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Abstract
In the paper we first propose a definition of renormalized solution of semilinear elliptic
equation involving operator corresponding to a general (possibly nonlocal) symmetric
regular Dirichlet form satisfying the so-called absolute continuity condition and gen-
eral (possibly nonsmooth) measure data. Then we analyze the relationship between
our definition and other concepts of solutions considered in the literature (probabilistic
solutions, solution defined via the resolvent kernel of the underlying Dirichlet form,
Stampacchia’s definition by duality). We show that under mild integrability assump-
tion on the data all these concepts coincide.

Keywords Semilinear elliptic equation · Dirichlet form and operator · measure data ·
renormalized solution
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1 Introduction

Let L be the operator associated with a symmetric regular Dirichlet form (E, D(E))

on L2(E;m), f : E × R → R be a measurable function and μ be a bounded signed
Borel measure on E . In the paper we consider semilinear equations of the form
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690 T. Klimsiak, A. Rozkosz

− Lu = f (·, u) + μ in E . (1.1)

One of the important problems that arises when studying such equations is the problem
of proper definition of a solution. This problem has been dealt with by many authors.
In the present paper we first introduce yet another definition of a solution of (1.1). It
is a slight modification of the definition of a renormalized solution introduced in [13]
in case μ is smooth. Then we analyze the relationship between this new definition and
other concepts of solutions known in the literature.

In case L is a uniformly elliptic divergence form operator and f does not depend on
u, some definition, now called Stampacchia’s definition by duality, was proposed by
Stampacchia [24]. Later on, to deal with equations with more general local operator
L , the definitions of entropy solution and renormalized solution were introduced. For
a comparison of different forms of these definitions and remarks on other concepts of
solutions of equations of the form (1.1) with local operator L and f not depending on
u see [6]. Elliptic equations with local operators and nonlinear dependence on general
measure data are studied in [7,18].

In case f depends on u most of known results are devoted to the case where μ is
smooth. Recall (see [10]) that μ admits a unique decomposition

μ = μd + μc (1.2)

into the smooth (diffuse) part μd and the concentrated part μc, i.e. μd is a bounded
Borel measure, which is “absolutely continuous” with respect to the capacity Cap
determined by (E, D(E)), andμc is a bounded Borel measure which is “singular” with
respect to Cap. In case L is local and μ is smooth entropy and renormalized solutions
of (1.1) are studied in numerous papers (see, e.g., [1,8] and the references given there).
A definition of renormalized solutions applicable to (1.1) with general L associated
with a general transient (possibly non-symmetric) Dirichlet formwas recently given in
[13]. If (E, D(E)) is symmetric and f (·, u) ∈ L1(E;m), renormalized solutions in the
sense of [13] coincide with probabilistic solutions of (1.1) defined earlier in [12] (see
also [14] for equations with operator L associated with a non-symmetric quasi-regular
form and [17] for equations with nonlinear dependence on measure data). Recall that
a measurable u : E → R is a probabilistic solution of (1.1) in the sense of [12,14] if
the following nonlinear Feynman–Kac formula

u(x) = Ex

( ∫ ζ

0
f (Xt , u(Xt )) dt +

∫ ζ

0
d Aμ

t

)
(1.3)

is satisfied for quasi-every x ∈ E . In (1.3), M = (X , Px ) is a Markov process with
life time ζ associated with E , Ex denotes the expectation with respect to Px and Aμ

is the continuous additive functional of M associated with μ in the Revuz sense (see
Sect. 2). The equivalence between renormalized and probabilistic solutions allows one
to use effectively probabilistic methods in the study of renormalized solutions of (1.1).
Also note that if f ∈ L1(E;m) then renormalized solutions of (1.1) coincide with
Stampacchia’s solutions by duality defined in [12,14].

The semilinear case with general, possibly nonsmooth bounded measureμ is much
more involved. The study of (1.1) with nonsmooth measure was initiated in 1975 by

123



Renormalized solutions of semilinear elliptic equations… 691

Brezis and Bénilan in case L is the Laplace operator � (see [2,4] and the references
given there for results and historical comments). For some existence and uniqueness
results in case L is the fractional Laplacian �α/2 with α ∈ (0, 2) see Chen and Véron
[5]. Very recently, Klimsiak [11] started the study of (1.1) in case L corresponds to a
transient symmetric regular Dirichlet form satisfying the following absolute continuity
condition:

(ACR) Rα(x, ·) is absolutely continuous with respect tom for each α > 0 and x ∈ E ,

where Rα(x, dy) denotes the resolvent kernel associated with (E, D(E)) (see
Sect. 2.2). Equivalently,

(ACT) pt (x, ·) is absolutely continuous with respect to m for each t > 0 and x ∈ E ,

where pt (x, dy) is the transition function associated with (E, D(E)). The above con-
ditions are satisfied for instance if L is a uniformly divergence form operator or
L = �α/2 with α ∈ (0, 2). If the form is transient, then under (ACR) the resol-
vent kernel R0(x, dy) has a density r . In [11] a measurable function u on E is called
a solution of (1.1) if

u(x) =
∫

E
r(x, y) f (y, u(y)) dy +

∫

E
r(x, y) μ(dy) (1.4)

for quasi every x ∈ E . In case μc = 0, the above equation reduces to (1.3), so the
definition of [11] reduces to the probabilistic definition of a solution given in [12,14].
In [11] also a partly probabilistic interpretation of (1.4) is given. This suggests that
solutions defined via the resolvent density, i.e. by (1.4), may be equivalently defined
as renormalized solutions in the same manner as in [13]. In the present paper we
show that this is indeed possible. The definition of a renormalized solution adopted
in the present paper is a minor modification of the definition of [13]. In our opinion,
it is natural, especially from the probabilistic point of view. Moreover, in many cases
considered so far in the literature (μ is smooth or μ is nonsmooth and L = � or
L = �α/2, like in [4,5]) the solutions considered there coincide with the renormalized
defined in the present paper.

The main result of the paper says that if the form is transient and (ACR) is satisfied
then the renormalized solution is a solution in the sense of (1.4), and if u is a solution
of (1.1) in the sense of (1.4) and u ∈ L1(E;m) then u is a renormalized solution.
We find important that, as in the case of smooth measures, this correspondence when
combined with probabilistic interpretation of (1.4) given in [11] enables one to study
renormalized solutions of (1.1) with the help of probabilistic methods. For results on
(1.1) obtained in this way we defer the reader to [11]). Finally, note that at the end
of the paper we describe some interesting situations in which solutions of (1.1) in the
sense of (1.4) automatically have the property that f (·, u) ∈ L1(E;m).

2 Preliminaries

In the paper E is a separable locally compact metric space and m is a Radon measure
on E such that supp[m] = E . By B(E) (resp. B+(E)) we denote the set of all real
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692 T. Klimsiak, A. Rozkosz

(resp. nonnegative) Borel measurable functions on E , and by Bb(E) the subset of
B(E) consisting of all bounded functions.

For u : E → R we set u+(x) = max{u(x), 0}, u−(x) = max{−u(x), 0}.

2.1 Dirichlet forms

By (E, D(E)) we denote a symmetric regular Dirichlet form on H = L2(E;m) (see
[9, Section 1.1] for the definition). In case (E, D(E)) is transient, by (De(E), E) we
denote the extended Dirichlet space of (E, D(E)) (see [9, Section 1.5]).

In the paper we define capacity Cap as in [9, Section 2.1]. Recall that an increasing
sequence {Fn} of closed subsets of E is called nest if Cap(E\Fn) → 0 as n → ∞. A
subset N ⊂ E is called exceptional if Cap(N ) = 0. We will say that some property
of points in E holds quasi everywhere (q.e. for short) if the set for which it does not
hold is exceptional.

We say that a function u on E is quasi-continuous if there exists a nest {Fn} such that
u|Fn is continuous for every n ≥ 1. By [9, Theorem 2.1.7], each function u ∈ De(E)

has a quasi-continuous m-version.
Let μ be a signed Borel measure on E , and let |μ| = μ+ + μ−, where μ+ (resp.

μ−) we denote the positive (resp. negative) part of ofμ. We say thatμ is smooth if |μ|
does not charge exceptional sets and there exists a nest {Fn} such that |μ|(Fn) < ∞,
n ≥ 1. The set of all smooth measures on E will be denoted by S. ByMb we denote
the set of all signed Borel measures on E such that ‖μ‖T V := |μ|(E) < ∞, and
by M0,b the subset of Mb consisting of all smooth measures. S+ is the subset of S
consisting of nonnegative measures. Similarly we defineM+

b ,M+
0,b. By [10, Lemma

2.1], for every μ ∈ Mb there exists a unique pair (μd , μc) ∈ Mb × Mb such that
μd ∈ M0,b, μc is concentrated on some exceptional Borel subset of E and (1.2) is
satisfied. Ifμ is nonnegative, so areμd , μc. For a complete description of the structure
of μc see [15].

2.2 Markov processes

Let E ∪ � be the one-point compactification of E . When E is already compact, we
adjoin � to E as an isolated point. We adopt the convention that every function f on
E is extended to E ∪ {�} by setting f (�) = 0.

By [9, Theorems 4.2.8, 7.2.3] there exists a unique (up to equivalence)m-symmetric
Hunt process M = (�,F , (Ft )t≥0, (Xt )t≥0, ζ, (Px )x∈E∪�) with state space E , life
time ζ and cemetery state � whose Dirichlet space is (E, D(E)). This means in par-
ticular that for every α > 0 and f ∈ Bb(E) ∩ H the resolvent of M, that is the
function

Rα f (x) = Ex

∫ ∞

0
e−αt f (Xt ) dt, x ∈ E

is a quasi-continuous m-version of Gα f .
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Let Rα(x, dy) denote the kernel on (E,B(E)) defined as Rα(x, B) = Rα1B(x).
In the paper we will assume that M satisfies (ACR) condition formulated in Sect. 1.
By [9, Theorem 4.2.4], for symetric forms considered in the present paper (ACR) is
equivalent to (ACT). In general, for non-symmetric forms, (ACT) is stronger than
(ACR). Also note that in the literature (ACR) is sometimes called Meyer’s hypothesis
(L) (see [23, Chapter I, Exercise 10.25]

Assume that (E, D(E)) is transient. Then there exists a nonnegative B(E)⊗B(E)-
measurable function r : E × E → R such that r(x, y) = r(y, x), x, y ∈ E and for
every Borel set B ⊂ E ,

R(x, B) =
∫

B
r(x, y)m(dy), x ∈ E .

In fact, r(x, y) = limα↓0 rα(x, y), where rα(x, y) is the density of Rα(x, dy) con-
structed in [9, Lemma 4.2.4] (see remarks in [3, p. 256]). We call r the resolvent
density.

In what follows given a positive Borel measure on E , we write

Rαμ(x) =
∫

E
rα(x, y) μ(dy), Rμ(x) =

∫

E
r(x, y) μ(dy), x ∈ E, α > 0.

For a signed Borel measure μ on E , we set Rμ(x) = Rμ+(x) − Rμ−(x), whenever
Rμ+(x) < +∞ or Rμ−(x) < +∞, and we adopt the convention that Rμ(x) = +∞
if Rμ+(x) = Rμ−(x) = +∞.

Proposition 2.1 Assume that (E, D(E)) is transient and (ACR) is satisfied. Ifμ ∈ Mb

then R|μ|(x) < +∞ for q.e. x ∈ E.

Proof See [11, Proposition 3.2]. �
Denote byM the set of all signed Borel measuresμ on E such that R|μ|(x) < +∞

form-a.e. x ∈ E . By Proposition 2.1,Mb ⊂ M. In general, the inclusion is strict (see
the remark following [14, Proposition 3.2]).

We define additive functional (AF in abbreviation) and continuous AF of M as in
[9, Sections 5.1]. By [9, Theorem 5.1.4], there is a one to one correspondence (called
Revuz correspondence) between the set of smooth measures μ on E and the set of
positive continuous AFs A of M. It is given by the relation

lim
t→0+

1

t
Em

∫ t

0
f (Xs) d As =

∫

E
f (x) μ(dx), f ∈ B+(E),

where Em denotes the expectationwith respect to themeasure Pm(·) = ∫
E Px (·)m(dx).

In what follows the positive continuous AF of M corresponding to a positive μ ∈ S
will be denoted by Aμ. If μ in S, then μ+, μ− ∈ S, and we set Aμ = Aμ+ − Aμ−

.
Note that if μ ∈ S+ then for every α ≥ 0,

Rαμ(x) = Ex

∫ ζ

0
e−αt d Aμ

t = Ex

∫ ∞

0
e−αt d Aμ

t (2.1)
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694 T. Klimsiak, A. Rozkosz

for q.e. x ∈ E . Indeed, if α > 0 and μ is a measure of finite 0-order energy integral
(μ ∈ S(0)

0 in notation; see [9, Section 2.2] for the definition), then (2.1) follows from
Exercise 4.2.2 and Lemma 5.1.3 in [9]. The general case follows by approximation.
We first let α ↓ 0 to get (2.1) for α ≥ 0 and μ ∈ S(0)

0 , and then we use the 0-order
version of [9, Theorem 2.2.4] (see remark following [9, Corollary 2.2.2]) to get (2.1)
for any α ≥ 0 and μ ∈ S+.

3 Probabilistic solutions and solutions defined via the resolvent
density

We assume that (E, D(E)) is transient and (ACR) is satisfied. Consider the problem

− Lu = fu + μ, (3.1)

where f : E × R → R is a measurable function, fu = f (·, u), μ ∈ M and L is the
operator associated with (E, D(E)), i.e. the nonpositive definite self-adjoint operator
on H such that

D(L) ⊂ D(E), E(u, v) = (−Lu, v), u ∈ D(L), v ∈ D(E),

where (·, ·) denotes the usual inner product in H (see [9, Corollary 1.3.1]).
The following two definitions of solutions of (3.1) were introduced in [11].

Definition 3.1 We say that a measurable function u : E → R ∪ {−∞,+∞} is a
solution of (1.1) if fu · m ∈ M and (1.4) is satisfied for q.e. x ∈ E .

Definition 3.2 We say that a measurable u : E → R ∪ {−∞,+∞} is a probabilistic
solution of (1.1) if

(a) fu · m ∈ M and there exists an AF M of M such that such that for q.e. x ∈ E the
process M is an (F)t≥0-local martingale under Px and

u(Xt ) = u(X0) −
∫ t

0
fu(Xs) ds −

∫ t

0
d Aμd

s +
∫ t

0
dMs, t ≥ 0, Px -a.s.

(3.2)

(b) for every exceptional set N ⊂ E , every stopping time T such that T ≥ ζ and
every sequence {τk} ⊂ T such that τk ↗ T and Ex supt≤τk

|u(Xt )| < ∞ for all
x ∈ E\N and k ≥ 1, we have

Exu(Xτk ) → Rμc(x), x ∈ E\N . (3.3)

Any sequence {τk} with the properties listed in condition (b) will be called the
reducing sequence for u, and we will say that {τk} reduces u.
Remark 3.3 (i) By [11, Remark 3.10], if μc = 0, then the above definition reduces to

the definition introduced in [12].
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Renormalized solutions of semilinear elliptic equations… 695

(ii) Assume that u is a probabilistic solution of (1.1). Then for q.e. x ∈ E we have

Exu
+(Xτk ) → Rμ+

c (x), Exu
−(Xτk ) → Rμ−

c (x). (3.4)

Indeed, if u is a solution of (1.1) then by [11, Theorem 6.3], Lu+ ∈ M. In different
words, u+ is a solution of the equation Lu+ = ν with some ν ∈ M. Hence, by
condition (b) of Definition 3.2, Exu+(Xτk ) → Rνc(x) for q.e. x ∈ E . But by [11,
Theorem 6.3], (Lu+)c = (Lu)+c . Hence νc = ( fu ·m +μ)+c = μ+

c , which proves
the first convergence in (3.4). The second convergence follows from the first one
and (3.3).

Proposition 3.4 Let μ ∈ M. A measurable u : E → R ∪ {−∞,+∞} is a solution of
(1.1) in the sense of Definition 3.1 if and only if it is a solution of (1.1) in the sense of
Definition 3.2.

Proof See [11, Proposition 3.12]. �
In what follows for a function u on E and a measure μ on E , we set

〈μ, u〉 =
∫

E
u(x)μ(dx)

whenever the integral is well defined, and for k ≥ 0, we write

Tku(x) = max{min{u(x), k},−k}, x ∈ E .

Remark 3.5 (i) By [11, Theorem 3.7], if u is a solution of (1.1) then u is quasi-
continuous.

(ii) Let u be a solution of (1.1) withμ ∈ Mb. If fu ∈ L1(E;m) then by [11, Theorem
3.3], Tku ∈ De(E) for every k ≥ 0. If, in addition, m(E) < ∞ or E satisfies
Poincaré type inequality then Tku ∈ D(E) for k ≥ 0 (see [11, Remark 3.4]).

In closing this section we recall yet another concept of solutions introduced in [11].
We say that u : E → R ∪ {−∞,+∞} is a solution of (1.1) in the sense of

Stampacchia if for every v ∈ B(E) such that 〈|μ|, R|v|〉 < ∞ the integrals (u, v),
fu · m, Rv) are finite and

(u, v) = ( fu, Rv) + 〈μ, Rv〉.

By [11, Proposition 4.12], if μ ∈ M, then u is a solution of (1.1) in the sense of
Stampacchia if and only if it is a solution of (1.1) in the sense of Definition 3.1.

4 Renormalized solutions

As in Sect. 3, in this section we assume that (E, D(E)) is transient and (ACR) is
satisfied. As for the right-hand side of (1.1), we restrict our considerations to bounded
measures.
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696 T. Klimsiak, A. Rozkosz

The following definition extends [13, Definition 3.1] to possibly nonsmooth mea-
sures.

Definition 4.1 Let μ ∈ Mb(E). We say that u : E → R ∪ {−∞,+∞} is a renormal-
ized solution of (1.1) if

(a) u is quasi-continuous, fu ∈ L1(E;m) and Tku ∈ De(E) for every k ≥ 0,
(b) there exists a sequence {νk} ⊂ M0,b(E) such that Rνk → Rμc q.e. as k → ∞,

and for every k ∈ N and every bounded v ∈ De(E),

E(Tku, v) = 〈 fu · m + μd , ṽ〉 + 〈νk, ṽ〉. (4.1)

Note that in the case of local operators, the above definition is essentially [6, Def-
inition 2.29]. A similar in spirit definition of renormalized solutions of parabolic
equations with local Leray–Lions type operators is considered in [19, Definition 4.1]
(in case μc = 0) and [20, Definition 3] (in the case of general bounded measures).

In case μc = 0, Definition 4.1 reduces to [13, Definition 3.1] with the exception
that in [13] in condition (b) it is required that ‖νk‖T V → 0. Note that in the case
where μc �= 0 the condition Rνk → Rμc q.e. cannot be replaced by the condition
‖νk − μc‖T V → 0 because the limit, in the total variation norm, of diffuse measures
is diffuse. Also, if μc �= 0, then ‖νk‖T V � 0, because by [16, Lemma 2.5], if
‖νk‖T V → 0, then there is a subsequence {νk′ } such that Rνk′ → 0 q.e. We see that
the difference between the caseμc = 0 andμc �= 0 is quite similar to that for parabolic
equations considered in [19,20] (cf. [19, Definition 4.1] and [20, Definition 3]).

Remark 4.2 (i) Let E ⊂ R
d be a bounded domain, and let L be the Laplace operator�

on E with zero boundary conditions. By [11, Remark 4.15], if u is a renormalized
solution of (1.1), then u is a weak solution in the sense of [4].

(ii) Let α ∈ (0, 2], E ⊂ R
d be a bounded domain, and let L be the fractional Laplacian

�α/2 on E with zero boundary conditions. By [11, Remark 4.13], if u is a renor-
malized solution of (1.1), then u is a solution of (1.1) in the sense of [5, Definition
1.1].

The following lemma is a modification of [12, Lemma 5.4]. As compared with [12,
Lemma 5.4], we do not assume that μ is smooth, but we additionally require that the
form satisfies (ACT).

Lemma 4.3 Assume that ν ∈ M ∩ S+, μ ∈ M+
b . If Rν ≤ Rμ m-a.e. then ν ∈ M+

0,b.
In fact, ‖ν‖T V ≤ ‖μ‖T V .
Proof Set gn = n(1 − nRn1). Then by the resolvent identity,

Rgn = nRn1 ≤ 1, n ≥ 1.

Since by [3, Chapter II, Proposition (2.2)] the constant function 1 is excessive relative
toM, gn ≥ 0 and, by [3, Chapter II, Proposition (2.3)], Rgn ↗ 1. Since the resolvent
density r is symmetric, applying Fubini’s theorem we get
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〈μ, Rgn〉 =
∫

E

( ∫

E
r(x, y)gn(y) dy

)
μ(dx)

=
∫

E

( ∫

E
r(y, x) μ(dx)

)
gn(y) dy = 〈gn, Rμ〉.

Likewise, 〈ν, Rgn〉 = 〈gn, Rν〉. Since Rν ≤ Rμ m-a.e., it follows from the above
that

〈μ, Rgn〉 ≥ 〈ν, Rgn〉, n ≥ 1.

Therefore

‖ν‖T V = lim
n→∞〈Rgn, ν〉 ≤ lim

n→∞〈Rgn, μ〉 = ‖μ‖T V ,

which proves the lemma. �
Theorem 4.4 Let μ ∈ Mb.

(i) If u is a probabilistic solution of (1.1) and fu ∈ L1(E;m) then u is a renormalized
solution of (1.1).

(ii) If u is a renormalized solution of (1.1) then u is a probabilistic solution of (1.1).

Proof (i) Let Yt = u(Xt ), t ≥ 0. By (3.2), for q.e. x ∈ E ,

Yt = Y0 −
∫ t

0
fu(Xs) ds −

∫ t

0
d Aμd

s +
∫ t

0
dMs, t ≥ 0, Px -a.s. (4.2)

By Itô’s formula for convex functions (see, e.g., [22, Theorem IV.66]),

u+(Xt ) − u+(X0) =
∫ t

0
1{Ys−>0} dYs + A1

t , t ≥ 0, (4.3)

u−(Xt ) − u−(X0) = −
∫ t

0
1{Ys−≤0} dYs + A2

t , t ≥ 0 (4.4)

for some increasing processes A1, A2. By [11, Remark 3.10], there is a reducing
sequence {τk} for u. Since M is a local martingale under Px for q.e. x ∈ E , for
q.e. x ∈ E there exists a sequence of stopping times {σn} (possibly depending on
x) such that Ex

∫ t∧σn
0 1{Ys−≤0} dMs = 0, t ≥ 0, n ≥ 1. Therefore, by (4.2) and

(4.3),

Ex A
1
τk∧σn

= Exu
+(Xτk∧σn ) − u+(x) + Ex

∫ τk∧σn

0
1{Ys−>0}( fu(Xs) ds + d Aμd

s )

for all k, n ≥ 1. Letting n → ∞ we get

Ex A
1
τk

= Exu
+(Xτk ) − u+(x) + Ex

∫ τk

0
1{Ys−>0}( fu(Xs) ds + d Aμd

s ).
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698 T. Klimsiak, A. Rozkosz

Similarly, by (4.2) and (4.4),

Ex A
2
τk

= Exu
−(Xτk ) − u−(x) − Ex

∫ τk

0
1{Ys−≤0}( fu(Xs) ds + d Aμd

s ).

Letting k → ∞ in the above two equalities and using (3.4) shows that for q.e.
x ∈ E ,

Ex A
1
ζ ≤ Rμ+

c (x) + Ex

∫ ζ

0
(| fu(Xt )| ds + d A|μd |

t )

= Rμ+
c (x) + R(| fu | · m + |μd |)(x),

Ex A
2
ζ ≤ Rμ−

c (x) + Ex

∫ ζ

0
(| fu(Xt )| ds + d A|μd |

t )

= Rμ−
c (x) + R(| fu | · m + |μd |)(x).

By this and Proposition 2.1, Ex (A1
ζ + A2

ζ ) < +∞ for q.e. x ∈ E . Therefore

by [9, Theorem A.3.16] there exists positive AFs of B1, B2 of M such that Bi ,
i = 1, 2, is a compensator of Ai under Px for q.e. x ∈ E . The processes B1, B2

are increasing, because A1 and A2 are increasing. Since by [9, Theorem A.3.2]
the process X has no predictable jumps, it follows from [9, Theorem A.3.5] that
B1, B2 are continuous. Thus B1, B2 are increasing continuous AFs ofM such that
Ai − Bi , i = 1, 2, is a martingale under Px for q.e. x ∈ E . Let bi ∈ S, i = 1, 2,
denote the measure corresponding to Bi in the Revuz sense. Then, by (2.1),

Rbi (x) = Ex B
i
ζ = Ex A

i
ζ < +∞, i = 1, 2,

for q.e. x ∈ E . From this and Lemma 4.3 it follows that b1, b2 ∈ M0,b. By Itô’s
formula, for k > 0 we have

(u+ ∧ k)(Xt ) − (u+ ∧ k)(X0) =
∫ t

0
1{u+(Xs−)≤k} du+(Xs) − A1,k

t , t ≥ 0,

(4.5)

(u− ∧ k)(Xt ) − (u− ∧ k)(X0) =
∫ t

0
1{u−(Xs−)≤k} du−(Xs) − A2,k

t , t ≥ 0,

(4.6)

for some increasing processes A1,k, A2,k . By (4.3) and (4.5),

Ex A
1,k
t ≤ u+(x) ∧ k + Ex

∫ t

0
1{u+(Xs−)≤k}1{Ys−>0} dYs + Ex

∫ t

0
1{u+(Xs−)≤k} d A1

s

whereas by (4.4) and (4.6),

Ex A
2,k
t ≤ u−(x) ∧ k − Ex

∫ t

0
1{u−(Xs−)≤k}1{Ys−≤0} dYs + Ex

∫ t

0
1{u−(Xs−)≤k} d A2

s .
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By the above two inequalities,

Ex (A
1,k
ζ + A2,k

ζ ) ≤ u+(x) ∧ k + u−(x) ∧ k + R(| fu | · m + |μd |)(x) + R(b1 + b2)(x).

Hence Ex (A
1,k
ζ + A2,k

ζ ) < +∞ for q.e. x ∈ E . Let B1,k, B2,k be positive AFs of

M such that Bi,k , i = 1, 2, is a compensator of Ai,k under Px for q.e. x ∈ E . As
in case of B1, B2, we show that B1,k, B2,k increasing continuous AFs of M such
that Ai,k − Bi,k , i = 1, 2, is a martingale under Px for q.e. x ∈ E . Let bi,k ∈ S,
i = 1, 2, denote the measure corresponding to Bi,k in the Revuz sense. Then
R(b1,k+b2,k)(x) = Ex (A

1,k
ζ +A2,k

ζ ) < +∞ for q.e. x ∈ E , and hence, by Lemma

4.3, that b1,k, b2,k ∈ M0,b. Let Y k
t = Tku(Xt ). Since Tku = (u+ ∧ k)− (u− ∧ k),

from (4.2)–(4.6) we get

Y k
t − Y k

0 = −
∫ t

0
1{−k≤Ys−≤k}( fu(Xs) ds + d Aμd

s ) − B1,k
t

+
∫ t

0
1{u+(Xs )≤k} dB1

s + B2,k
t −

∫ t

0
1{u−(Xs )≤k} dB2

s + Mk
t , (4.7)

where

Mk
t =

∫ t

0
1{−k≤Ys−≤k} dMs − (A1,k

t − B1,k
t ) + (A2,k

t − B2,k
t )

+
∫ t

0
1{u+(Xs−)≤k} d(A1

s − B1
s ) −

∫ t

0
1{u−(Xs−)≤k} d(A2

s − B2
s ).

Since Mk is a martingale under Px for q.e. x ∈ E , from (4.7) it follows that for
q.e. x ∈ E ,

Tku(x) = ExTk(Xt ) + Ex

∫ t

0
1{−k≤Ys−≤k}( fu(Xs) ds + d Aμd

s )

+ Ex B
1,k
t − Ex

∫ t

0
1{u+(Xs )≤k} dB1

s − Ex B
2,k
t + Ex

∫ t

0
1{u−(Xs )≤k} dB2

s .

Since Tku(Xt ) → 0 Px -a.s. as t → ∞, ExTku(Xt ) → 0 by the Lebesgue
dominated convergence theorem. Therefore from the above equality it follows
that

Tku(x) = R(1{−k≤u≤k}( fu · m + μd)) + R(b1,k − 1{u+≤k}b1) − R(b2,k − 1{u−≤k}b2).

Set

νk = 1{u /∈[−k,k]}( fu · m + μd) + b1,k − 1{u+≤k}b1 − b2,k + 1{u−≤k}b2.
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Then νk ∈ M0,b and for q.e. x ∈ E ,

Tku(x) = R( fu · m + μd)(x) + Rνk(x). (4.8)

On the other hand, by Proposition 3.4, u(x) = R( fu · m + μd)(x) + Rμc(x)
for q.e. x ∈ E . Hence Rνk(x) → Rμc(x) for q.e. x ∈ E . By Remark 3.5(ii),
Tku ∈ De(E). Finally, since Tku = Rλk with λk = fu · m + μd + νk ∈ M0,b,
repeating step by step the reasoning following [13, (3.14)] shows that Tku satisfies
(4.1), which completes the proof of (i).

(ii) Assume that u is a renormalized solution of (1.1). Then Tku is a solution in the
sense of duality of the linear equation

−L(Tku) = fu + μd + νk,

and hence Tku is a probabilistic solution of the above equation (see the arguments
in [13, p. 1924]). Hence

Tku(x) = Ex

( ∫ ζ

0
( fu(Xt ) dt + d Aμd

t ) +
∫ ζ

0
d Aνk

t

)
= R( fu · m + μd)(x) + Rνk(x)

for q.e. x ∈ E . Since Rνk → Rμc q.e., letting k → ∞ in the above equation
we see that (1.4) is satisfied for q.e. x ∈ E , i.e. u is a solution of (1.1) in the
sense of Definition 3.1. By this and Proposition 3.4, u is a probabilistic solution of
(1.1). �
Note that by Proposition 3.4, in the formulation of Theorem 4.4 we may replace

“probabilistic solution” by “solution in the sense of Definition 3.1”, while by [11,
Proposition 4.12] we may replace “probabilistic solution” by “solutions in the sense
of Stampacchia”.

By Theorem 4.4, a probabilistic solution u is a renormalized solution once we know
that fu ∈ L1(E;m). We close this section with describing some interesting situations
in which this condition holds true.

Proposition 4.5 Let μ ∈ Mb and let f : E × R → R be a measurable function
such that f (·, 0) ∈ L1(E;m) and for every x ∈ E the mapping R � y �→ f (x, y)
is continuous and nonincreasing. If u is a probabilistic solution of (1.1) then fu ∈
L1(E;m).

Proof See [11, Proposition 4.8]. �
Following [4,11] we callμ ∈ M a good measure (relative to L and f ) if there exists

a probabilistic solution of (1.1).

Proposition 4.6 Assume that f satisfies the assumptions of Proposition 4.5 andμ ∈ M

is good relative to L and f . Then there exists a unique renormalized solution of (1.1).
Moreover, for every k ≥ 0,

E(Tku, Tku) ≤ k(‖μ‖T V + ‖ fu‖L1(E;m)), (4.9)

‖ fu‖L1(E;m) ≤ 2‖ f (·, 0)‖L1(E;m) + ‖μ‖T V . (4.10)
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Proof The existence of a solution follows immediately fromTheorem4.4(i) andPropo-
sition 4.5. Uniqueness follows from Theorem 4.4(ii) and [11, Corollary 4.3]. Estimate
(4.9) follows from [11, Theorem 3.3], whereas (4.10) from [11, Proposition 4.8]. �

The following remark shows that the monotonicity assumption imposed on f in
Propositions 4.5 and 4.6 can be relaxed in case μ is nonnegative.

Remark 4.7 (i) Assume thatμ ∈ M is nonnegative and f satisfies the following “sign
condition”: for every x ∈ E ,

y f (x, y) ≤ 0, y ∈ R. (4.11)

Then if u is a probabilistic solution of (1.1), then u ≥ 0 q.e. To see this, let us
consider a reducing sequence {τk} for u. Then by (4.2), (4.4) and Itô’s formula for
convex functions (see [22, Theorem IV.66]), for q.e. x ∈ E we have

u−(x) = Exu
−(Xτk ) −

∫ τk

0
1{Ys−≤0} f (Xs, Ys) ds −

∫ τk

0
1{Ys−≤0} d Aμd

s − Ex A
2
τk

.

Since μ ≥ 0, μd ≥ 0 and μc ≥ 0. In particular, Aμd is increasing. Since A2 is
also increasing and f satisfies (4.11), it follows that u−(x) ≤ Exu−(Xτk ). By this
and (3.4), u(x) ≤ lim supk→∞ Exu−(Xτk ) = Rμ−

c (x) = 0 for q.e. x ∈ E .
(ii) Obviously (4.11) is satisfied if f (x, 0) = 0 and f is nonincreasing. Therefore ifμ

in Proposition 4.5 is nonnegative, then without loss of generality we may assume
that f (·, y) = 0 for y ≤ 0, i.e. f satisfies the condition imposed on f in [4] (see
[4, Remark 1]) and in [11, Section 5].

(iii) If f satisfies (4.11) andμ ∈ M+
b is good (relative to L and f ), then fu ∈ L1(E;m),

and hence there exists a renormalized solution of (1.1). Indeed, if μ ≥ 0 then by
part (i), u ≥ 0 q.e., and consequently R fu + Rμ ≥ 0 q.e. and fu ≤ 0. Hence
0 ≤ R(− fu) = −R fu ≤ Rμ q.e. By this and Lemma 4.3, − fu · m ∈ M+

b , so
fu ∈ L1(E;m).

The problem of existence of solutions of (1.1) for f satisfying the assumptions of
Proposition 4.5 [or more general “sign condition” (4.11)] and the related problem of
characterizing the set of good measures are very subtle, and are beyond the scope of
the present paper. For many positive results in this direction in the case where A is the
Laplace operator we defer the reader to [4,21]. Interesting existence and uniqueness
results for equations involving the fractional Laplace operator are to be found in [5,11].
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