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Abstract Du, Huang and Li showed in 2003 that the class of Dold–Fermat sequences
coincides with the class of Newton sequences, which are defined in terms of so-
called generating sequences. The sequences of Lefschetz numbers of iterates form an
important subclass of Dold–Fermat (thus also Newton) sequences. In this paper we
characterize generating sequences of Lefschetz numbers of iterates.
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1 Introduction

Dold–Fermat sequences constitute a class of integer sequences satisfying some con-
gruences [cf. (2.3)] that play important role both in number theory and dynamical
systems. Let us mention that the class is called Fermat sequences by some authors
[5,6], while some others name it Dold sequences (cf. for example [15]). In particular,
the sequences of fixed point indices of iterates are Dold–Fermat sequences, which
shows the importance of this class of sequences in periodic point theory, where the
existence of such congruences often leads to valuable information about behavior of
orbits and dynamics of a map near fixed or periodic points.

Another important class of sequences are Newton sequences, whose definition is
based on classical Newton identities. Newton sequences are defined by (and are in a
one-to-one correspondence with) the so-called generating sequences (see Definition
2.9). Du, Huang and Li showed in 2003 that in fact every Dold–Fermat sequence is a
Newton sequence and conversely [5].

In this paper we establish some relations between the classes of sequences men-
tioned above and the Lefschetz numbers of iterates. Every sequence of Lefschetz
numbers of iterates of a certain map f is a Dold–Fermat sequence, thus also a New-
ton sequence. On the other hand, the sequences of Lefschetz numbers make a proper
subset of all Dold–Fermat sequences. This fact stimulates natural question formulated
by K.Wójcik during the 7th Symposium of Nonlinear Analysis (Toruń, Poland 2015):
what are the generating sequences of Lefschetz numbers?

The aimof this article is to present a certain characterization of generating sequences
of Lefschetz numbers of iterates.

The paper is organized in the following way. In the second section we define
Lefschetz numbers, Dold–Fermat sequences and Newton sequences and show the
connections between them. In Sect. 3 we find the formula for the generating sequence
of the sum of two Newton sequences (Theorem 3.2) which allows us to interpret
the operation of assigning a generating sequence to a given Newton sequence as a
group homomorphism. In this part of the paper we also give a new, alternative proof
of the fact that the classes of Dold–Fermat sequences and Newton sequences coin-
cide (Theorems 4.3 and 4.5). Section4 is devoted to the description of the generating
sequences of (tr An)n and (− tr Bn)n , where A and B are integral matrices, expressed
in term of coefficients of its characteristic polynomials. In the final Sect. 5 we gather
the results of the two previous sections and describe the possible forms of generating
sequences of Lefschetz numbers under given bounds on the dimensions of the cor-
responding homology spaces. We also illustrate how this description can be used to
verify whether a given sequence is a generating sequence of some Lefschetz numbers.

2 Lefschetz numbers of iterates, Dold–Fermat sequences and Newton
sequences

In this section we introduce three main classes of integer sequences considered in the
article.
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Generating sequences of Lefschetz numbers of iterates 513

2.1 Lefschetz numbers of iterates

We start with giving the definition of Lefschetz numbers, for simplicity we confine
ourselves to homology with rational coefficients.

Let us consider a finite CW-complex K of dimension m with the homology groups
Hi (K ; Q), where i = 0, 1, . . . , m. The groups Hi (K ; Q) are finite dimensional linear
spaces over Q. For a self-map f of K we denote by f∗i the linear map induced by
f on Hi (K ; Q) and by f∗ the self-map

⊕m
i=0 f∗i of

⊕m
i=0 Hi (K ; Q). The Lefschetz

number L( f n) of f n is then equal to

L( f n) =
m∑

i=0

(−1)i tr( f n)∗i , (2.1)

where tr( f n)∗i is the trace of the integer matrix representing ( f n)∗i : Hi (K ; Q) →
Hi (K ; Q). Observe that if A is a matrix of f∗i , then An is a matrix of ( f n)∗i , repre-
senting the homomorphism induced on Hi (K ; Q) by f n (cf. [15]).

Remark 2.1 The Lefschetz number is always an integer (cf. [2]).

Let us divide homology groups into the odd-dimensional and the even-dimensional
ones:

Hev(K ; Q) :=
⊕

i−even

Hi (K ; Q), Hodd(K ; Q) :=
⊕

i−odd

Hi (K ; Q)

and analogously for the induced homomorphisms

f∗ev : Hev(K ; Q) → Hev(K ; Q), f∗odd : Hodd(K ; Q) → Hodd(K ; Q).

Then

L( f n) = tr f n∗ev − tr f n∗odd.

As a consequence, every sequence of Lefschetz numbers can be represented as the
difference of traces of powers of two integer matrices, i.e.

L( f n) = trAn
ev − trBn

odd, (2.2)

where Aev and Bodd are the matrices representing f∗ev and f∗odd, respectively. In the
later part of the paper, we will use the formula (2.2) as the definition of the sequence
of Lefschetz numbers, usually abstracting from the topological background. In fact,
note that for any sequence having the form of the right-hand side of (2.2) one can find
its topological realization as Lefschetz numbers.

Remark 2.2 Let Mi (Z) denote the set of integer i × i matrices. Then for each pair of
matrices Aev ∈ Mn1(Z), Bodd ∈ Mn2(Z), there exist a finite CW-complex K and a
self-map f : K → K satisfying L( f n) = trAn

ev − trBn
odd for every n ∈ N [15].
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514 G. Graff et al.

Let us remark that the sequence of Lefschetz numbers of iterates is a very useful
device in periodic point theory, cf. [4,11,12,15,18] and the references therein.

2.2 Dold–Fermat sequences and their relation to Lefschetz numbers

Definition 2.3 A sequence of integer numbers (an)∞n=1 will be called a Dold–Fermat
sequence if the following congruences (called Dold congruences or Dold relations)
are fulfilled: ∑

k|n
μ(k)a n

k
≡ 0 (mod n) for each n ≥ 1, (2.3)

where μ : N → Z is the classical Möbius function, given by the formula

μ(n) =

⎧
⎪⎨

⎪⎩

1, if n = 1;
(−1)k, if n = p1 p2 . . . pk for different primes pi ;
0, otherwise.

Remark 2.4 Consider the sequence an = an . For a prime number n = p the congru-
ences (2.3) take the form:

a p − a ≡ 0 (mod p),

which is the well-known Fermat’s Little Theorem. The following generalized version
of this theorem holds for traces of matrices (cf. for example Theorem 1.10 in [19]):
for every A ∈ Mn(Z), p-prime, α ∈ N, we have

tr(Apα

) ≡ tr(Apα−1
) (mod pα). (2.4)

Then by induction with respect to the number of primes dividing n one may show
that the sequence (trAn)n satisfies the Dold congruences (Theorem 1.9 in [19]), and
as a consequence any sequence of Lefschetz numbers of iterates is a Dold–Fermat
sequence (for a dynamical proof cf. Lemma 10 in [5]). In fact, this statement was
known in the literature much earlier and appeared in different contexts (see [22,23]).

There is a convenient way of writing down a Dold–Fermat sequence using the so-
called periodic expansion, i.e. as a combination of some basic periodic sequences.

Definition 2.5 Let k be a fixed natural number. We define

regk(n) =
{

k if k | n,

0 if k � n.

Thus, regk is the periodic sequence:

(0, . . . , 0, k, 0, . . . , 0, k, . . .),

where the non-zero entries appear for indices divisible by k.
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Generating sequences of Lefschetz numbers of iterates 515

Proposition 2.6 (cf. [19] Proposition 2.7) Any arithmetic function (gn)
∞
n=1 can be

written uniquely in the following form of a periodic expansion:

gn =
∞∑

k=1

αk regk(n), where αn = 1

n

∑

k|n
μ

(n

k

)
g(k) ∈ Q. (2.5)

Moreover, g is integral valued and satisfies Dold congruences if and only if αk ∈ Z

for every k ∈ N.

Remark 2.7 By Proposition 2.6 every Dold–Fermat sequence is an integral combina-
tion (possibly infinite) of basic sequences regk .

Sequences of Lefschetz numbers make a proper subset of Dold–Fermat sequences.
This results from a cardinality argument: there are only countably many sequences
that are given as differences of traces of powers of integer matrices, while there are
uncountablymanyDold–Fermat sequences. In order to show an example of a sequence
that is Dold–Fermat but is not a sequence of Lefschetz numbers it is enough to observe
that Lefschetz numbers cannot increase faster than exponentially.

Example 2.8 Let g(n) = ∑
k|n kk . Then by the Möbius inversion formula nn =

∑
k|n μ(n/k)g(k), and thus αn = 1

n nn ∈ Z, so (gn)n , by Proposition 2.6, is a Dold–
Fermat sequence. On the other hand, consider a sequence of Lefschetz numbers of
iterates (L( f n))n , which by definition has the form (2.2). Then |L( f n)| ≤ cρn , where
c is some positive constant and ρ is the greatest modulus of eigenvalues of matrices
Aev and Bodd (cf. [1]). As a consequence, (gn)n could not be a sequence of Lefschetz
numbers of iterates.

Other important examples of Dold–Fermat sequences are sequences of fixed point
indices of iterates. Let f : V → Y be a continuous map, where Y is an Euclidean
Neighborhood Retract and V ⊂ Y is an open subset. Consider the iterates f n : Vn →
Y , where Vn is defined inductively by V1 = V , Vn = f −1(Vn−1) for n > 1, and
assume that the set of fixed points of f n , Fix( f n), is compact. Then, for each n the
fixed point index ind( f n) := ind( f n, Vn) is a well-defined integer [7].

The fact that (ind( f n))n is a Dold–Fermat sequence was proved by A. Dold in 1985
[7]. The study of fixed point indices of iterates was used in many contexts in periodic
point theory and dynamics, cf. for example [3,8–11,13,21].

2.3 Newton sequences and generating sequences

Definition 2.9 A sequence of integer numbers (an)n is a Newton sequence generated
by the sequence of integers (cn)n if:

an = c1an−1 + c2an−2 + · · · + cn−1a1 + ncn . (2.6)

Example 2.10 The sequence (an)n is generated by the finite sequence (a, 0, 0, . . .)
while the sequence (−bn)n is generated by the infinite sequence (−bn)n (cf. Theorem
4.6).
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516 G. Graff et al.

The definition of Newton sequences (cf. [14]) is based on the famousNewton identi-
ties (cf. [6,20]), which play an important role in dynamics, algebra and number theory.
The class of Newton sequences encompasses many well-known types of sequences
such as k-Lucas sequences or generalized k-Fibonacci sequences.

It turned out that there is a strict relation between Newton and Dold–Fermat
sequences.

Theorem 2.11 (Theorem 5 and 6 in [5]) The classes of Dold–Fermat sequences and
Newton sequences coincide.

Our aim is to describe the Lefschetz numbers of iterates, regarded as a proper subset
of the Dold–Fermat (hence Newton) sequences in terms of their generating sequences.
We want thus to answer the following question:

Problem 2.12 What are the generating sequences of sequences of Lefschetz numbers
of iterates?

Note that the formula (2.6) in the definition of Newton sequence can be written as:

0 = −an + c1an−1 + c2an−2 + · · · + cn−1a1 + ncn .

For the sake of convenience we extend the domain of a generating sequence (cn)n

from N = N+ to N+ ∪ {0}, by putting c0 = −1. Then we have:

0 =
n−1∑

i=0

ci an−i + ncn . (2.7)

3 The generating sequence of a sum of Newton sequences

In this section we establish the formula for generating sequence of a sum of two
Newton sequences. It turns out that this formula is almost an immediate consequence
of the formal power series approach, in which the relation between a given Newton
sequence and its generating sequence has very simple and elegant form.

Theorem 3.1 [Theorem 2 (1) in [6]] A sequence (an)n is a Dold sequence generated
by (cn)n if and only if the following formal power series equality holds:

exp

( ∞∑

n=1

an

n
xn

)

=
(

1 −
∞∑

n=1

cn xn
)−1

. (3.1)

Theorem 3.2 Assume that a sequence (an)n is a Newton sequence generated by a
sequence (cn)n and a sequence (bn)n is a Newton sequence generated by a sequence
(dn)n. Then the sequence (an + bn)n is a Newton sequence generated by the sequence
(en)n such that

en = −
n∑

i=0

di cn−i (3.2)

for n ≥ 0.
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Generating sequences of Lefschetz numbers of iterates 517

Proof We have: exp

( ∞∑

n=1

an + bn

n
xn

)

= exp

( ∞∑

n=1

an

n
xn

)

exp

( ∞∑

n=1

bn

n
xn

)

.

Therefore, by Theorem 3.1

1 −
∞∑

n=1

en xn =
(

1 −
∞∑

n=1

cn xn
)(

1 −
∞∑

n=1

dn xn
)

. (3.3)

Thus

−
∞∑

n=1

en xn = d0

∞∑

n=1

cn xn + c0

∞∑

n=1

dn xn +
∞∑

n=2

( n−1∑

i=1

di cn−i

)

xn .

−
∞∑

n=1

en xn = d0c1x + d1c0x +
∞∑

n=2

d0cn xn +
∞∑

n=2

dnc0xn +
∞∑

n=2

( n−1∑

i=1

di cn−i

)

xn .

∞∑

n=1

en xn = −
∞∑

n=1

( n∑

i=0

di cn−i

)

xn .

��
We define the operation ∗ (convolution) in the set of generating sequences:

(d ∗ c)n = −
n∑

i=0

di cn−i . (3.4)

(Recall that the zero term of a generating sequence is always −1.)
Let us consider an operator T : (N ,+) → (G, ∗), where N is the set of New-

ton sequences equipped with the ordinary addition and G is the set of generating
sequences with the operation ∗, defined by assigning to each sequence in N its gener-
ating sequence.

Remark 3.3 The map T : N → G is a bijection by the definition, and a homomor-
phism by Theorem 3.2, we get that (G, ∗) is a commutative group (with (−1, 0, 0, . . .)
as the neutral element).

Our aim, which we realize in the next sections, is to describe the set T (L), where
L denotes the set of sequences of the Lefchetz numbers of iterates.

4 Generating sequences of the sequences of the form (tr An)n and
(− tr Bn)n

Let us consider first a simpler situation in which Problem 2.12 is reduced to the
case Bodd = 0, i.e. to finding a generating sequence of an = trAn

ev. In this case the
generating sequence (cn)n turns out to be finite (i.e. for some m ≥ 1, cm+1 = cm+2 =
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· · · = 0) and cn are equal to the coefficients of the characteristic polynomial of Aev
multiplied by −1.

In more details, let W = xm − c1xm−1 − c2xm−2 − · · · − cm−1x − cm be the
characteristic polynomial of the matrix Aev. Then we may consider the companion
matrix Mm of the polynomial W :

Mm =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0 · · · 0 cm

1 0 · · · 0 cm−1
0 1 · · · 0 cm−2
... 0

. . . 0
...

0 · · · 0 1 c1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (4.1)

Remark 4.1 (cf. Remark 4 in [24]). The sequence (−1, c1, c2, . . . , cm, 0, 0, . . .) is a
generating sequence of (tr Mn

m)n . Since Aev and Mm have the same characteristic
polynomial, thus for n ≥ 1,

tr Mn
m = tr An

ev. (4.2)

As a consequence, both sequences have the same generating sequence.

Let us determine the generating sequence of the sequence a(n) = regk(n), where
k ∈ N is fixed.

Lemma 4.2 The generating sequence of (regk)n is (ek)n = (−1, 0, . . . , 1, 0, . . .),
where the value 1 occurs at the kth place.

Proof Consider the matrix Mk given by the formula (4.1) with c1 = c2 = · · · =
ck−1 = 0 and ck = 1. Then it is easy to see that tr Mn

k = regk(n), which ends the
proof by Remark 4.1. ��

By the use of the language of periodic expansion, basing on Theorem 3.2 and
Lemma 4.2, we are able to give a short, alternative proof of Theorem 2.11.

Theorem 4.3 Every Dold–Fermat sequence is a Newton sequence.

Proof Let (gn) be a Dold–Fermat sequence. To prove the theorem it is enough to
show that for any fixed natural n0 the sequence T ((gn)

n0
n=1) takes integer values. On

the other hand, by Proposition 2.6, g(n) = ∑∞
k=1 αk regk(n), thus for each n ≤ n0

g(n) = ∑n0
k=1 αk regk(n). Consequently, by Theorem 3.2

∀n≤n0 T (gn)(n) = α1T (reg1)(n) ∗ . . . ∗ αn0T (regn0)(n).

As each T ((regk)n) is an integer sequence by Lemma 4.2, their convolution is also an
integer sequence, which completes the proof. ��

We will denote by em
k the convolution of m copies of the sequence ek defined in

Lemma 4.2, i.e. em
k = ek ∗. . .∗ek . Belowwe observe that the initial part of a generating

sequence coincides with the initial part of the convolution of finitely many elementary
sequences ek .
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Generating sequences of Lefschetz numbers of iterates 519

Lemma 4.4 For any sequence c = (cn)
m0
n=0 there exists a sequence (αn)

m0
n=0, αn ∈

N ∪ {0}, such that the following equality holds for each n ≤ m0:

c(n) =
(

eα1
1 ∗ . . . ∗ e

αm0
m0

)
(n). (4.3)

Proof Notice first that for a given sequence d = (dn)
m0
n=0 we have, by the formula

(3.4), the following equality for n ≤ m0 and a fixed k ≤ m0:

(−1, d1, d2, . . . , dk−1, dk, . . . , dm0) ∗ ek

= (−1, d1, d2, . . . , dk−1, dk + 1, dk+1 − d1, dk+2 − d2, . . . , dm0 − dm0−k).

(4.4)

Assume that a sequence x = (−1, c1, c2, . . . , ck−1, c′
k, c′

k+1, . . . , c′
m0

) has the needed
form given by the right-hand side of the formula (4.3) for any n ≤ k − 1. Consider

then the sequence y = x ∗ e
ck−c′

k
k . By the formula (4.4) it is of the form:

y = (−1, c1, c2, . . . , ck−1, c′
k + (ck − c′

k), c′′
k+1, . . . , c′′

m0

)
.

Repeating the same procedure finitely many times, we get the Eq. (4.3). ��
Theorem 4.5 Every Newton sequence is a Dold–Fermat sequence.

Proof Consider a Newton sequence (an)n generated by the sequence
c = (−1, c1, . . . , cm0 , cm0+1, . . .). It is enough to prove that for an arbitrary m0 and
all n ≤ m0 the sequence (an)

m0
n=0 is a Dold–Fermat sequence i.e. satisfies the Dold

congruences (2.3). By Lemma 4.4 we may represent c(n), for n ≤ m0 and some
α1, . . . , αm0 , in the form

c(n) =
(

eα1
1 ∗ . . . ∗ e

αm0
m0

)
(n).

On the other hand, the sequence (ek)n generates (regk)n by Lemma 4.2, thus (cn)
m0
n=0

generates (
∑

0≤i≤m0
αi regi )n , which by Proposition 2.6 satisfies Dold congruences.

This completes the proof. ��
While it was not difficult to find generating sequence of an = tr An

ev, the situation is
much more complicated when we search for generating sequences of bn = − tr Bn

odd.
As it is stated below, the corresponding generating sequence in this case is infinite,
and its form is given in Theorem 4.8. In the remaining part of the paper we will denote
Aev = A and Bodd = B for short.

Theorem 4.6 Let B ∈ Mi (Z) be a matrix that is not nilpotent. Then the generating
sequence dn of (− tr Bn)n is infinite.

In the proof of the above theoremwewill make use of the following algebraic result
(Proposition 1 in [16]).
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Lemma 4.7 Let G and H be finitely generated C-vector spaces and let u : G → G
and v : H → H be linear maps. If tr(un) = tr(vn) for every n ≥ 1, then u and v have
the same non-zero eigenvalues counted with their multiplicities.

Proof of Theorem 4.6. If the generating sequence dn of bn = − tr Bn were finite, then
there would exist, by the formula (4.2), a matrix Mm (where m is fixed) such that
tr Mn

m = bn = − tr Bn , thus
tr Mn

m + tr Bn = 0. (4.5)

Consider the matrix C = Mm
⊕

B. Then tr Cn = 0, so by Lemma 4.7 C is nilpotent,
thus also B is nilpotent. We obtain a contradiction. ��
Theorem 4.8 Let a sequence (bn)n be generated by (dn)n. We consider the sequence
(b̃n)n given by the formula b̃n = −bn. Let us denote by (βn)n the generating sequence
of (b̃n)n. Then

βn = −
∑

∑n
i=1 iki =n

(k1 + · · · + kn)!
k1! · · · · · kn ! dk1

1 dk2
2 · · · · · dkn

n , (4.6)

where each element of the sum in (4.6) is determined by the configuration (k1, . . . , kn)

satisfying
∑n

i=1 iki = n.

Proof First of all let us notice that the generating sequence of (bn) + (−bn) = 0 is,
by Theorem 3.2, the sequence (dn)n ∗ (βn)n . As a consequence, the sequences βn and
dn are related by the following recursive relation:

βn =
n−1∑

i=0

βi dn−i . (4.7)

Now, to prove (4.6) we use induction with respect to n. When n = 1 we get
β1 + d1 = 0, so β1 = −d1, therefore (4.6) holds. Assume that the formula (4.6) is
valid for all i < n, we will show that it is true also for i = n.

To simplify the proof we introduce the following notation.

Definition 4.9 We define below three classes of sequences that will be used in the
proof.

M =
{

k ∈ (N ∪ {0})N : ∃m∀ j>m k j = 0
}

, (4.8)

Ai =
{

k ∈ M :
∑

j

jk j = i

}

, (4.9)

Bk′ =
{

k ∈ M : ∃ j0∀ j k j =
{

k′
j if j �= j0,

k′
j − 1 if j = j0.

}

. (4.10)
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Generating sequences of Lefschetz numbers of iterates 521

Definition 4.10 We also define some symbolic notation that enables us to shorten the
expressions appearing in the proof. For k ∈ M we define

k! =
∏

j

(k j )!,
∑

k =
∑

j

k j , dk =
∏

j

d
k j
j . (4.11)

In this notation, our inductive assumption takes the form:

∀i<n βi = −
∑

k∈Ai

(
∑

k)!
k! dk . (4.12)

We want to prove that the formula (4.12) is also valid for n. For each i < n we
apply in the formula (4.7) our inductive assumption and get:

βn =
∑n−1

i=0

(

−
∑

k∈Ai

(
∑

k)!
k! dk ·dn−i

)

= −
∑

0≤i≤n−1
k∈Ai

(
(
∑

k)!
k! dk ·dn−i

)

. (4.13)

We will rearrange the formula (4.13). Let k ∈ Ai for some 0 ≤ i ≤ n − 1. Then we
find k′ such that k ∈ Bk′ and dk′ = dk · dn−i . Since k ∈ Ai , obviously k′ ∈ An . It is
easy to notice that there exists a bijection between pairs (i, k), where 0 ≤ i ≤ n − 1
and k ∈ Ai ; and pairs (k′, k), where k′ ∈ An and k ∈ Bk′ .

As a result, the formula (4.13) has the form:

βn = −
∑

k′∈An
k∈Bk′

(
∑

k)!
k! dk′

. (4.14)

Observe also that:
∑

k∈Bk′

1

k! = 1

k′!
∑

k′. (4.15)

As a consequence, we obtain

∑

k∈Bk′

(
∑

k)!
k! =

(( ∑
k′) − 1

)
! ·

∑

k∈Bk′

1

k! = (
∑

k′)!
k′! . (4.16)

Finally, substituting (4.16) to (4.14), we get

βn = −
∑

k′∈An
k∈Bk′

(
∑

k)!
k! · dk′ = −

∑

k′∈An

(
∑

k′)!
k′! dk′

, (4.17)

which is our inductive claim. This completes the proof. ��
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5 Generating sequences of sequences of Lefschetz numbers of iterates

Consider a map f : K → K and assume that we have some bounds on the dimensions
of the homology spaces dim Hev(K ; Q) ≤ m0 and dim Hodd(K ; Q) ≤ n0. Under these
assumptions we provide the formulas for generating sequences of Lefschetz numbers
in terms of the coefficients of the characteristic polynomials of the matrices A and B
representing the homomorphisms induced by f on Hev(K ; Q) and Hodd(K ; Q).

Theorem 5.1 Let A ∈ Mm0(Z), B ∈ Mn0(Z). We denote by −c1, . . . ,−cm0

and −d1, . . . ,−dn0 the coefficients of their characteristic polynomials, respectively.
Denote m0 = min{n, m0} and n0 = min{n, n0}. Then the generating sequence (γn)n

of (tr An − tr Bn)n is given by the formula:

γn =
m0∑

j=0

c j

∑

∑n0
i=1 iki =n− j

(k1 + · · · + kn0)!
k1! · . . . · kn0 !

dk1
1 dk2

2 · . . . · d
kn0
n0

. (5.1)

Proof By Remark 3.3, the generating sequence of (tr An − tr Bn)n is given by

T ((tr An − tr Bn)n) = T ((tr An)n) ∗ T ((− tr Bn)n)

= (−1, c1, c2, . . . , cm0 , 0, . . .) ∗ (−1, β1, β2, . . . , βn, . . .),

where (βn)n is the generating sequence of (− tr Bn)n . Applying Theorem 4.8 and
taking into account that by our assumption in the formula (4.7) di = 0 for i > n0, we
get (5.1). ��
Example 5.2 Assume that n0 = m0 = 1, then the sequence (tr An − tr Bn)n has the
form (cn − dn)n , where c, d ∈ Z. We calculate its generating sequence γn :

T ((cn − dn)n) = T ((cn)n) ∗ T ((−dn)n) = (−1, c, 0, 0, . . .) ∗ (−dn)n .

Thus, for n ≥ 1:

γn = −
n∑

i=0

ci (−dn−i ) = −dn + cdn−1 = (c − d)dn−1.

Due to the formulas (5.1), we may verify whether a particular sequence of integers
(sn)n can be a generating sequence of some sequence of Lefschetz numbers obtained
from matrices of given dimensions m0 and n0. Namely, consider the diophantine
system of equations: sn = γn for n = 1, . . . , m0 + n0 with the m0 + n0 unknown
variables ci and di . If this system has a solution c̃1, . . . c̃m0 , d̃1, . . . d̃n0 , we verify
whether it satisfies the rest of the equations sn = γn for n > n0 + m0.

Example 5.3 Let us consider (sn)n of the form (0,−2,−2, 4, . . .) and take m0 =
2, n0 = 1. Comparing sn with γn for n = 1, 2, 3 and multiplying both sides by −1 we
get
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⎧
⎪⎨

⎪⎩

d1 − c1 = 0,

d2
1 − c1d1 − c2 = 2,

d3
1 − c1d2

1 − c2d1 = 2.

(5.2)

It is immediate to verify that d1 = 1, c1 = 1, c2 = −2 is the only solution of the
system (5.2). On the other hand, this set of integers does not fulfill the fourth equation
γ4 = 4, i.e.

d4
1 − c1d3

1 − c2d2
1 = −4.

Hence, the sequence (sn)n cannot be a generating sequence of the sequence of
Lefschetz numbers obtained as a difference of two matrices of dimension 2 and 1,
respectively

Another important property of the generating sequence of Lefschetz numbers is the
fact that it grows not faster than exponentially (like the Lefschetz numbers themselves,
cf. Example 2.8). Namely we have the following estimate (we apply the notation from
Theorem 5.1):

Theorem 5.4 Assume L( f n) = tr An − tr Bn, where A ∈ Mm0(Z), B ∈ Mn0(Z). Let
us take the smallest constant σ > 0 such that for all j

j
√|c j | ≤ σ and j

√|d j | ≤ σ. (5.3)

Then:

|γn| ≤ 2 · (2σ)n .

Proof Applying the formulas (5.1) and (5.3) we get for n > max(m0, n0):

|γn| ≤
m0∑

j=0

|c j |
∑

∑n0
i=1 iki =n− j

(k1 + · · · + kn0)!
k1! · . . . · kn0 !

|d1|k1 |d2|k2 · . . . · |dn0 |kn0

≤
m0∑

j=0

σ j · σ n− j
∑

∑n0
i=1 iki =n− j

(k1 + · · · + kn0)!
k1! · . . . · kn0 !

≤ σ n
m0∑

j=0

∑

∑n0
i=1 iki =n− j

(k1 + · · · + kn0)!
k1! · . . . · kn0 !

.

On the other hand, by Remark 8 in [5], the following equality holds:

∑

∑n
i=1 iki =n

n

(k1 + · · · + kn)

(k1 + · · · + kn)!
k1! · . . . · kn ! = 2n − 1. (5.4)
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As a consequence of (5.4), we obtain:

|γn| ≤ σ n ·
m0∑

j=0

2n− j ≤ σ n · 2n+1,

which is the desired estimate. ��
To conclude, we formulate an open problem related to the representation of Lef-

schetz numbers in the form of periodic expansion. By Proposition 2.6, we may
represent any sequence of Lefschetz numbers as a combination of basic sequences
regk with some coefficients αk (called Dold coefficients), i.e.

L( f n) =
∞∑

k=1

αk regk(n). (5.5)

Problem 5.5 Characterize the sequences of Dold coefficients of periodic expansion
for Lefschetz numbers.

The representation of Lefschetz numbers by Dold coefficients is much different
from the representation by the use of generating sequences. Notice for example that
the generating sequence of (tr An)n is finite, while the sequence of Dold coefficients
of its periodic expansion may be infinite. This holds even in the simplest case for
1 × 1 matrix with the entry equal to 2. In such a case the coefficients αk of periodic
expansion of the sequence L( f n) = 2n are non-zero for each k (cf. [17] Theorem
1.2).
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