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Abstract
In this paper we prove that the measure algebra of a locally compact abelian group
is semi-simple. This result extends the corresponding result of S. A. Amitsur in the
discrete group case using a completely different approach.
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1 Introduction

In the sequelC denotes the set of complex numbers.We recall that themeasure algebra
of a locally compact Abelian group G is the set Mc(G) of all compactly supported
complex Borel measures onG, which can be identified with the topological dual space
of the topological vector space C(G) of all continuous complex valued functions on
G, when the latter is equipped with the topology of uniform convergence on compact
sets. The space Mc(G) turns into a commutative unital involutive complex algebra
when equipped with the convolution defined by

〈μ ∗ ν, f 〉 =
∫
G

f (x + y)dμ(x) dν(y),

and with the involution

〈μ∗, f 〉 = 〈μ, f ∗〉
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for each μ, ν in Mc(G) and f in C(G). Here f ∗(x) = f (−x) whenever x is in G.
The unit element of Mc(G) is δo, where, in general, δx denotes the point mass with
support set {x}. We call Mc(G) the measure algebra of the group G.

The locally convex topological vector space C(G) is a topological vector module
over the measure algebra when we define

μ ∗ f (x) =
∫
G

f (x − y) dμ(y)

for f in C(G), μ inMc(G), and x in G.
In the special case, when G is a discrete group, the measure algebra is called group

algebra and is denoted by CG. The algebraic properties of the measure algebra, resp.
the group algebra play a basic role in spectral analysis and synthesis onG. In particular,
if G is a discrete group, then it is proved in [1] that CG is semisimple. The purpose
of the present note is to show that this holds in the non-discrete case as well. Our
approach here is completely different from that of [1].

2 Exponential maximal ideals

From now on we always denote by G a locally compact commutative topological
group. An ideal inMc(G) is called exponential if the residue algebra is topologically
isomorphic to the complex field (see [2]). Clearly, in this case the ideal is weak*-closed
and maximal. We will show that the intersection of all exponential ideals is zero. As
a consequence we obtain that the Jacobson radical of Mc(G), i.e. the intersection of
all maximal ideals, is zero.

Recall that the nonzero continuous function m : G → C is called an exponential,
if

m(x + y) = m(x)m(y)

holds for each x, y in K . In this case m(0) = 1.
We shall use the following lemma.

Lemma 1 A necessary and sufficient condition for the ideal I is exponential is that
there exists an exponential m : G → C such that μ is in I if and only if 〈μ, m̌〉 = 0.

In general, we use the notation f̌ (x) = f (−x) for each f in C(G) and x in G.

Proof First we show the sufficiency. We define F : Mc(G) → C by

F(μ) = 〈μ, m̌〉

for each μ in Mc(G). We show that F is a multiplicative functional of the algebra
Mc(G), i.e. F is a weak*-continuous linear functional satisfying

F(μ ∗ ν) = F(μ)F(ν) (1)
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for each μ, ν in Mc(G). The linearity and weak*-continuity is obvious, we need to
show (1) only. We have

F(μ ∗ ν) = 〈μ ∗ ν, m̌〉 =
∫
G
m̌(x ∗ y) dμ(x) dν(y)

=
∫
G
m̌(x) dμ(x)

∫
G
m̌(y) dν(y) = F(μ)F(ν),

which proves our statement.
By assumption, the ideal I coincides with the kernel of F : I = Ker F , and

Mc(G)/Ker F ∼= C, hence I is an exponential ideal.
To prove the converse, let I be an exponential ideal, then I is maximal and

Mc(G)/I ∼= C. Let F : Mc(G) → C be the natural homomorphism and we define

m(x) = F(δ−x )

for x in G. Then we have

m(x + y) = F(δ−x−y) = F(δ−x ∗ δ−y) = F(δ−x )F(δ−y) = m(x)m(y).

Using the fact that finitely supported measures in Mc(G) form a weak*-dense sub-
space, we have

〈μ, m̌〉 = F(μ)

for each μ inMc(G). As m(0) = 1 and m is clearly continuous, we have that m is an
exponential. If μ is in I , then μ is in Ker F , hence

〈μ, m̌〉 = F(μ) = 0.

Conversely, if 〈μ, m̌〉 = 0, then F(μ) = 0, hence μ is in Ker F = I . The theorem is
proved. ��

Closed submodules of the module C(G) are called varieties.
The orthogonal complement X⊥ of a subset X in C(G) is defined as

X⊥ = {μ ∈ Mc(G) : 〈μ, f 〉 = 0 for each f ∈ X}.

Similarly, the orthogonal complement Y⊥ of a subset Y inMc(G) is defined as

Y⊥ = { f ∈ C(G) : 〈μ, f 〉 = 0 for each μ ∈ Y }.

A standard application of the Hahn–Banach Theorem gives the relations

V⊥⊥ = V , I⊥⊥ = I

for each variety V in C(G) and weak*-closed ideal I inMc(G).

123



938 L. Székelyhidi

Also, the following relations are important, and can be proved easily (see [2]):

Theorem 1 For each family (Vi ) of varieties and (Ii ) of weak*-closed ideals we have
(∑

Vi
)⊥ =

⋂
V⊥
i ,

(∑
Ii

)⊥ =
⋂

I⊥
i ,

(⋂
Vi

)⊥ =
∑

V⊥
i ,

(⋂
Ii

)⊥ =
∑

I⊥
i .

3 Themain result

Theorem 2 Let G be a commutative locally compact topological group. Then the
measure algebra Mc(G) is semi-simple.

Proof We show that the intersection of all exponential maximal ideals in Mc(G) is
zero. By Theorem 1, this is equivalent to the relation

∑
I⊥
i = C(G), (2)

where Ii runs through all exponential ideals in Mc(G). By Lemma 1, I⊥
i is the one

dimensional space inC(G) generated by an exponentialmi , henceEq. (2) states that the
finite linear combinations of all exponentials on G form a dense subspace in C(G). To
prove this we use the Stone–Weierstrass Theorem. Indeed, for a given compact setC in
G letAC denote the set of the restrictions of all finite linear combinations of exponen-
tials onG toC . Clearly,AC is a complex linear space in C(C).Moreover,AC is a unital
algebra: indeed, the product of two exponentials is an exponential, and 1 is an expo-
nential. Also,AC is closed under complex conjugation as the complex conjugate of an
exponential is an exponential again. Finally,AC is a separating family: indeed, for any
two elements x �= y in C there exists an exponential m with m(x) �= m(y). It follows
thatAC is uniformly dense in C(C), which implies that the finite linear combinations
of all exponentials on G form a dense subspace in C(G). The theorem is proved. ��
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