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Abstract A result of Wright from 1937 shows that there are arbitrarily large natural
numbers which cannot be represented as sums of s kth powers of natural numbers
which are constrained to lie within a narrow region. We show that the analogue of this
result holds in the shifted version of Waring’s problem.
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Waring’s problem with shifts asks whether, given k, s ∈ N and η ∈ (0, 1], along with
shifts θ1, . . . , θs ∈ (0, 1) with θ1 /∈ Q, we can find solutions in natural numbers xi to
the following inequality, for all sufficiently large τ ∈ R:

∣
∣
∣(x1 − θ1)

k + · · · + (xs − θs)
k − τ

∣
∣
∣ < η. (1)

This problem was originally studied by Chow in [3]. In [1], the author showed that
an asymptotic formula for the number of solutions to (1) can be obtained whenever
k ≥ 4 and s ≥ k2 + (3k − 1)/4. The corresponding result for k = 3 and s ≥ 11 is due
to Chow in [2].
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An interesting variant is to consider solutions of (1) subject to the additional con-
dition ∣

∣
∣xi − (τ/s)1/k

∣
∣
∣ < y(τ ), (1 ≤ i ≤ s),

for some function y(τ ). In other words, we are confining our variables to be within a
small distance of the “average” value.

In 1937, Wright studied this question in the setting of the classical version of
Waring’s problem, and proved in [6] that there exist arbitrarily large natural numbers
nwhich cannot be represented as sums of s kth powers of natural numbers xi satisfying
the condition

∣
∣xki − n/s

∣
∣ < n1−1/2kφ(n) for 1 ≤ i ≤ s, no matter how large s is taken.

Here, φ(n) is a function satisfying φ(n) → 0 as n → ∞.
In [4] and [5], Daemen showed that if we widen the permitted region slightly, we

can once again guarantee solutions in the classical case. Specifically, he obtains a
lower bound on the number of solutions under the condition

∣
∣
∣xi − (n/s)1/k

∣
∣
∣ < cn1/2k, (1 ≤ i ≤ s),

for a suitably large constant c, and an asymptotic formula under the condition

∣
∣
∣xi − (n/s)1/k

∣
∣
∣ < n1/2k+ε, (1 ≤ i ≤ s).

In this note, we show that (a slight strengthening of) Wright’s result remains true
in the shifted case. Specifically, we prove the following.

Theorem 1 Let s, k ≥ 2 be natural numbers. Fix θ = (θ1, . . . , θs) ∈ (0, 1)s , and let
c, c′ > 0 be suitably small constants which may depend on s, k and θ . There exist
arbitrarily large values of τ ∈ R which cannot be approximated in the form (1), with
0 < η < cτ 1−2/k , subject to the additional condition that

∣
∣xi − (τ/s)1/k

∣
∣ < c′τ 1/2k

for 1 ≤ i ≤ s.

Proof This follows the structure of Wright’s proof in [6], with minor adjustments
to take into account the shifts present in our problem. As such, for m ∈ N, we let
τm = smk +kmk−1(s−∑s

i=1 θi ), and we note that τm → ∞ asm → ∞. Throughout
the proof, we allow c1, c2, . . . to denote positive constants which do not depend on
m, although they may depend on the fixed values of s, k, θ , c and c′. We also note that
η < cτ 1−2/k implies that η � mk−2.

Suppose τm satisfies (1) with 0 < η < cτ 1−2/k
m and

∣
∣xi − (τm/s)1/k

∣
∣ < c′τ 1/2km for

1 ≤ i ≤ s. We write xi = m + ai , and observe that

mk−1 |ai | = mk−1 |xi − m|
≤ mk−1

( ∣
∣
∣xi − (τm/s)1/k

∣
∣
∣ +

∣
∣
∣(τm/s)1/k − m

∣
∣
∣

)

≤ c′mk−1τ
1/2k
m +

∣
∣
∣τm/s − mk

∣
∣
∣ .
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Using the definition of τm , we obtain

mk−1 |ai | ≤ c1m
k−1m1/2 + kmk−1

(

1 − s−1
s

∑

i=1

θi

)

,

and therefore |ai | ≤ c2m1/2 for 1 ≤ i ≤ s. Expanding (1), we see that

η >

∣
∣
∣
∣
∣

s
∑

i=1

(xi − θi )
k − τm

∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣

s
∑

i=1

(m + ai − θi )
k −

(

smk + kmk−1(s −
s

∑

i=1

θi )
)
∣
∣
∣
∣
∣

(2)

≥ kmk−1

∣
∣
∣
∣
∣
s −

s
∑

i=1

ai

∣
∣
∣
∣
∣
−

∣
∣
∣
∣
∣
∣

k
∑

j=2

(
k

j

)

mk− j
s

∑

i=1

(ai − θi )
j

∣
∣
∣
∣
∣
∣

.

Rearranging, this gives

∣
∣
∣
∣
∣
s −

s
∑

i=1

ai

∣
∣
∣
∣
∣
< ηk−1m1−k +

∣
∣
∣
∣
∣
∣

k
∑

j=2

(
k

j

)

k−1m1− j
s

∑

i=1

(ai − θi )
j

∣
∣
∣
∣
∣
∣

≤ ηk−1m1−k +
k

∑

j=2

(
k

j

)

k−1m1− j s(c3m
1/2) j

≤ c4.

By choosing our original c, c′ to be sufficiently small, we may conclude that c4 ≤ 1,
which implies that

∑s
i=1 ai = s. Substituting this back into (2), when k = 2 we obtain

η >

(
k

2

)

mk−2
s

∑

i=1

(ai − θi )
2,

and consequently

s
∑

i=1

(ai − θi )
2 < c5,

which is a contradiction if we choose c, c′ sufficiently small, since we know that
∑s

i=1(ai − θi )
2 	 1.
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When k ≥ 3, we obtain

η >

∣
∣
∣
∣
∣
∣

k
∑

j=2

(
k

j

)

mk− j
s

∑

i=1

(ai − θi )
j

∣
∣
∣
∣
∣
∣

≥
(
k

2

)

mk−2
s

∑

i=1

(ai − θi )
2 −

∣
∣
∣
∣
∣
∣

k
∑

j=3

(
k

j

)

mk− j
s

∑

i=1

(ai − θi )
j

∣
∣
∣
∣
∣
∣

.

Consequently,

(
k

2

)

mk−2
s

∑

i=1

(ai − θi )
2 < η +

k
∑

j=3

(
k

j

)

mk− j
s

∑

i=1

|ai − θi | j

≤ η +
k

∑

j=3

(
k

j

)

mk− j (c3m
1/2) j−2

s
∑

i=1

(ai − θi )
2

≤ η + c6m
k−5/2

s
∑

i=1

(ai − θi )
2,

and so

s
∑

i=1

(ai − θi )
2 < c7 + c8m

−1/2
s

∑

i=1

(ai − θi )
2,

which is again a contradiction when m is large.
We conclude that for all sufficiently large m, it is impossible to approximate τm in

the manner claimed. This completes the proof. 
�
Corollary 2 For s, k ≥ 2 natural numbers, θ = (θ1, . . . , θs) ∈ (0, 1)s , and suitably
small constants C,C ′ > 0, there exist arbitrarily wide gaps between real numbers τ

for which the system

∣
∣
∣(x1 − θ1)

k + · · · + (xs − θs)
k − τ

∣
∣
∣ < Cτ 1−2/k

∣
∣
∣xi − (τ/s)1/k

∣
∣
∣ < C ′τ 1/2k, (1 ≤ i ≤ s)

(3)

has a solution in natural numbers x1, . . . , xs .

Proof By Theorem 1, we fix τ0 ∈ R such that there is no solution in natu-
ral numbers x1, . . . , xs to

∣
∣(x1 − θ1)

k + · · · + (xs − θs)
k − τ0

∣
∣ < cτ 1−2/k

0 with
∣
∣xi − (τ0/s)1/k

∣
∣ < c′τ 1/2k0 for 1 ≤ i ≤ s.

Let 0 < δ ≤ C0τ
1−2/k
0 for someC0 > 0, and let τ ∈ [τ0−δ, τ0+δ]. LetC,C ′ > 0

be suitably small constants depending on c, c′ and C0 to be chosen later, and suppose
that x1 . . . , xs ∈ N are such that (3) is satisfied.
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We have
∣
∣
∣(τ/s)1/k − (τ0/s)

1/k
∣
∣
∣ ≤ s−1/k

∣
∣
∣(τ0 − δ)1/k − τ

1/k
0

∣
∣
∣

≤ C1δτ
1/k−1
0 ,

and consequently

∣
∣
∣xi − (τ0/s)

1/k
∣
∣
∣ ≤

∣
∣
∣xi − (τ/s)1/k

∣
∣
∣ +

∣
∣
∣(τ/s)1/k − (τ0/s)

1/k
∣
∣
∣

< C ′τ 1/2k + C1δτ
1/k−1
0

≤ C ′(τ0 + δ)1/2k + C1C0τ
−1/k
0

≤ C2τ
1/2k
0 .

We also see that
∣
∣
∣
∣
∣

s
∑

i=1

(xi − θi )
k − τ0

∣
∣
∣
∣
∣
≤

∣
∣
∣
∣
∣

s
∑

i=1

(xi − θi )
k − τ

∣
∣
∣
∣
∣
+ |τ − τ0|

< Cτ 1−2/k + δ

≤ C(τ0 + δ)1−2/k + C0τ
1−2/k
0

≤ C3τ
1−2/k
0 .

Choosing C0,C,C ′ small enough to ensure that C2 ≤ c′ and C3 ≤ c gives a con-
tradiction to our original choice of τ0. Consequently, there is no solution to (3) in an
interval of radius � τ

1−2/k
0 around τ0. 
�
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