C3, 1) portion of the vertical length. This means that for
each such square we need some constant times

1/(ab)M+1

r/aM+1 = 1

rbM+1

many rbM+1 × r
am+1 -rectangle to cover. Now we choose the following value for r

r = 1

(ab2)M+1 =
(

1

(ab)M+1

) ln ab2
ln ab =

(
1

(ab)M+1

) B
B−1 =

(
1

bM+1

)B

,

where B = 2 + ln a
ln b is the upper box dimension of �Ta,b . We denote R = 1

bM+1 and

note that r = R
1
θ with θ = 1

B and we get the following relation

sup
a∈R2

N (S(a, R/2) ∩ �GM , R
1
θ ) ≥

(
1

ab

)−D−(M+1) 1

rbM+1 =
(
R

r

)1+D−

.

The above inequality holds for arbitrarily large M and therefore it holds also for

arbitrarily small R, R
1
θ . This is a covering property for �GM and we can translate it

to a covering property for �Ta,b . By using Lemma 6.1 and Remark 6.2 together with
condition (1) we see that there exist a constant C > 0 such that

sup
a∈[x0,x0+ 1

bM+1 ]×R

N (S(a, R/2) ∩ �Ta,b , r)

≥ C sup
a∈[x0,x0+ 1

bM+1 ]×R

N (S(a, R/2) ∩ �GM ) − C
R

r

≥ C

(
R

r

)1+D−

− C
R

r
.

Then by definition of the Assouad dimension, we see that

dimA�Ta,b ≥ 1 + D.

This concludes the proof. ��
We can now finish the proof of Theorem 1.1. By Lemma 6.4 and Theorem 1.4

we see that it is enough to show that the Takagi functions satisfy condition (1) in
the statement of Lemma 6.4. In fact, condition (1) is satisfied by Ta,b whenever a <

1, b ∈ {2} ∪ [2,∞], ab ∈ (1, 2). We put the last step of proving Theorem 1.1 in the
following lemma.
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Lemma 6.5 If the parameters a, b satisfy the following conditions

a < 1, b ∈ {2} ∪ [3,∞], 2 > ab > 1,

then the Takagi functions

Ta,b(x) =
∞∑

n=0

anT (bnx)

satisfy the condition 1 in the statement of Lemma 6.4.

Proof For each integer M > 0 we shall consider the M-level intervals

IM ( j) =
[

j

2bM
,
j + 1

2bM

]
, j ∈ Z.

If b ≥ 3, we see that

1

2bM
≥ 3

2bM+1 ,

this implies that any interval IM ( j) contains at least two (M + 1)-level intervals say

IM+1(l), IM+1(l + 1).

l, l + 1 is a pair of integers, one of them is odd and the other is even. It is easy to see
that this is also true for b = 2. Then we see that given any sequence ωi ∈ {±1}, i =
0, 1, 2 . . . it is possible to choose a sequence of integers ji , i = 0, 1, . . . such that

Ii ( ji ) ⊂ Ii−1( ji−1) ⊂ [0, 1],

and that ji is even if and only if ωi = 1. We see that

T ′(bMx) =
{
1 x ∈ IM ( j), j is even,

−1 x ∈ IM ( j), j is odd.

So for any integer M > 0 we can find intervals IM ( j) ⊂ [0, 1] such that

DM (x) =
M∑

n=0

anT (bnx))′ =
M∑

n=0

anbnT ′(bnx)

is constant on IM ( j) and the value can take all numbers in the following set

U =
{
t ∈ R : ∃εn ∈ {±1}, n ∈ {0, 1, 2 . . . , M}, t =

M∑

n=0

εn(ab)
n

}
.

Then by Lemma 6.3 we see that the result follows. ��
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