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Abstract
Blowup analysis for solutions of a general evolution equation with nonlocal diffusion
and localized source is performed. Sufficient conditions for blowup are expressed in
terms of some Morrey space norms. A comparison of these with recent results on
global-in-time solutions is discussed.
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1 Introduction

We consider here nonnegative solutions u = u(x, t) ≥ 0 of the Cauchy problem

ut = Au + F(u), x ∈ R
d , t > 0, (1)

u(x, 0) = u0(x) ≥ 0, x ∈ R
d , (2)

with the linear nonlocal diffusion operator

Au(x) = (J ∗ u)(x) − u(x) (3)

defined by the convolution of u with a nonnegative radially symmetric function J
satisfying

∫
Rd J (x) dx = 1, and with the nonlinearity (a localized source) defined by
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612 P. Biler

a locally Lipschitz convex function F : [0,∞) → [0,∞), F(0) = 0, satisfying the
condition ∫ ∞ du

F(u)
< ∞. (4)

Similar evolution equations extending the classical nonlinear heat equation thoroughly
presented in [17]

ut = �u + |u|p−1u, x ∈ R
d , t > 0, (5)

and the equations with nonlocal diffusion operators defined by fractional powers of
the Laplacian, α ∈ (0, 2)

ut = −(−�)α/2u + |u|p−1u, x ∈ R
d , t > 0, (6)

and even more general nonlinearities, have been studied in, e.g., [11] (the linear case),
and e.g., [1,13,20] (the nonlinear case).

Equations of the type (1) are related to the differential and integrodifferential equa-
tions (5) and (6) by their long time asymptotic behavior determined frequently by the
linear equations (12)–(13) below, and studied in, e.g., [1,11,13].

There are plenty of results on closely related questions on conditions on the initial
data guaranteeing the local-in-time existence of solutions to Eq. (5) and sufficient
conditions leading to finite time blowup of solutions, see [2,3,14], the latter reference
dealing with a general nondecreasing but not necessarily convex nonlinearity.

A standard theory of the existence of solutions for problem (1)–(2) in [1,11,13]
is developed in the framework of mild solutions, i.e., those satisfying the Duhamel
formula

u(t) = etAu0 +
∫ t

0
e(t−s)AF(u(s)) ds. (7)

Here, u ∈ C([0, T ), L1(Rd)) is required when F ≡ 0, i.e., in the case of linear
equations (1). Note that the semigroup etA is strongly continuous, so that the initial
condition u0 is attained in the sense of L1-limit as t → 0. In the case of nonlinear
equations with, say, |F(u)| ≤ C(1+|u|p), assumption u0 ∈ L1∩L∞(Rd) guarantees
the local-in-time well-posedness of the Cauchy problem (1)–(2) with

u ∈ C1((0, T ), L1(Rd) ∩ L∞(Rd)) ∩ C([0, T ), L1(Rd) ∩ L∞(Rd)),

see [11,13]. In both the cases mild solutions are weak solutions so that, in particular,

∫
(u(x, t)φ(x, t) − u0(x)φ(x, 0)) dx −

∫ t

0

∫
u(x, s)

∂

∂t
φ(x, s) dx ds

=
∫ t

0

∫
u(x, s)Aφ(x, s) dx ds +

∫ t

0

∫
F(u(x, s))φ(x, s) dx ds (8)

holds for t < T and each function φ ∈ C2,1(Rd × [0, T )) ∩ L∞(Rd × (0, T )), which
is completely analogous to the concept of weak solutions of nonlinear heat equations
with either the Laplacian (5) or fractional Laplacian (6).
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Blowup of solutions for nonlinear nonlocal heat equations 613

However, it is convenient to adopt here a slightly more general definition of locally
bounded solutions

u ∈ C1((0, T ), L1(Rd) ∩ L∞
loc(R

d)) ∩ C([0, T ), L1(Rd) ∩ L∞
loc(R

d)),

admitting unbounded initial data which are merely in L1∩L∞
loc(R

d). This is motivated
by the fact that solutions to problem (1)–(2) with data in L1 ∩ Lq

loc(R
d) for some

particular q may exist, see [14] in the case of equations like (5), (6) with general
nonlinearities. Note that this definition permits to consider locally bounded in space
but unbounded solutions as in [4,12].

Remark that unlike the case of the Eqs. (5) and (6), we cannot expect that solutions
are smooth for t > 0, i.e., an instantaneous regularization effect of the semigroup etA
generated by bounded diffusion operators A on solutions is absent.

The phenomenon of a blowup of a solution is understood here in the local L∞
sense, i.e., u is a blowing up solution not later than at t = T > 0 if for some R > 0
the relation

lim sup
t↗T

sup
|x |<R

u(x, t) = ∞

holds. This definition is consistent with the above meaning of solutions requiring
u(t) ∈ L1(Rd) ∩ L∞

loc(R
d) for t > 0.

Theorem 1 on local-in-time solutions to Eq. (1) that cannot be continued to global-
in-time ones is one of the main results in this paper. Proposition 3 interprets a general
condition in Theorem 1 in terms of the Morrey space norms related to approximative
scaling properties of the problem. There are also subsidiary results on the size of
global-in-time solutions compared to blowing up ones in the case of Eqs. (5) and (6).

The main idea here is that we are looking for a single quantity � = �(u0) (a
functional norm) which decides on the blowup versus global existence. Unfortunately,
we do not have a dichotomic partition of the set of admissible initial data but weaker
results like: �(u0) < c implies the global existence while �(u0) > C (with C > c)
leads to a blowup of solutions in Theorem 5. Quite often the condition �(u0) < ∞ is
necessary, but not always sufficient, for the local-in-time existence of solutions, see
[4,18] for the cases of Eqs. (5) and (6).

Notation The homogeneous Morrey spaces Ms
q(R

d) modeled on the Lebesgue space
Lq(Rd), q ≥ 1, are defined for u ∈ Lq

loc(R
d) and 1 ≤ q ≤ s < ∞, by their norms

||u||Ms
q

≡
(

sup
R>0, x∈Rd

Rd(q/s−1)
∫

B(x,R)

|u(y)|q dy
)1/q

= sup
R>0, x∈Rd

Rd(1/s−1/q)
∥
∥1IB(x,R)u

∥
∥
q < ∞, (9)
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614 P. Biler

with the convention Ms
1(R

d) = Ms(Rd). Here, B(x, R) denotes the ball centred at x
of radius R: {y : |y − x | < R}, and 1IB(x,R) is its characteristic function.

The asymptotic relation f ≈ g as s → s0 (with either s0 = 0 or s0 = ∞) means
that lims→s0

f (s)
g(s) = 1, and f � g is used whenever lims→s0

f (s)
g(s) ∈ (0,∞). We will

use the notation g  1 if the quantity g (depending on some parameters) is supposed
to be sufficiently large (in terms of those parameters).

2 Blowup for a general nonlinear source, nonlocal diffusionmodel

Our aim in this paper is to give a simple proof of blowup of solutions for the Cauchy
problem (1)–(2) based on the classical idea of Fujita [12]. We believe that this proof is
simpler than monotonicity arguments given in [1]. Moreover, this argument applies to
a class of initial data much larger than in [1, Theorem 2.4], giving explicit and rather
precise general sufficient conditions on functions u0 in (2) in order to solutions of
(1)–(2) blow up in a finite time, together with estimates of the blowup time, cf. also
[20] for Eq. (6).

Let us briefly recall some facts from Alfaro [1] and Chasseigne et al. [11]. The
linear nonlocal diffusion operator A : L1(Rd) → L1(Rd) defined in (3) is bounded
and generates the semigroup of linear operators etA. This semigroup is represented as
convolutions with kernels kt ∈ L1(Rd), normalized so that

∫
Rd kt (x) dx = 1, defined

by the inverse Fourier transform F−1 on R
d

kt (x) = F−1
(
et( Ĵ (ξ)−1)

)
(x). (10)

Typical and the most interesting examples of functions J are those with their Fourier
transforms Ĵ satisfying

Ĵ (ξ) − 1 ≈ −A|ξ |α, as ξ → 0, (11)

with A > 0, α = 2 (corresponding to, e.g., the case of smooth, compactly supported
functions J ), and those with α ∈ (0, 2), cf. [11, Sec. 1]. Note that for α ∈ (0, 2) such J
do not have finite second moment. As it was studied in [11], the long time asymptotics
of solutions of the linear Cauchy problem

vt = Av, v(., 0) = v0,

is then determined either by that of the classical heat equation

zt = �z if α = 2, (12)

or the fractional heat equation

zt = −(−�)α/2z in the case α ∈ (0, 2), (13)
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Blowup of solutions for nonlinear nonlocal heat equations 615

see (22) below for a precise statement from Chasseigne et al. [11, Theorem 1]. Other
examples of functions J with the Fourier transform Ĵ like Ĵ (ξ)−1 ≈ A|ξ |2 log |ξ | as
|ξ | → 0, are mentioned in [11, Th. 5.1], and then J (x) � 1

|x |d+2 as |x | → ∞. Thus,

they are examples of operators A whose kernels have “heavy tails”: J (x) � 1
|x |n as

|x | → ∞ with some n > d, discussed in [1,11]. For them, if n ∈ (d, d + 2), then
α = n − d ∈ (0, 2) holds. Their semigroup kernels have also heavy tails unlike the
Gauss-Weierstrass kernel of the heat semigroup for α = 2. Besides bounded diffusion
operators (3) studied here, the proof of Theorem 1 below applies also to unbounded
operators � and −(−�)α/2 as was in classical papers [12,20].

Theorem 1 Define the function h(w) = ∫ ∞
w

du
F(u)

. Suppose that u0 ≥ 0 satisfies for
some T > 0 the condition

WT (0)

h−1(T )
> 1 (14)

with the moment WT (t) defined for t ∈ [0, T ) with the kernels kt in (10) as

WT (t) =
∫

Rd
kT−t (x)u(x, t) dx . (15)

Then, any local in time classical solution u = u(x, t) of the Cauchy problem (1)–(2)
cannot be continued beyond t = T .

Proof The function h is decreasing and satisfies h(0) = ∞, h(∞) = 0, by assumption
(4) on the convex function F . By definition (15), we have WT (t) = kT−t ∗ u(., t)(0)
and, of course, z(., t) = kT−t solves the backward diffusion equationwith the terminal
condition

zt = −Az, z(., T ) = δ0.

Following the idea in [12], let us compute the time derivative of WT (t)

d

dt
WT (t) =

∫
kT−t (x)

∂

∂t
u(x, t) dx +

∫
∂

∂t
kT−t (x)u(x, t) dx

=
∫

kT−t (x)(Au)(x, t) dx +
∫

kT−t (x)F(u(x, t)) dx

+
∫

(−AkT−t (x))u(x, t) dx

=
∫

kT−t (x)F(u(x, t)) dx

≥ F(WT (t)) (16)

by the symmetry property of the function J , so that the symmetry of the semigroup,
and the Jensen inequality in the last line. Integrating this from 0 to t , we obtain

h(WT (0)) − h(WT (t)) ≥ t .
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616 P. Biler

If initially WT (0) > h−1(T ) holds, then taking into account the property
limw↘0 h(w) = ∞, we arrive at

lim
t↗T

WT (t) = ∞.

Finally, if limt↗T WT (t) = ∞ then evidently lim supt↗T sup|x |<R u(x, t) = ∞ for
every R > 0 which means that u blows up not later than at t = T . Indeed, we have
limt↗T sup|x |>R kT−t (x) = 0 for every R > 0. ��
Remark 2 In some particular cases, under more restrictive assumptions than condi-
tion (4), the sufficient condition for blowup of solutions of (1)–(2) can be described
in a more explicit way than condition

sup
T>0

WT (0)

h−1(T )
> 1 (17)

considered in Theorem 1.
For instance, for the nonlinear heat equation (5) withAu = �u and F(u) = u p, so

that for et� definedwith the Gauss–Weierstrass kernel, the condition (17) is equivalent
to

sup
T>0

T
1

p−1

∥
∥
∥eT�u0

∥
∥
∥∞ >

(
1

p − 1

) 1
p−1

. (18)

This is a sufficient condition for the blowup of (5) derived in [12], and this has been
interpreted in a recent paper [4] in terms of the Morrey space norm Md(p−1)/2(Rd).

We have, in this direction, the following general

Proposition 3 (i) If the infinitesimal generator A of the semigroup etA satisfies (11)
for an α ∈ (0, 2], F(u) � u p with some p > 1 as s → 0, u0 ∈ L1(Rd), û0 ∈ L1(Rd),
then

sup
T>0

T
1

p−1

∥
∥
∥e−T (−�)α/2

u0
∥
∥
∥∞  1 (19)

is a sufficient condition of blowup of solution of problem (1)–(2). Condition (19) is
equivalent to a large value of the Morrey space norm of u0

‖u0‖Md(p−1)/α  1. (20)

(ii) Moreover, if 1 < p < pF where pF = 1 + α
d is the so-called Fujita exponent,

then each nontrivial nonnegative solution u �≡ 0 blows up in a finite time.

Proof (i) Clearly, for p > 1, if F(u) � u p, that is F(u) ≈ cu p with some c > 0

as u ↘ 0, so h(u) ≈ 1
c(p−1)u

1−p, u ↘ 0. Thus, h−1(z) ≈ z−
1

p−1

(
1

c(p−1)

) 1
p−1

as

z → ∞. Therefore, the sufficient condition for blowup (17) becomes

∃T > 0 : T
1

p−1

∣
∣
∣eTAu0(0)

∣
∣
∣  1. (21)
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Blowup of solutions for nonlinear nonlocal heat equations 617

By the translational invariance of Eq. (1), condition (21) for u0 ≥ 0 is equivalent to

supT>0 T
1

p−1
∥
∥eTAu0

∥
∥∞  1.

On the other hand, according to [11, Theorem 1], for u0 ∈ L1(Rd) with û0 ∈
L1(Rd) and large t > 0, the semigroup etA applied to u0 can be well approxi-
mated by the semigroup e−t(−�)α/2

generated by the fractional power of the Laplacian
−(−�)α/2

lim
t→∞ t

d
α

∥
∥
∥etAu0 − e−t(−�)α/2

u0
∥
∥
∥∞ = 0 (22)

while
∥
∥
∥e−t(−�)α/2

u0
∥
∥
∥∞ = O

(
t− d

α

)
.

Next, we have the equivalence

sup
t>0

tγ
∥
∥
∥e−t(−�)α/2

u
∥
∥
∥∞ < ∞ if and only if u ∈ B−γα∞,∞(Rd) (23)

where B−κ∞,∞ is the homogeneous Besov space of order −κ < 0. The above condition

(23) is for u ≥ 0 equivalent to u ∈ M
d

αγ (Rd), the Morrey space of order d
αγ

. For these
issues, see the discussion in [15, Prop. 2B)] for α = 2 and the argument in [16, Sec.
4, p. 667, proof of Prop. 2] for α ∈ (0, 2).

Finally, condition (21) is equivalent to

∃T > 0 : T
1

p−1

∣
∣
∣e−T (−�)α/2

u0(0)
∣
∣
∣  1. (24)

which is, in turn, equivalent for u0 ≥ 0 to condition (20) by the above remarks.
Note that for etA = e−t(−�)α/2

the assumptions on the initial data u0 ∈ L1(Rd)

with û0 ∈ L1(Rd) can be relaxed to u0 ∈ L1(Rd) ∩ L∞(Rd).
Of course, condition (24) is quite general, and involves one free parameter T > 0.

Particular examples of initial data considered in [1, Th. 2.3] leading to blowup of
solutions do satisfy (24).

(ii) Rewriting the quantity in (24) as

T
1

p−1

∣
∣
∣e−T (−�)α/2

u0(0)
∣
∣
∣ = T

1
p−1− d

α

∫
R

( |x |
T

1
α

)

u0(x) dx

≈ R(0)T
1

p−1− d
α ‖u0‖1 → ∞, for T → ∞,

we see that for each p < 1 + α
d and ‖u0‖1 > 0, the upper bound equals ∞ as

claimed; remember relation (22). Above, the kernel of the semigroup e−t(−�)α/2
has

the selfsimilar form Pt,α(x, t) = t− d
α R

(
|x |
T

1
α

)

with a smooth function R. This kernel

satisfies the bound

0 < Pt,α(x) ≤ C
(
t1/α + |x |)d

, (25)

see for instance [11,16]. ��
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618 P. Biler

The proof of (ii) for p ≤ pF and etA = e−t(−�)α/2
, α ∈ (0, 2), is in [20]. A rather

short new proof of the result (ii) for α = 2 and p = pF is in [4].
These are counterparts of results in [4, Remark 7, Theorem 2] for the classical

nonlinear heat equation. These, together with results of [8, Proposition 2.3], lead to the
following result, similarly as was in [4, Corollary 11] for the Cauchy problem (6) with
(2). For analogous questions for radial solutions of chemotaxis systems, see also [5].

Corollary 4 There exist two positive constants c(α, d, p) and C(α, d, p) such that if
p > 1 + α

d then

(i) ||u0||Md(p−1)/α
q

< c(α, d, p) for some q ∈
(
1, d(p−1)

α

)
, implies that problem (6)

with data (2) has a global in time, smooth solution which, moreover, satisfies the
time decay estimate ‖u(t)‖∞ = O (

t−1/(p−1)
)
.

(ii) ||u0||Md(p−1)/α > C(α, d, p) implies that each nonnegative solution of problem (6)
with the initial condition (2) blows up in a finite time.

It is of interest to estimate the discrepancy of these constants c(α, d, p) and
C(α, d, p) compared to the Morrey space norm

||u∞||
Md(p−1)/α

q
=

(
σd

d − α
p−1

)1/q

s(α, d, p)

of the singular stationary solution u∞ > 0 of (6) which exists for p > 1+ α
d−α

; here

σd = 2πd/2


( d
2

) (26)

is the area of the unit sphere Sd−1 in R
d . This singular stationary solution u∞ > 0 is

homogeneous, see [8, Prop. 2.1],

u∞(x) = s(α, d, p)|x |− α
p−1 (27)

with the constant

s(α, d, p) =
⎛

⎝ 2α


(

α
2(p−1)

)


(
d
2 − α

2(p−1)

)


(
pα

2(p−1)

)


(
d
2 − pα

2(p−1)

)

⎞

⎠

1
p−1

. (28)

Note that asymptotically

s(α, d, p) ≈ cα,pd
α

2(p−1) as d → ∞ (29)

with constants cα,p independent of d.
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Blowup of solutions for nonlinear nonlocal heat equations 619

Of course, there are many interesting behaviors of solutions (and still open ques-
tions) for the initial data of intermediate size satisfying

c(α, d, p) ≤ ||u0||Md(p−1)/α ≤ C(α, d, p),

and/or suitable pointwise estimates comparing the initial condition u0 with the singular
solution u∞, see e.g., [8]. One of the results in this direction is [8, Theorem 2.6]: if
α ∈ (0, 2), p > 1+ α

d−α
(> 1+ α

d ), u = u(x, t) is a solution of problem (6)with (2) and

0 ≤ u0(x) ≤ u∞(x) (plus some qualitative assumptions like u0 ∈ Md(p−1)/α(Rd) ∩
Ms̃(Rd) with s̃ > d(p − 1)/α, limx→0 |x | α

p−1 u(x, t) = limx→∞ |x | α
p−1 u(x, t) = 0,

uniformly in t ∈ (0, T )), then u can be continued to a global in time solution which
still satisfies the bound 0 ≤ u(x, t) ≤ u∞(x).

These are natural extensions of properties of the Cauchy problem (5) with (2)
studied in, e.g., [4,17,18].

Once again, here it should be stressed on the fact that conditions on initial data
guaranteeing local-in-time existence of solutions of Eq. (5) derived in [2] butmotivated
by [3], and then interpreted in [4] as a bound on the Morrey space Md(p−1)/2(Rd)

norm, are qualitatively close to those above even if they involve Ms
q(R

d) spaces with
any q > 1, see also [4, Remark 3.4], [18, Proposition 6.1].

3 Estimates of discrepancy

Similarly to the considerations in [9] on blowup for radial solutions of chemotaxis
systems, we determine asymptotic (with respect to the variable of dimension d → ∞)
discrepancy between bounds in sufficient conditions for blowup either in terms of
multiple of the singular solution or in terms of critical value of the radial concentration
(and therefore of the Morrey norm) of the initial data for the model problem (6) with
data (2).

Theorem 5 (i) For each α ∈ (0, 2] and p > 1 + α
d there exists a constant να,p

independent of the dimension d such that if N > να,p, then each solution of the
Cauchy problem (6) with data (2) in Rd with the initial data u0(x) ≥ Nu∞(x) blows
up in a finite time.

(ii) For α = 2 and p > 1 + 2
d there exists a constant κ2,p independent of d such

that if the d(p−1)
2 -radial concentration of u0 ≥ 0 defined by

|||u0||| d(p−1)
2

≡ sup
r>0

r
2

p−1−d
∫

{|y|<r}
u0(y) dy (30)

satisfies |||u0||| d(p−1)
2

≥ κσdd
1/2(p−1) (31)

with some κ > κ2,p then each solution of (6) with (2) in Rd blows up in a finite time.
(iii) For α ∈ (0, 2) and p > 1 + α

d (p > 1 + α
d−2 so that d ≥ 3) there exists a

constant κα,p independent of d such that if the d(p−1)
α

-radial concentration of u0 ≥ 0
defined by
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620 P. Biler

|||u0||| d(p−1)
α

≡ sup
r>0

r
α

p−1−d
∫

{|y|<r}
u0(y) dy (32)

satisfies
|||u0||| d(p−1)

α

≥ κσdd
α/2(p−1) (33)

with κ > κα,p then each solution of (6) with (2) blows up in a finite time.

Remark 6 The d(p−1)
α

-radial concentration defined in (32) is comparable with the
Morrey norm in Md(p−1)/α(Rd)

cd ||u0||Md(p−1)/α ≤ sup
r>0

r
α

p−1−d
∫

{|y|<r}
u0(y) dy ≤ ||u0||Md(p−1)/α . (34)

However, the comparison constant cd depends heavily on d, cf. [6, Proposition 7.1]).

Proof A more detailed analysis of condition (21) reveals that

sup
t>0

t
1

p−1 e−t(−�)α/2
u0(0) > cα,p (35)

is a sufficient condition for blowup, with some constant cα,p > 0 independent of d.

For α = 2 we simply have c2,p =
(

1
p−1

) 1
p−1

, see [4].

First, we compute

K2,p(d) ≡ sup
t>0

t
1

p−1 et�(u∞)(0)

= s(2, d, p) sup
t>0

t
1

p−1− d
2 σd

∫ ∞

0
e−r2/4t (4π)−d/2r− 2

p−1+d−1 dr

= s(2, d, p)4− 1
p−1

2


( d
2

)
∫ ∞

0
e−τ τ

d−1
2 − 1

p−1− 1
2 dτ

= s(2, d, p)21−
2

p−1


(
d
2 − 1

p−1

)


( d
2

)

� d
1

p−1− 1
p−1 � 1. (36)

The last two lines follow using the relation

 (z + a)

 (z + b)
� za−b as z → ∞, (37)

see e.g. [21], which is an immediate consequence of the Stirling formula

(z + 1) ≈ √
2π z zze−z as z → ∞. (38)
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Blowup of solutions for nonlinear nonlocal heat equations 621

Next, for α ∈ (0, 2) we need a dimension-free representation of the kernel of the
semigroup e−t(−�)α/2

using the Bochner subordination formula, cf. [22, Ch. IX.11]

e−t(−�)α/2 =
∫ ∞

0
ft,α(λ)eλ� dλ, or Pt,α(x) =

∫ ∞

0
ft,α(λ)Pt,2(x) dλ, (39)

with some functions ft,α(λ) ≥ 0 independent of d. In fact, the subordinators ft,α
satisfy e−taα = ∫ ∞

0 ft,α(λ)e−λa dλ, so that they have selfsimilar form ft,α(λ) =
t− 1

α f1,α
(
λt− 1

α

)
.

Then, we have extensions of the previous computations

Kα,p(d) = sup
t>0

t
1

p−1 e−t(−�)α/2

(
s(α, d, p)

|x | a
p−1

)

(0)

= s(α, d, p) sup
t>0

t
1

p−1− d
α σd

∫ ∞

0
R

( r

t1/α

)
r− α

p−1+d−1 dr

= s(α, d, p)σd

∫ ∞

0
R(�)�

d−1− α
p−1 d�

= s(α, d, p)σd

∫ ∞

0

∫ ∞

0
f1,α(λ)(4π)−d/2λ−d/2e−�2/4λ�

d−1− α
p−1 dλ d�

≈ s(α, d, p)
1


( d
2

)4− α
2(p−1)

∫ ∞

0
f1,α(λ)λ

− α
2(p−1) dλ

×
∫ ∞

0
e−τ τ

d
2 −1− α

2(p−1) dτ � s(α, d, p)


(
d− α

p−1
2

)


( d
2

)

� d
α

2(p−1) − α
2(p−1) � 1 (40)

by representation (39), relations (29) and (37).
Using relations (36), (40) and the comparison principle for Eq. (6), we see that

Nκα,p(d) > cα,p

suffices to a finite time blowup, thus (i) follows since the bound for Kα,p(d) is
d-independent.

(ii) Now, let us compute the asymptotics of the expression in condition (21) for
α = 2 and the normalized Lebesgue measure dS on the unit sphere Sd−1

L2,p(d) = sup
t>0

t
1

p−1 e−t�
(
dS

σd

)

= sup
t>0

(4π)−d/2t
1

p−1− d
2 e−1/4t

= 4− 1
p−1 π−d/2

(
1

e

(
d

2
− 1

p − 1

)) d
2 − 1

p−1
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≈ 4− 1
p−1

1

σd

1


( d
2

)


(
d
2 − 1

p−1 + 1
)

(
2π

(
d
2 − 1

p−1

))1/2

� 1

σd
d

1
2− 1

p−1 . (41)

Indeed, for d
2 > 1

p−1 the quantity maxt>0 t
1

p−1− d
2 e−1/4t is attained for t0 =

(
4

(
d
2 − 1

p−1

))−1
, and then relation (37) is used.

(iii) For α ∈ (0, 2), instead of (31) an analogous sufficient condition is of different
order than for α = 2, namely the following

|||u0||| d(p−1)
α

= sup
r>0

r
α

p−1−d
∫

{|y|<r}
u0(y) dy ≥ κα,pσdd

α/2(p−1) (42)

with a constant κα,p independent of d. Indeed, for the normalized Lebesgue measure
dS on the unit sphere Sd−1 we have an upper bound for the quantity

Lα,p(d) = sup
t>0

t
1

p−1 e−t(−�)α/2
(
dS

σd

)

= sup
t>0

t
1

p−1− d
α R

(
1

t1/α

)

= sup
�>0

�
d− α

p−1 R(�)

= sup
�>0

∫ ∞

0
f1,α(λ)(4πλ)−d/2�

d− α
p−1 e−�2/4λ dλ

≤ 4− α
2(p−1)

2

σd
( d
2

)
∫ ∞

0
sup
�>0

(

f1,α

(
�2

4τ

)(
�2

4τ

)1− α
2(p−1)

)

τ
d
2 − α

2(p−1) −1e−τ dτ

� 1

σd
( d
2

)

(
d − a

p−1

2

)

� 1

σd
d− α

2(p−1) (43)

since representation (39), formulas (26) and (37) hold.
For the derivation of an asymptotic lower bound on the quantity Lα,p(d),

begin with the observation that for β = d
2 − α

2(p−1) − 1 (β > 0 since
p > 1 + α

d−2 )
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m ≡ max
τ>0

e−τ τβ = e−τ0τ
β
0 with τ0 = β

= e−βββ

≈  (β + 1)
1√
2πβ

(44)

holds by (38). Now, let h � d
1
2 . It is easy to check that

1

m
min[τ0,τ0+h] e

−τ τβ ≥ η

for some η > 0, uniformly in d. Indeed,

log
(d + h)de−d−h

dde−d
= d log

(

1 + h

d

)

− h ≈ d
h

d
− dh2

2d2
− h = O

(
h2

2d

)

.

From formulas (43) and (44) we infer

Lα,p(d) ≥ 4− α
2(p−1)

2

σd
( d
2

) sup
�>0

∫ τ0+h

τ0

(

f1,α

(
�2

4τ

) (
�2

4τ

)1− α
2(p−1)

)

τ
d
2 − α

2(p−1) −1e−τ dτ

≥ 4− α
2(p−1)

2

σd
( d
2

)
ηh√
d



(
d

2
− α

2(p − 1)

)

� 1

σd
d− α

2(p−1) .

Therefore the relation Lα,p(d) � 1
σd
d− α

2(p−1) holds. This is an estimate of optimal
order and different from its counterpart for α = 2. Now, it is clear that a sufficient
condition for blowup is satisfied if

NLα,p(d) > cα,p

with either N = κσdd1/(p−1) if α = 2 or N = κσddα/2(p−1) if α ∈ (0, 2). ��

4 Concluding remarks

The classical idea of the proof of blowup of solutions by Fujita [12] has been applied in
the wider context of problems with general linear diffusion operators and convex non-
linearities leading to qualitatively simple sufficient conditions for blowup in problems
with nice approximative scaling properties.

For more classical problems involving diffusions defined by either the Laplacian or
its fractional powers, these conditions have been compared with results guaranteeing
the existence of global solutions. The discrepancies between bounds on quantities
determining local/global behavior of solutions have been estimated.
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