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Abstract
We consider a domain Ω ⊂ R

d equipped with a nonnegative weight w and are
concerned with the question whether a Poincaré inequality holds on Ω , i.e., if there
exists a finite constant C independent of f such that

∥
∥
∥
∥
∥
f −

(∫

Ω

w

)−1

·
∫

Ω

f w

∥
∥
∥
∥
∥
Lq (Ω,w)

≤ C ‖∇ f ‖L p(Ω,w) . (1)

It turns out that it is essentially sufficient that on all superlevel sets of w there hold
Poincaré inequalities w.r.t. the constant weight 1 and that the corresponding Poincaré
constants satisfy an integrability condition. Furthermore we provide an explicit bound
of the constant C in the weighted inequality (1) in terms of the Poincaré constants
of the superlevel sets. A similar statement holds true in the more general asymmetric
case where we allow for certain weights ρ different from w on the right hand side of
(1).

Keywords Weighted Poincaré inequality · Poincaré constant · Sobolev inequality ·
Superlevel sets
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1 Introduction

Poincaré type inequalities bound the Lq -norm of a function f on a domain Ω ⊂ R
d

in terms of the L p-norm of its gradient, i.e.,
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‖ f ‖Lq (Ω,w) ≤ C ‖∇ f ‖L p(Ω,w) for all f ∈ C, (2)

where C is a suitable vector space of differentiable (at least in a weak sense) functions
on Ω . The constant C in (2) may depend on Ω,w, p, q and C but cannot depend on
f .
For Eq. (2) to hold obviously C cannot contain any constant function besides f ≡ 0.

Typical choices for C are either

(i) Dirichlet boundary conditions, i.e., C consisting of functions vanishing on the
boundary ∂Ω or

(ii) vanishing mean, i.e.,

∫

Ω

f w = 0 for all f ∈ C.

We will only discuss the second case, which amounts to considering the inequality

∥
∥
∥
∥
∥
f −

(∫

Ω

w

)−1

·
∫

Ω

f w

∥
∥
∥
∥
∥
Lq (Ω,w)

≤ C ‖∇ f ‖L p(Ω,w) . (3)

Depending on p, q and d, in the literature Poincaré inequalities are also linked to the
names ofWirtinger (p = q = 2 and d = 1) and Sobolev (p < d and q = dp/(d− p)).

Due to its importance in the theory of partial differential equations a vast amount of
work and effort has been put in the study of Poincaré type inequalities. The following
overview is by far not a complete collection of the available research on this topic.

In case of a constant weight a Poincaré inequality (3) is known to hold provided Ω

is a bounded Lipschitz domain and

– p = q: in this case the Poincaré inequality is covered by theLemmaofDeny-Lions,
see [11,15].

– p < d and q ≤ dp/(d − p), see [6,20].

A well studied class of weights supporting Poincaré equations are the so calledMuck-
enhoupt weights as introduced in [21], compare [12,17]. For certain weight functions,
q = p and arbitrary bounded domains a sufficient condition for a Poincaré to hold is
provided in [3,14]. However—depending on w—these criteria may be very difficult
to verify.

Explicit bounds for the constantC in (3) are known only under very specific restric-
tions on the parameters d, p, q, the geometry of the domain Ω and the weight w: In
case w is constant, p = q and Ω is convex and bounded it is known that

C ≤
{

diam(Ω)/2, p = q = 1,
diam(Ω)/πp, p = q ≥ 2,

(4)

where

πp := 2π
(p − 1)1/p

p · sin(π/p)
.
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On how Poincaré inequalities imply weighted ones 755

The bound for p = q = 2 was first established in [22], see also [4]. Generalizations
of the proof for the cases p = q = 1 and p = q ≥ 2 are due to [1,16].

For star shaped domains—again under the assumptions that w is constant and
p = q—an explicit bound on the Poincaré constant is given in [18].

In the onedimensional situation [9] provides a bound on the Poincaré constant for
arbitrary p, q and w, which in certain cases is sharp in some sense. Computing the
bound amounts to determining the supremum of a possibly complicated expression
and therefore—depending on w—may not be feasible. In [10] the same authors give
explicit bounds on the Poincaré constant when q ≤ p, Ω is bounded and convex and
w is a positive power of a concave function.

Gaussian ormore generally so called log-concaveweights on the full spaceΩ = R
d

are considered in [5,7] for the case p = q = 2.
For arbitrary weight w and domain Ω the Poincaré constant can be estimated

from above in terms of the so called Cheeger constant—a well studied concept in
Riemanniangeometry—see [8] and [19,Appendix].Again computation of theCheeger
constant may not be feasible depending on w.

Explicit bounds for the constant inweighted Poincaré inequalities are only known in
very specific scenarios. The main result of this paper shows that the Poincaré constant
w.r.t. a weightw can be controlled in terms of the Poincaré constants w.r.t. the constant
weight 1 on the superlevel sets ofw. Combined with knowledge of Poincaré constants
for the unweighted case this yields a powerful tool for estimating the Poincaré constant
on a general domain equipped with a weight whose superlevel sets only have to be
connected. The key ideas are inspired by the work of Dyda and Kassmann in [13],
where radially symmetric weights were considered. As we will see a similar approach
can be taken in a much more general setting.

2 Preliminaries

In the following Ω will be called a domain in R
d , if Ω is a nonempty, open and

connected subset of Rd . We call a function w : Ω → R a weight on Ω ⊂ R
d if w is

measurable and nonnegative.
For p ∈ [1,∞) the space L p(Ω,w) consists of all measurable functions f : Ω →

R such that ‖ f ‖L p(Ω,w) < ∞, where

‖ f ‖L p(Ω,w) :=
(∫

Ω

| f (x)|p w(x) dx

)1/p

.

In the unweighted case, i.e. w ≡ 1 we will drop the reference to the weight and write
L p(Ω). For a set A ⊂ R

d the d-dimensional Lebesgue measure of A will be denoted
by |A|. For v ∈ R

d we write |v| for the euclidean length of v.
The space of Lipschitz functions on Ω , i.e. the set of functions that are Lipschitz

continuous on every compact subset ofΩ will be denoted by Lip(Ω). For q ∈ [1,∞)

we define

Lipq(Ω,w) := Lip(Ω) ∩ Lq(Ω,w). (5)
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Again, in the unweighted case we will use the notation Lipq(Ω).
Let D ⊂ Ω . We will occasionally abuse the notation and write

w(D) :=
∫

D
w(x) dx .

For f : Ω → R measurable the weighted mean of f on D is denoted by

f w
D := 1

w(D)

∫

D
f (x)w(x) dx . (6)

Remark 1 Suppose w is integrable on Ω , D ⊂ Ω and that f ∈ L p(Ω,w) for p ≥ 1.
Using Hölder’s inequality for 1

p + 1
p′ = 1 we obtain

‖ f ‖L1(D,w) = ‖ f · w‖L1(D) =
∥
∥
∥ f w1/p · w1−1/p

∥
∥
∥
L1(D)

≤
∥
∥
∥ f w1/p

∥
∥
∥
L p(D)

·
∥
∥
∥w1/p′∥∥

∥
L p′ (D)

= ‖ f ‖L p(D,w) · ‖w‖1/p′
L1(D)

< ∞.

Therefore—provided w(D) > 0—in this case f w
D as defined in (6) is a well defined

real number.

The central topic of this work are so called Poincaré inequalities:

Definition 1 Let Ω be a domain in R
d , w an integrable weight on Ω , ρ a weight on

Ω and let p, q ∈ [1,∞). Then a weighted (q, p)-Poincaré inequality holds if there
exists a finite constant C such that

∥
∥ f − f w

Ω

∥
∥
Lq (Ω,w)

≤ C ‖∇ f ‖L p(Ω,ρ) for all f ∈ Lipq(Ω,w). (7)

The smallest possibleC in (7) is calledPoincaré constant anddenotedbyC p
q (Ω,w, ρ).

Another important object will be the so called superlevel sets defined by

Ωw
t := {x ∈ Ω : w(x) > t} for t ≥ 0.

3 Main theorem

In the literature one can often find Poincaré inequalities defined by

inf
c∈R

‖ f − c‖Lq (Ω,w) ≤ C ‖∇ f ‖L p(Ω,ρ) for all f , (8)

instead of our definition, cf. (7). The next lemma tells us that the two concepts are
essentially the same. A proof can be found in [13].
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Lemma 1 Let Ω ⊂ R
d , let w be an integrable weight on Ω and p ∈ [1,∞). Then for

any f ∈ L p(Ω,w) it holds that

inf
c∈R

‖ f − c‖L p(Ω,w) ≤ ∥
∥ f − f w

Ω

∥
∥
L p(Ω,w)

≤ 2 inf
c∈R

‖ f − c‖L p(Ω,w) .

The following lemma provides a formula on how to write a weighted integral as a
double integral.

Lemma 2 Let Ω ⊂ R
d , let w be an integrable weight on Ω and let g ∈ L1(Ω,w)

then

∫

Ω

g(x)w(x) dx =
∫ ∞

0

∫

Ωw
t

g(x) dx dt

Proof For a set A let χA denote the characteristic function of A, then

∫

Ω

g(x)w(x) dx =
∫

Ω

g(x)
∫ w(x)

0
dt dx =

∫

Ω

∫ ∞

0
g(x)χ[0,w(x))(t) dt dx . (9)

ObviouslyEq. (9) still holds truewhen g is replaced by |g|. Since g ∈ L1(Ω,w)wecan
apply Fubini’s theorem and change order of integration. Using χ[0,w(x))(t) = χΩw

t
(x)

we obtain

∫

Ω

∫ ∞

0
g(x)χ[0,w(x))(t) dt dx =

∫ ∞

0

∫

Ω

g(x)χΩw
t
(x) dx dt

=
∫ ∞

0

∫

Ωw
t

g(x) dx dt .


�
Next we show a simple relation between Lipschitz function spaces as defined in (5).

Lemma 3 Let w be a weight on a domain Ω and q ≥ 1. Then for any t > 0

Lipq(Ω,w) ⊂ Lipq(Ωw
t ).

Proof Let f ∈ Lipq(Ω,w). Then f is a Lipschitz function onΩt := Ωw
t for arbitrary

t > 0. We can now estimate

‖ f ‖qLq (Ωt )
=

∫

Ωt

| f (x)|q dx ≤
∫

Ωt

| f (x)|q w(x)

t
dx ≤ 1

t
‖ f ‖qLq (Ω,w) < ∞.

Therefore f ∈ Lipq(Ωt ). 
�
We are set to state the main result:
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Theorem 1 Let w be a bounded and integrable weight on a domain Ω ⊂ R
d , let ρ be

a weight on Ω and let 1 ≤ q ≤ p. Then

C p
q (Ω,w,wρ) ≤ 8 · inf

0≤τ≤‖w‖L∞(Ω)
q≤s≤p

(

‖w‖L∞(Ω)

τ
· |Ω|
∣
∣Ωw

τ

∣
∣

)1/q

· wρ(Ω)
1
q − s

pq

·
∥
∥
∥t �→ Cs

q(Ω
w
t , 1, ρ)

∥
∥
∥
L

sq
s−q ([0,τ ])

(10)

Assuming that there is a number τ such that the quantity

(

‖w‖L∞(Ω)

τ
· |Ω|
∣
∣Ωw

τ

∣
∣

)1/q

is of moderate size, Theorem 1 reveals—by choosing ρ ≡ 1—that the weighted
Poincaré constant C p

q (Ω,w,w) can be essentially controlled by the norm of t �→
Cs
q(Ω

w
t , 1, 1). The Poincaré constant Cs

q(Ω
w
t , 1, 1) is infinite whenever the under-

lying domain consists of more than one connected component. Thus application of
Theorem 1 only makes sense if all the superlevel sets Ωw

t are connected (at least for
t ∈ [0, τ ]).

As already mentioned in the introduction Poincaré constants can also be estimated
using the concept of the Cheeger constant. This means that—loosely speaking—the
Poincaré constant is rather large in the presence of a bottleneck1 since this is precisely
what the Cheeger constant captures - and vice versa. In this spirit Theorem 1 can be
qualitatively read as follows:

1. If none of the superlevel sets Ωw
t possesses a bottleneck w.r.t. to the constant

weight 1 then neither will Ω w.r.t. w. In that case C p
q (Ω,w,w) is small.

2. However if C p
q (Ω,w,w) is large then some of the superlevel sets Ωw

t will have
large Poincaré constants w.r.t. the constant weight 1 and therefore a bottleneck,
see Fig. 1.

Proof of Theorem 1 For τ ∈ [0, ‖w‖L∞(Ω)] let wτ be the weight w cut off at level τ ,
i.e.,

wτ (x) := min{w(x), τ }.

Then obviously

wτ ≤ w ≤ ‖w‖L∞(Ω)

τ
wτ (11)

1 We say a bottleneck is present if the domain can be partitionated into two subdomains of roughly equal
measure w.r.t. w such that the weight is small on the seperating boundary of the two subdamains.
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On how Poincaré inequalities imply weighted ones 759

Fig. 1 The left figure shows a typical example of a bottlenecked weight on a plane domain. The two main
parts of its superlevel sets—as sketched on the right—are connected by a thin bridge and therefore we
observe the presence of a bottleneck

and therefore by Lemma 1 we obtain for any f ∈ Lq(Ω,w)

∥
∥ f − f w

Ω

∥
∥q
Lq (Ω,w)

≤ 2q inf
c∈R

‖ f − c‖qLq (Ω,w)

≤ 2q
‖w‖L∞(Ω)

τ
inf
c∈R

‖ f − c‖qLq (Ω,wτ )

≤ 2q
‖w‖L∞(Ω)

τ

∥
∥ f − f wτ

Ω

∥
∥
q
Lq (Ω,wτ )

(12)

We set g := f − f wτ

Ω . Since Ω
wτ
t coincides with Ωt := Ωw

t for t ≤ τ and is empty
for t > τ , using Lemma 2 we obtain that

0 =
∫

Ω

g · wτ dx =
∫ ∞

0

∫

Ω
wτ
t

g(x) dx dt

=
∫ τ

0

∫

Ωt

g(x) dx dt

=
∫ τ

0
g1Ωt

· |Ωt | dt

and observe that

t �→ g1Ωt
=: gΩt has integral mean 0 w.r.t. to the measure |Ωt | dt on [0, τ ]. (13)

Since for any real numbers a, b the inequality |a + b|q ≤ 2q−1
(|a|q + |b|q) holds

we estimate

‖g‖qLq (Ω,wτ ) =
∫ τ

0

∫

Ωt

|g(x)|q dx dt

≤ 2q−1
∫ τ

0

∫

Ωt

(∣
∣g(x) − gΩt

∣
∣q + ∣

∣gΩt

∣
∣q

)

dx dt =: 2q−1 · (I + II) .

(14)
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The inner integral of I is already set up to apply Poincaré’s inequality. The key trick
lies in how to bound II in terms of I. First II can be rewritten in the following way:

II =
∫ τ

0

∣
∣gΩt

∣
∣
q · |Ωt | dt = |Ωτ |−1

∫

Ωτ

∫ τ

0

∣
∣gΩt

∣
∣
q · |Ωt | dt dx . (15)

Using observation (13) together with Lemma 1 guarantees that the inner integral of
the right hand side is bounded by

2q
∫ τ

0

∣
∣gΩt − c

∣
∣q · |Ωt | dt,

where c is an arbitrary real number. The choice c = g(x) yields

II ≤ |Ωτ |−1 · 2q
∫

Ωτ

∫ τ

0

∣
∣gΩt − g(x)

∣
∣
q · |Ωt | dt dx (16)

Changing order of integration and since for t ∈ [0, τ ] the inclusions Ωτ ⊂ Ωt ⊂ Ω

hold we arrive at

II ≤ 2q
|Ω|
|Ωτ | · I. (17)

Collecting the estimates from (12), (14) and (17) gives

∥
∥ f − f w

Ω

∥
∥q
Lq (Ω,w)

≤ 23q · ‖w‖L∞(Ω)

τ
· |Ω|
|Ωτ | · I. (18)

We proceed with bounding the expression I by applying Poincaré’s inequality on each
of the superlevel sets Ωt . Let s ∈ [q, p] and set r := s/q and 1/r + 1/r ′ = 1, then

I =
∫ τ

0

∫

Ωt

∣
∣g(x) − gΩt

∣
∣q dx dt

≤
∫ τ

0
Cs
q(Ωt , 1, ρ)q ·

(∫

Ωt

|∇g(x)|s ρ(x) dx

)q/s

dt

≤
∥
∥
∥t �→ Cs

q(Ωt , 1, ρ)q
∥
∥
∥
Lr ′ ([0,τ ]) ·

(∫ τ

0

∫

Ωt

|∇g(x)|s ρ(x) dx dt

)1/r

=
∥
∥
∥t �→ Cs

q(Ωt , 1, ρ)

∥
∥
∥

q

L
sq
s−q ([0,τ ]) · ‖∇g‖qLs (Ω,wρ)

(19)

Again making use of Hölder’s inequality we can estimate the last term in the following
way

‖∇g‖Ls (Ω,wρ) ≤ ‖∇g‖L p(Ω,wρ) · wρ(Ω)
1− s

p . (20)
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Since ∇g = ∇ f we obtain by combining (18), (19) and (20) that

∥
∥ f − f w

Ω

∥
∥
Lq (Ω,w)

≤ 8

(‖w‖L∞(Ω)

τ
· |Ω|
|Ωτ |

)1/q

· wρ(Ω)
1
q − s

pq

·
∥
∥
∥t �→ Cs

q(Ωt , 1)
∥
∥
∥
L

sq
s−q ([0,τ ]) · ‖∇ f ‖L p(Ω,wρ)

Since this holds for arbitrary τ ∈ [0, ‖w‖L∞(Ω)] and s ∈ [q, p] we can conclude that
(10) holds true. 
�
Finallywe consider a concrete example.Our aimhere is not tofind the smallest possible
boundon thePoincaré constant but rather to indicate how the result of Theorem1canbe
applied in practice. We choose a weight that is neither a power of a concave function
nor log-concave in order to emphasize that our method yields results in situations
where existing techniques are not applicable.

Example 1 Let Ω be the unit ball in R2 equipped with the radially symmetric weight

w(x) := 1 − |2 |x | − 1| .

Since w vanishes at the origin and on the boundary of the domain, w is not equivalent
to a constant weight. Thus we can not resort to results for the unweighted case in order
to find a bound for the Poincaré constant.

For 0 < r < R let the annulus centered at the origin be defined by Ar ,R := BR\Br .
The superlevel sets of w are given by

Ωw
t = A t

2 ,1− t
2

=: A(t).

The Poincaré constant for annuli have been studied in [2, Theorem 2.3], where they
considered the existence of a finite number γ such that

C2
2 (Ar ,R, 1, 1) ≤ γ R. (21)

for all r < R. Note that one could explicitly find a γ such that (21) holds true by
exploiting Cheeger’s inequality.

Next we apply Theorem 1 with τ = 1/2, s = 2 and ρ ≡ 1. Thus we obtain for any
p ≥ 2 that

C p
2 (Ω,w,w) ≤ 8 ·

(

2
|Ω|

|A(1/2)|
)1/2

· w(Ω)
1
2− 1

p · γ.

Elementary computations yield that

|A(t)| = π(1 − t) and w(Ω) = π

2
.

Therefore we arrive at C p
2 (Ω,w,w) ≤ 16 · π

2

1
2− 1

p · γ.
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