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1 Introduction

In this work we introduce a notion of a convolution generated by systems of elements
of a Hilbert space H forming a Riesz basis.

Such collections often arise as systems of eigenfunctions of densely defined non-
self-asjoint operators acting on H, and a suitable notion of convolution also leads to
the development of the associated Fourier analysis. In the case of the eigenfunctions
having no zeros the corresponding global theory of pseudo-differential operators has
been recently developed in [25]. The assumption on eigenfunctions having no zeros
has been subsequently removed in [26], and some applications of such analysis to the
wave equation for the Landau Hamiltonian were carried out in [27,29], as well as for
general operators with discrete spectrum in [28], and for nonlinear PDE in [30]. The
analysis in these papers relied on the spectral properties of a fixed operator acting in
H = L2(M) for a smooth manifold M with or without boundary.

In this note we aim at discussing an abstract point of view on convolutions when
one is given only a Riesz basis in a Hilbert space, without making additional assump-
tions on an operator for which it may be a basis of eigenfunctions. Such an abstract
point of view has a number of advantages, for example, the questions of whether
the basis elements (for example in H = L2(M)) have zeros at some points, become
irrelevant.

More specifically, letH be a separable Hilbert space, and denote by

U := {uξ | uξ ∈ H}ξ∈N

and

V := {vξ | vξ ∈ H}ξ∈N

collections of elements of H parametrised by a discrete set N. We assume that the
system U is a Riesz basis of the spaceH and the system V is biorthogonal to U inH,
i.e. we have the property that

(uξ , vη)H = δξη,

where δξη is the Kronecker delta, equal to 1 for ξ = η, and to 0 otherwise. Then from
the classical Bari’s work [5] (see also Gelfand [14]) it follows that the system V is also
basis in H. The Riesz basis is characterised by the property that it is the image of an
orthonormal basis in H under a linear invertible transformation. However, since our
aim is to subsequently extend the present constructions in the future beyond the Riesz
basis setting we will try not to make explicit use of this property. The results of this
paper have been announced in [22].

The setting of Riesz bases has numerous applications to different problems, see
e.g. [10,11], and in different settings and modifications, see e.g. [4,15,16], to mention
only very few. Decomposition systems of different types and the subsequent function
spaces is also an active area of research, see e.g. [7,8,17,23].
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Convolution, Fourier analysis, and distributions generated… 149

In this paper we define U- and V-convolutions in the following form:

f �U g :=
∑

ξ∈N
( f, vξ )(g, vξ )uξ (1.1)

and
h �V j :=

∑

ξ∈N
(h, uξ )( j, uξ )vξ (1.2)

for appropriate elements f, g, h, j ∈ H. These convolutions are clearly commutative
and associative, and have a number of properties expected from convolutions, most
importantly, they aremapped to the product by the naturally defined Fourier transforms
associated to U and V .

Without going too much into detail, let us briefly summarise the results of this
paper:

• The naturally defined Fourier transforms in H map convolutions (1.1) and (1.2)
to the product of Fourier transforms. For example, defining f̂ (ξ) := ( f, vξ ), we

have f̂ �U g = f̂ ĝ. Moreover, conversely, if a bilinear mapping K : H×H → H
satisfies K̂ ( f, g) = f̂ ĝ, it must be given by (1.1).

• Although the bases U and V do not have to be orthogonal, there is a Hilbert space
l2U such that we have the Plancherel identity ( f, g)H = ( f̂ , ĝ)l2U

.

• We discuss more general families of spaces l pU , 1 ≤ p ≤ ∞, on the Fourier
transform side giving rise to further Fourier analysis in H. Namely, these spaces
satisfy analogues of the usual duality and interpolation relations, as well as the
Hausdorff–Young inequalities with the corresponding family of subspaces of H.

• The developed biorthogonal Fourier analysis can be embedded in an appropriate
theory of distributions realised in suitable rigged Hilbert spaces (�U ,H,�′

U ) and
(�V ,H,�′

V ), with �U := C∞
U ,�

, �′
U := D′

V,�
and �V := C∞

V,�
, �′

V := D′
U ,�

,
associated to a fixed spectral set � satisfying certain natural properties. These
triples allow us to extend the notions of U- and V-convolutions and U- and V-
Fourier transforms beyond the Hilbert space H.

• We show how these constructions are related to the spectral decompositions of
linear operators inH. In particular, we relate the convolutions to the formulae for
their resolvents.

• We discuss several examples and several further possible notions of convolutions.

Let us conclude the introduction by giving a concrete example of such convolution
also relating it to the spectral analysis. Let us consider the operator L : H → H on
the interval (0, 1) given by

L := −i
d

dx
,

and let us equip this operator with boundary condition hy(0) = y(1) for some h > 0.
The operator L is not self-adjoint onH = L2(0, 1) for h �= 1. The spectral properties
of L have been thoroughly investigated by e.g. Titchmarsh [31] and Cartwright [9].
In particular, it is known that the collections
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150 M. Ruzhansky, N. Tokmagambetov

U = {u j (x) = hxe2π i x j , j ∈ Z} (1.3)

and
V = {v j (x) = h−x e2π i x j , j ∈ Z} (1.4)

are the systems of eigenfunctions of L and L∗, respectively, and form Riesz bases in
H = L2(0, 1). In this case the abstract definition of convolution above can be shown
(see Proposition 5.1) to yield the concrete expression

( f �U g)(x) =
∫ x

0
f (x − t)g(t)dt + 1

h

∫ 1

x
f (1 + x − t)g(t)dt,

which coincides with the usual convolution for h = 1, in which case also U = V is an
orthonormal basis inH. Of course, in this example, the main interest for us is the case
h �= 1 corresponding to biorthogonal bases U and V in (1.3) and (1.4), respectively.

In this paper, to avoid any confusion, we will be using the notation N0 = N ∪ {0}.

2 Biorthogonal convolutions

In this sectionwe describe the functional analytic setting for investigating convolutions
(1.1) and (1.2). Let us take biorthogonal systems

U := {uξ | uξ ∈ H}ξ∈N

and

V := {vξ | vξ ∈ H}ξ∈N

in a separable Hilbert spaceH, whereN is a discrete set. We assume that U (and hence
also V) is a Riesz basis in H, i.e. any element of H has a unique decomposition with
respect of the elements of U . We note that the basis collections are uniformly bounded
inH.

Before we proceed with describing a version of the biorthogonal Fourier analysis,
let us show that expressions in (1.1) and (1.2) are usually well-defined.

Proposition 2.1 Let f �U g and h �V j be defined by (1.1) and (1.2), respectively,
that is,

f �U g :=
∑

ξ∈N
( f, vξ )(g, vξ )uξ (2.1)

and
h �V j :=

∑

ξ∈N
(h, uξ )( j, uξ )vξ . (2.2)

Then there exists a constant M > 0 such that we have

‖ f �U g‖H ≤ M sup
ξ∈N

‖uξ‖H‖ f ‖H‖g‖H, ‖h �V j‖H ≤ M sup
ξ∈N

‖vξ‖H‖h‖H‖ j‖H,

(2.3)
for all f, g, h, j ∈ H.
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Convolution, Fourier analysis, and distributions generated… 151

The statement follows from the Cauchy–Schwarz inequality and the following fact:
since systems of uξ and of vξ are Riesz bases inH, from [5, Theorem 9] we have that
there are constants a, A, b, B > 0 such that for arbitrary g ∈ H we obtain

a2‖g‖2H ≤
∑

ξ∈N
|(g, vξ )|2 ≤ A2‖g‖2H and b2‖g‖2H ≤

∑

ξ∈N
|(g, uξ )|2 ≤ B2‖g‖2H.

(2.4)
This amounts to simply stating that the Riesz basis collections form collections of
frames in H. From the Riesz basis property it also follows that the families U and V
are uniformly bounded inH, that is,

sup
ξ∈N

‖uξ‖H + sup
ξ∈N

‖vξ‖H < ∞.

Let us introduce U- and V-Fourier transforms by formulas

FU ( f )(ξ) := ( f, vξ ) =: f̂ (ξ) (2.5)

and
FV (g)(ξ) := (g, uξ ) =: ĝ∗(ξ), (2.6)

respectively, for all f, g ∈ H and for each ξ ∈ N. Here ĝ∗ stands for the V-Fourier
transform of the function g. Indeed, in general ĝ∗ �= ĝ. Their inverses are given by

(F−1
U a)(x) :=

∑

ξ∈N
a(ξ)uξ (2.7)

and
(F−1

V a)(x) :=
∑

ξ∈N
a(ξ)vξ . (2.8)

The Fourier transforms defined in (2.5) and (2.6) are the analysis operators, and,
the inverse transforms (2.7) and (2.8) are the corresponding synthesis operators, see
e.g. [23]. For more information, see e.g. [7,8,17] and references therein.

There is a straightforward relation between U- and V-convolutions, and the Fourier
transforms:

Theorem 2.2 For arbitrary f, g, h, j ∈ H we have

f̂ �U g = f̂ ĝ, ĥ �V j∗ = ĥ∗ ĵ∗.

Therefore, the convolutions are commutative and associative.
Let K : H ×H → H be a bilinear mapping. If for all f, g ∈ H, the form K ( f, g)

satisfies the property
K̂ ( f, g) = f̂ ĝ (2.9)

then K is the U-convolution, i.e. K ( f, g) = f ∗U g.
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Similarly, if K ( f, g) satisfies the property

K̂ ( f, g)∗ = f̂∗ ĝ∗ (2.10)

then K is the V-convolution, i.e. K ( f, g) = f ∗V g.

Proof Direct calculations yield

FU ( f �U g)(ξ) =
⎛

⎝
∑

η∈N
f̂ (η)ĝ(η)uη, vξ

⎞

⎠

=
∑

η∈N
f̂ (η)ĝ(η)(uη, vξ )

= f̂ (ξ)ĝ(ξ).

Commutativity follows from the bijectivity of the U-Fourier transform, also implying
the associativity. This can be also seen from the definition:

(( f �U g) �U h) =
∑

ξ∈N

⎛

⎝
∑

η∈N
f̂ (η)ĝ(η)uη, vξ

⎞

⎠ ĥ(ξ)uξ

=
∑

ξ∈N
f̂ (ξ)ĝ(ξ )̂h(ξ)uξ

=
∑

ξ∈N
f̂ (ξ)

⎡

⎣
∑

η∈N
ĝ(η)̂h(η)(uη, vξ )

⎤

⎦ uξ

=
∑

ξ∈N
f̂ (ξ)

⎛

⎝
∑

η∈N
ĝ(η)̂h(η)uη, vξ

⎞

⎠ uξ

= ( f �U (g �U h)).

Next, it is enough to prove that K is the U-convolution under the assumption (2.9).
The similar property for V-convolutions under assumption (2.10) follows by simply
replacing U by V in the part concerning U-convolutions.

Since for arbitrary f, g ∈ H and for K ( f, g) ∈ H the property (2.9) is valid then
we can regain K ( f, g) from the inverse U-Fourier formula

K ( f, g) =
∑

ξ∈N
K̂ ( f, g)(ξ)uξ =

∑

ξ∈N
f̂ (ξ) ĝ(ξ)uξ .

The last expression defines the U-convolution. ��
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3 Biorthogonal Fourier analysis

From (2.4) we can conclude that the U- and V-Fourier coefficients of the elements of
H belong to the space of square-summable sequences l2(N). However, we note that the
Plancherel identity is also valid for suitably defined l2-spaces of Fourier coefficients,
see [25, Proposition 6.1]. We explain it now in the present setting.

Indeed, the frame property in (2.4) can be improved to the exact Plancherel formula
with a suitable choice of norms.

3.1 Plancherel formula

Let us denote by

l2U = l2(U)

the linear space of complex-valued functions a on N such that F−1
U a ∈ H, i.e. if there

exists f ∈ H such that FU f = a. Then the space of sequences l2U is a Hilbert space
with the inner product

(a, b)l2U
:=

∑

ξ∈N
a(ξ) (FV ◦ F−1

U b)(ξ), (3.1)

for arbitrary a, b ∈ l2U . The reason for this choice of the definition is the following
formal calculation:

(a, b)l2U
=

∑

ξ∈N
a(ξ) (FV ◦ F−1

U b)(ξ)

=
∑

ξ∈N
a(ξ)

(
F−1
U b, uξ

)

=
⎛

⎝

⎡

⎣
∑

ξ∈N
a(ξ)uξ

⎤

⎦ ,F−1
U b

⎞

⎠

=
(
F−1
U a, F−1

U b
)

,

which implies the Hilbert space properties of the space of sequences l2U . The norm of
l2U is then given by the formula

‖a‖l2U =
⎛

⎝
∑

ξ∈N
a(ξ) (FV ◦ F−1

U a)(ξ)

⎞

⎠
1/2

, for all a ∈ l2U . (3.2)

We note that individual terms in this sum may be complex-valued but the whole sum
is real and non-negative.
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154 M. Ruzhansky, N. Tokmagambetov

Analogously, we introduce the Hilbert space

l2V = l2(V)

as the space of functions a on N such that F−1
V a ∈ H, with the inner product

(a, b)l2V
:=

∑

ξ∈N
a(ξ) (FU ◦ F−1

V b)(ξ), (3.3)

for arbitrary a, b ∈ l2V . The norm of l2V is given by the formula

‖a‖l2V =
⎛

⎝
∑

ξ∈N
a(ξ) (FU ◦ F−1

V a)(ξ)

⎞

⎠
1/2

for all a ∈ l2V . The spaces of sequences l
2
U and l2V are thus generated by biorthogonal

systems {uξ }ξ∈N and {vξ }ξ∈N.
Since Riesz bases are equivalent to an orthonormal basis by an invertible linear

transformation, we have the equality between the spaces l2U = l2V = l2(N) as sets; of
course the special choice of their norms is the important ingredient in their definition.

Indeed, the reason for their definition in the above forms becomes clear again in
view of the following Plancherel identity:

Theorem 3.1 (Plancherel’s identity) If f, g ∈ H then f̂ , ĝ ∈ l2U , f̂∗, ĝ∗ ∈ l2V , and
the inner products (3.1), (3.3) take the form

( f̂ , ĝ)l2U
=

∑

ξ∈N
f̂ (ξ) ĝ∗(ξ)

and

( f̂∗, ĝ∗)l2V =
∑

ξ∈N
f̂∗(ξ) ĝ(ξ),

respectively. In particular, we have

( f̂ , ĝ)l2U
= (ĝ∗, f̂∗)l2V .

The Parseval identity takes the form

( f, g)H = ( f̂ , ĝ)l2U
=

∑

ξ∈N
f̂ (ξ) ĝ∗(ξ). (3.4)

Furthermore, for any f ∈ H, we have f̂ ∈ l2U , f̂∗ ∈ l2V , and

‖ f ‖H = ‖ f̂ ‖l2U = ‖ f̂∗‖l2V . (3.5)
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Proof By the definition we get

(FV ◦ F−1
U ĝ)(ξ) = (FVg) (ξ) = ĝ∗(ξ)

and

(FU ◦ F−1
V ĝ∗)(ξ) = (FU g) (ξ) = ĝ(ξ).

Hence it follows that

( f̂ , ĝ)l2U
=

∑

ξ∈N
f̂ (ξ) (FV ◦ F−1

U ĝ)(ξ) =
∑

ξ∈N
f̂ (ξ) ĝ∗(ξ)

and

( f̂∗, ĝ∗)l2V =
∑

ξ∈N
f̂∗(ξ) (FU ◦ F−1

V ĝ∗)(ξ) =
∑

ξ∈N
f̂∗(ξ) ĝ(ξ).

To show Parseval’s identity (3.4), using these properties and the biorthogonality of
uξ ’s to vη’s, we can write

( f, g) =
⎛

⎝
∑

ξ∈N
f̂ (ξ)uξ ,

∑

η∈N
ĝ∗(η)vη

⎞

⎠

=
∑

ξ∈N

∑

η∈N
f̂ (ξ)ĝ∗(η)

(
uξ , vη

) =
∑

ξ∈N
f̂ (ξ)ĝ∗(ξ) = ( f̂ , ĝ)l2U

,

proving (3.4). Taking f = g, we get

‖ f ‖2H = ( f, f ) =
∑

ξ∈N
f̂ (ξ) f̂∗(ξ) = ( f̂ , f̂ )l2U

= ‖ f̂ ‖2
l2U

,

proving the first equality in (3.5). Then, by checking that

( f, f ) = ( f, f ) =
∑

ξ∈N
f̂ (ξ) f̂∗(ξ) =

∑

ξ∈N
f̂∗(ξ) f̂ (ξ) = ( f̂∗, f̂∗)l2V = ‖ f̂∗‖2l2V ,

the proofs of (3.5) and of Theorem 3.1 are complete. ��

3.2 Hausdorff–Young inequality

Now, we introduce a set of Banach spaces {Hp}1≤p≤∞ with the norms ‖ · ‖p such
that

Hp ⊆ H
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and with the property
|(x, y)H| ≤ ‖x‖Hp‖y‖Hq (3.6)

for all 1 ≤ p ≤ ∞, where 1
p + 1

q = 1. We assume thatH2 = H, and thatHp are real
interpolation properties in the following sense:

(H1,H2)θ,p = Hp, 0 < θ < 1,
1

p
= 1 − θ

2
,

and

(H1,H2)θ,p = Hp, 0 < θ < 1,
1

p
= 1 − θ

2
.

We also assume that U ⊂ Hp and V ⊂ Hp for all p ∈ [1,∞].
IfH = L2(
) for some 
, we could takeHp = L2(
) ∩ L p(
). IfH = S2(K) is

the Hilbert space of Hilbert-Schmidt operators on a Hilbert spaceK, then we can take
Hp = S2(K) ∩ Sp(K), where Sp(K) stands for the space of p-Schatten operators on
K.

Below we introduce the p-Lebesgue versions of the spaces of Fourier coefficients.
Here classical l p spaces on N are extended in a way so that we associate them to the
given biorthogonal systems.

Definition 3.2 Let us define spaces l pU = l p(U) as the spaces of all a : N → C such
that

‖a‖l p(U) :=
⎛

⎝
∑

ξ∈N
|a(ξ)|p‖uξ‖2−p

H∞

⎞

⎠
1/p

< ∞, for 1 ≤ p ≤ 2, (3.7)

and

‖a‖l p(U) :=
⎛

⎝
∑

ξ∈N
|a(ξ)|p‖vξ‖2−p

H∞

⎞

⎠
1/p

< ∞, for 2 ≤ p < ∞, (3.8)

and, for p = ∞,

‖a‖l∞(U) := sup
ξ∈N

(
|a(ξ)| · ‖vξ‖−1

H∞
)

< ∞.

Here, without loss of generality, we can assume that uξ �= 0 and vξ �= 0 for all
ξ ∈ N, so that the above spaces are well-defined.

123



Convolution, Fourier analysis, and distributions generated… 157

Analogously, we introduce spaces l pV = l p(V) as the spaces of all b : N → C such
that

‖b‖l p(V) =
⎛

⎝
∑

ξ∈N
|b(ξ)|p‖vξ‖2−p

H∞

⎞

⎠
1/p

< ∞, for 1 ≤ p ≤ 2,

‖b‖l p(V) =
⎛

⎝
∑

ξ∈N
|b(ξ)|p‖uξ‖2−p

H∞

⎞

⎠
1/p

< ∞, for 2 ≤ p < ∞,

‖b‖l∞(V) = sup
ξ∈N

(
|b(ξ)| · ‖uξ‖−1

H∞
)

.

Now, we recall a theorem on the interpolation of weighted spaces from Bergh and
Löfström [6, Theorem 5.5.1]. Then we formulate some basic properties of l p(U).

Theorem 3.3 (Interpolation of weighted spaces) Let us write dμ0(x) = ω0(x)dμ(x),
dμ1(x) = ω1(x)dμ(x), and write L p(ω) = L p(ωdμ) for the weight ω. Suppose that
0 < p0, p1 < ∞. Then

(L p0(ω0), L
p1(ω1))θ,p = L p(ω),

where 0 < θ < 1, 1
p = 1−θ

p0
+ θ

p1
, and ω = ω

p(1−θ)
p0

0 ω

pθ
p1
1 .

From this we obtain the following property:

Corollary 3.4 (Interpolation of l p(U) and l p(V)) For 1 ≤ p ≤ 2, we obtain

(l1(U), l2(U))θ,p = l p(U),

(l1(V), l2(V))θ,p = l p(V),

where 0 < θ < 1 and p = 2
2−θ

.

Using Theorem 3.3 and Corollary 3.4 we get the following Hausdorff–Young
inequality.

Theorem 3.5 (Hausdorff–Young inequality) Assume that 1 ≤ p ≤ 2 and 1
p + 1

p′ = 1.
Then there exists a constant Cp ≥ 1 such that

‖ f̂ ‖l p′ (U)
≤ Cp‖ f ‖Hp and ‖F−1

U a‖Hp′ ≤ Cp‖a‖l p(U) (3.9)

for all f ∈ Hp and a ∈ l p(U). Similarly, for all b ∈ l p(V) we obtain

‖ f̂∗‖l p′ (V)
≤ Cp‖ f ‖Hp and ‖F−1

V b‖Hp′ ≤ Cp‖b‖l p(V). (3.10)
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Proof It is sufficient to prove only (3.9) since (3.10) is similar. Note that (3.9) would
follow from the H1 → l∞(U) and l1(U) → H∞ boundedness in view of the
Plancherel identity in Theorem 3.1 by interpolation, see e.g. Bergh and Löfström
[6, Corollary 5.5.4].

Thereby, we can put p = 1. Then from (3.6) we have

| f̂ (ξ)| ≤ ‖vξ‖H∞‖ f ‖H1 ,

and hence

‖ f̂ ‖l∞(U) = sup
ξ∈N

| f̂ (ξ)|‖vξ‖−1
H∞ ≤ ‖ f ‖H1 .

The last estimate gives the first inequality in (3.9) for p = 1. For the second inequality,
using

(F−1
U a) =

∑

ξ∈N
a(ξ)uξ

we obtain

‖F−1
U a‖H∞ ≤

∑

ξ∈N
|a(ξ)|‖uξ‖H∞ = ‖a‖l1(U),

in view of the definition of l1(U), which gives (3.9) in the case p = 1. The proof is
complete. ��

Let us establish the duality between spaces l p(U) and lq(V):

Theorem 3.6 (Duality of l p(U) and lq(V)) Let 1 ≤ p < ∞ and 1
p + 1

q = 1. Then

(
l p(U)

)′ = lq(V) and
(
l p(V)

)′ = lq(U).

Proof The proof is standard. Meanwhile, we provide several details for clarity. The
duality is given by

(σ1, σ2) =
∑

ξ∈N
σ1(ξ)σ2(ξ)

for σ1 ∈ l p(U) and σ2 ∈ lq(V). Let 1 < p ≤ 2. Then, if σ1 ∈ l p(U) and σ2 ∈ lq(V),
we obtain
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|(σ1, σ2)| =
∣∣∣∣∣∣

∑

ξ∈N
σ1(ξ)σ2(ξ)

∣∣∣∣∣∣

=
∣∣∣∣∣∣

∑

ξ∈N
σ1(ξ)‖uξ‖

2
p −1

H∞ ‖uξ‖−( 2
p−1)

H∞ σ2(ξ)

∣∣∣∣∣∣

≤
⎛

⎝
∑

ξ∈N
|σ1(ξ)|p‖uξ‖p( 2

p −1)

H∞

⎞

⎠
p ⎛

⎝
∑

ξ∈N
|σ2(ξ)|q‖uξ‖−q( 2

p −1)

H∞

⎞

⎠

1
q

= ‖σ1‖l p(U)‖σ2‖lq (V),

where that 2 ≤ q < ∞ and that 2
p − 1 = 1 − 2

q were used (last line). Now, let
2 < p < ∞. If σ1 ∈ l p(U) and σ2 ∈ lq(V), we get

|(σ1, σ2)| =
∣∣∣∣∣∣

∑

ξ∈N
σ1(ξ)σ2(ξ)

∣∣∣∣∣∣

=
∣∣∣∣∣∣

∑

ξ∈N
σ1(ξ)‖vξ‖

2
p −1

H∞ ‖vξ‖−( 2
p −1)

H∞ σ2(ξ)

∣∣∣∣∣∣

≤
⎛

⎝
∑

ξ∈N
|σ1(ξ)|p‖vξ‖p( 2

p −1)

H∞

⎞

⎠
p ⎛

⎝
∑

ξ∈N
|σ2(ξ)|q‖vξ‖−q( 2

p −1)

H∞

⎞

⎠

1
q

= ‖σ1‖l p(U)‖σ2‖lq (V).

Put p = 1. Then we have

|(σ1, σ2)| =
∣∣∣∣∣∣

∑

ξ∈N
σ1(ξ)σ2(ξ)

∣∣∣∣∣∣

=
∣∣∣∣∣∣

∑

ξ∈N
σ1(ξ)‖uξ‖H∞‖uξ‖−1

H∞σ2(ξ)

∣∣∣∣∣∣

≤
⎛

⎝
∑

ξ∈N
|σ1(ξ)| ‖uξ‖H∞

⎞

⎠ sup
ξ∈N

|σ2(ξ)| ‖uξ‖−1
H∞

= ‖σ1‖l1(U)‖σ2‖l∞(V).

The adjoint space cases could be proven in a similar way. ��
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4 Rigged Hilbert spaces

In this section we will investigate a rigged structure of the Hilbert spaceH. Especially,
we will construct a (Gelfand) triple (�,H,�′) with the inclusion property

� ⊂ H ⊂ �′,

where a role of � will be played by the so-called ‘spaces of test functions’ C∞
U ,�

and
C∞
V,�

generated by the systems U and V , respectively, and by some sequence � of
complex numbers. For this aim, let us fix some sequence � := {λξ }ξ∈N of complex
numbers such that the series

∑

ξ∈N
(1 + |λξ |)−s0 < ∞, (4.1)

converges for some s0 > 0. Indeed, we build two triples, namely, (�U ,H,�′
U ) and

(�V ,H,�′
V ), with �U := C∞

U ,�
, �′

U := D′
V,�

and �V := C∞
V,�

, �′
V := D′

U ,�
.

These triples allow us to extend the notions of U- and V-convolutions and U- and
V-Fourier transforms outside of the Hilbert space H.

Definition 4.1 We associate to the pair (U ,�) a linear operator L : H → H by the
formula

L f :=
∑

ξ∈N
λξ ( f, vξ )uξ , (4.2)

for those f ∈ H for which the series converges inH. Then L is densely defined since
Luξ = λξuξ for all ξ ∈ N, and U is a basis in H. We denote by Dom(L) the domain
of the operator L, so that we have Span (U) ⊂ Dom(L) ⊂ H. We call L to be the
operator associated to the pair (U ,�). Operators defined as in (4.2) have been also
studied in [3].

We note that this construction goes in the opposite direction to the investigations
devoted to the development of the global theory of pseudo-differential operators asso-
ciated to a fixed operator, as in the papers [12,13,25–27], where one is given an
operator L acting in H with the system of eigenfunctions U and eigenvalues �. In
this case we could ‘control’ only one parameter, i.e. the operator L. In the present
(more abstract) point of view we have two parameters to control: the system U and
the sequence of numbers �.

In a similar way to Definition 4.1, we define the operator L∗ : H → H by

L∗g :=
∑

ξ∈N
λξ (g, uξ )vξ ,

for those g ∈ H for which it makes sense. Then L∗ is densely defined since L∗vξ =
λξvξ and V is a basis in H, and Span (V) ⊂ Dom(L∗) ⊂ H. One readily checks that
we have
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(L f, g)H = ( f,L∗g)H =
∑

ξ∈N
λξ ( f, vξ )(g, uξ )

on their domains.
We can now define the following notions:

(i) the spaces of (U ,�)- and (V,�)-test functions are defined by

C∞
U ,� :=

⋂

k∈N0

CkU ,�,

where

CkU ,� := {φ ∈ H : |(φ, vξ )| ≤ C(1 + |λξ |)−k for some constantC for all ξ ∈ N},

and

C∞
V,� :=

⋂

k∈N0

CkV,�,

where

CkV,� := {ψ ∈ H : |(ψ, uξ )|≤C(1 + |λξ |)−k for some constantC for all ξ ∈ N}.

The topology of these spaces is defined by a natural choice of seminorms. We
can define spaces of (U ,�)- and (V,�)-distributions by D′

U ,�
:= (C∞

V,�
)′ and

D′
V,�

:= (C∞
U ,�

)′, as spaces of linear continuous functionals on C∞
V,�

and C∞
U ,�

,
respectively. We follow the conventions of rigged Hilbert spaces to denote this
duality by

〈u, φ〉D′
U ,�

,C∞
V,�

= (u, φ)H, (4.3)

extending the inner product onH for u, φ ∈ H, and similarly for the pairD′
V,�

:=
(C∞

U ,�
)′.

(ii) the U- and V-Fourier transforms

FU (φ)(ξ) := (φ, vξ ) =: φ̂(ξ)

and
FV (ψ)(ξ) := (ψ, uξ ) =: ψ̂∗(ξ),

respectively, for arbitrary φ ∈ C∞
U ,�

, ψ ∈ C∞
V,�

and for all ξ ∈ N, and hence by
duality, these extend to D′

U ,�
and D′

V,�
, respectively. Here we have

〈FU (w), a〉 = 〈w,F−1
V (a)〉, w ∈ D′

U ,�, a ∈ S(N), (4.4)
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where the space S(N) is defined in (4.7). Indeed, for w ∈ H we can calculate

〈FU (w), a〉 = (ŵ, a)�2(N) =
∑

ξ∈N
(w, vξ )a(ξ)

=
⎛

⎝w,
∑

ξ∈N
a(ξ)vξ

⎞

⎠ =
(
w,F−1

V a
)

= 〈w,F−1
V a〉,

justifying definition (4.4). Similarly, we define

〈FV (w), a〉 = 〈w,F−1
U (a)〉, w ∈ D′

V,�, a ∈ S(N). (4.5)

The Fourier transforms of elements of D′
U ,�

,D′
V,�

can be characterised by the
property that, for example, for w ∈ D′

U ,�
, there is N > 0 and C > 0 such that

|FUw(ξ)| ≤ C(1 + |λξ |)N , for all ξ ∈ N.

(iii) U- and V-convolutions can be extended by the same formula:

f �U g :=
∑

ξ∈N
f̂ (ξ)ĝ(ξ)uξ =

∑

ξ∈N
( f, vξ )(g, vξ )uξ

for example, for all f ∈ D′
U ,�

and g ∈ C∞
U ,�

. It is well-defined since the
series converges in view of properties from (i) above and assumption (4.1). By
commutativity that spaces for f and g can be swapped. Similarly,

h �V j :=
∑

ξ∈N
ĥ∗(ξ) ĵ∗(ξ)vξ =

∑

ξ∈N
(h, uξ )( j, uξ )vξ

for each h ∈ D′
V,�

, j ∈ C∞
V,�

.

The space C∞
U ,�

can be also described in terms of the operator L in (4.2). Namely,
we have

C∞
U ,� =

⋂

k∈N0

Dom(Lk), (4.6)

where

Dom(Lk) := { f ∈ H : Li f ∈ H, i = 2, ..., k − 1},

and similarly

C∞
V,� =

⋂

k∈N0

Dom((L∗)k),
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where

Dom((L∗)k) := {g ∈ H : (L∗)i g ∈ H, i = 2, ..., k − 1}.

Let S(N) denote the space of rapidly decaying functions ϕ : N → C. That is,
ϕ ∈ S(N) if for any M < ∞ there exists a constant Cϕ,M such that

|ϕ(ξ)| ≤ Cϕ,M (1 + |λξ |)−M (4.7)

holds for all ξ ∈ N. The topology on S(N) is given by the seminorms pk , where
k ∈ N0 and

pk(ϕ) := sup
ξ∈N

(1 + |λξ |)k |ϕ(ξ)|.

Continuous anti-linear functionals on S(N) are of the form

ϕ �→ 〈u, ϕ〉 :=
∑

ξ∈N
u(ξ)ϕ(ξ),

where functions u : N → C grow at most polynomially at infinity, i.e. there exist
constants M < ∞ and Cu,M such that

|u(ξ)| ≤ Cu,M (1 + |λξ |)M

holds for all ξ ∈ N. Suchdistributionsu : N → C form the space of distributionswhich
we denote by S ′(N), with the distributional duality (as a Gelfand triple) extending the
inner product on �2(N).

Summarising the above definitions and discussion, we record the basic properties
of the Fourier transforms as follows:

Proposition 4.2 The U-Fourier transform FU is a bijective homeomorphism from
C∞
U ,�

to S(N). Its inverse

F−1
U : S(N) → C∞

U ,�

is given by
F−1
U h =

∑

ξ∈N
h(ξ)uξ , h ∈ S(N), (4.8)

so that the Fourier inversion formula becomes

f =
∑

ξ∈N
f̂ (ξ)uξ for all f ∈ C∞

U ,�. (4.9)
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Similarly, FV : C∞
V,�

→ S(N) is a bijective homeomorphism and its inverse

F−1
V : S(N) → C∞

V,�

is given by
F−1
V h :=

∑

ξ∈N
h(ξ)vξ , h ∈ S(N), (4.10)

so that the conjugate Fourier inversion formula becomes

f =
∑

ξ∈N
f̂∗(ξ)vξ for all f ∈ C∞

V,�. (4.11)

By (4.4) the Fourier transforms extend to linear continuous mappings FU : D′
U ,�

→
S ′(N) and FV : D′

V,�
→ S ′(N).

The proof is straightforward.
Let us formulate the properties of the U- and V-convolutions:

Proposition 4.3 For any f ∈ D′
U ,�

, g ∈ C∞
U ,�

, h ∈ D′
V,�

, j ∈ C∞
V,�

we have

f̂ �U g = f̂ ĝ, ĥ �V j∗ = ĥ∗ ĵ∗.

The convolutions are commutative and associative. If g ∈ C∞
U ,�

then for all f ∈ D′
U ,�

we have
f �U g ∈ C∞

U ,�. (4.12)

Proof Since the first part of the statement is proving in the same way as analogous
one from Proposition 2.2, we will show only the property (4.12) which follows if we
observe that for all k ∈ N0 the series

∑

ξ∈N
f̂ (ξ)ĝ(ξ)λkξuξ

converges since ĝ ∈ S(N). ��
Proposition 4.4 If L : H → H is associated to a pair (U ,�) then we have

L( f �U g) = (L f ) �U g = f �U (Lg)

for any f, g ∈ C∞
U ,�

.

Proof The proof is valid since the equalities

FU (L( f �U g))(ξ) = λξ f̂ (ξ)ĝ(ξ)
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and

FU ((L f ) �U g)(ξ) = FU (L f )(ξ)ĝ(ξ) = λξ f̂ (ξ)ĝ(ξ)

are true for all ξ ∈ N. ��
As a small application, let us write the resolvent of the operator L in terms of the

convolution.

Theorem 4.5 Let L : H → H be an operator associated to a pair (U ,�). Then the
resolvent of the operator L is given by the formula

R(λ) f := (L − λI )−1 f = gλ �U f, λ /∈ �,

where I is an identity operator in H and

gλ =
∑

ξ∈N

1

λξ − λ
uξ .

Proof Begin by calculating the following series

gλ �U f =
∑

ξ∈N

1

λξ − λ
f̂ (ξ)uξ

=
∑

ξ∈N
f̂ (ξ)(L − λI )−1uξ

= (L − λI )−1

⎛

⎝
∑

ξ∈N
f̂ (ξ)uξ

⎞

⎠

= (L − λI )−1 f

= R(λ) f,

where we used the continuity of the resolvent. Now the theorem is proved. ��

5 Examples

We give an example considered in [25] that can be also considered as an extension
setting in an appropriate sense of the toroidal calculus studied in [24].

Let the operator O(1)
h : L2(0, 1) → L2(0, 1) be given by the action

O(1)
h := −i

d

dx
,

where h > 0, on the domain (0, 1) with the boundary condition hy(0) = y(1). In the
case h = 1 we have O(1)

1 with periodic boundary conditions, and the systems U and

V of eigenfunctions of O(1)
1 and its adjoint O(1)

1
∗
coincide, and are given by
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U = V = {u j (x) = e2π i x j , j ∈ Z}.

This leads to the setting of the classical Fourier analysis on the circle which can be
viewed as the interval (0, 1) with periodic boundary conditions. The corresponding
pseudo-differential calculus was consistently developed in [24] building on previous
observations in the works by Agranovich [1,2] and others.

For h �= 1, the operator O(1)
h is not self-adjoint. The spectral properties of O(1)

h are

well-known (see Titchmarsh [31] and Cartwright [9]), the spectrum of O(1)
h is discrete

and is given by λ j = −i ln h+2 jπ, j ∈ Z. The corresponding bi-orthogonal families

of eigenfunctions of O(1)
h and its adjoint are given by

U = {u j (x) = hxe2π i x j , j ∈ Z}

and

V = {v j (x) = h−xe2π i x j , j ∈ Z},

respectively. They form Riesz bases, and O(1)
h is the operator associated to the pair U

and � = {λ j = −i ln h + 2 jπ} j∈Z.
SinceN denoted an arbitrary discrete set before, all the previous constructions work

with Z instead of N.
Formally, we can write

( f �U g)(x) =
∫ ∫

F(x, y, z) f (y)g(z)dydz, (5.1)

where

F(x, y, z) =
∑

ξ∈N
uξ (x) vξ (y) vξ (z).

Here integrals (5.1) and the last series should be understood in the sense of distri-
butions. In the case h = 1, it can be shown that F(x, y, z) = δ(x − y − z), see
[24].

For any h > 0, it can be shown that the U-convolution coincides with Kanguzhin’s
convolution that was studied in [19,21]:

Proposition 5.1 Let H = L2(0, 1), U = {u j (x) = hxe2π i x j , j ∈ Z}, and � =
{λ j = −i ln h + 2 jπ} j∈Z. Then the operator L : L2(0, 1) → L2(0, 1) associated to

the pair (U ,�) coincides with O(1)
h . The corresponding U-convolution can be written

in the integral form:

( f �U g)(x) =
∫ x

0
f (x − t)g(t)dt + 1

h

∫ 1

x
f (1 + x − t)g(t)dt.
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In particular, when h = 1, we obtain

( f �U g)(x) =
∫ 1

0
f (x − t)g(t)dt.

is the usual convolution on the circle.

Proof of Proposition 5.1 Let us denote

K ( f, g)(x) :=
∫ x

0
f (x − t)g(t)dt + 1

h

∫ 1

x
f (1 + x − t)g(t)dt.

Then we can calculate

FU (K ( f, g))(ξ)

=
∫ 1

0

∫ x

0
f (x − t)g(t)h−xe−2π i xξdtdx

+ 1

h

∫ 1

0

∫ 1

x
f (1 + x − t)g(t)h−xe−2π i xξdtdx

=
∫ 1

0

[∫ 1

t
f (x − t)h−xe−2π i xξdx

]
g(t)dt

+
∫ 1

0

[∫ t

0
f (1 + x − t)h−(1+x)e−2π i(1+x)ξdx

]
g(t)dt

=
∫ 1

0

[∫ 1

t
f (x − t)h−(x−t)e−2π i(x−t)ξdx

]
g(t)h−t e−2π i tξdt

+
∫ 1

0

[∫ t

0
f (1 + x − t)h−(1+x−t)e−2π i(1+x−t)ξdx

]
g(t)h−t e−2π i tξdt

=
∫ 1

0

[∫ 1−t

0
f (z)h−ze−2π i zξdz

]
g(t)h−t e−2π i tξdt

+
∫ 1

0

[∫ 1−t

1
f (z)h−ze−2π i zξdx

]
g(t)h−t e−2π i tξdt

=
∫ 1

0

[∫ 1

0
f (z)h−ze−2π i zξdz

]
g(t)h−t e−2π i tξdt

= f̂ (ξ) ĝ(ξ).

Consequently, by Theorem 2.2, we obtain that K ( f, g) = f ∗U g. ��

6 Further discussion

We note that in the case when we are given an operator L : H → H for which the
eigenfunctions do not make a basis of H, other notions of convolutions are possible,
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still satisfying an analogue of Proposition 4.4. Here we can set up a convolution using
the characterisation of the space of test functions given by (4.6).

Definition 6.1 Let L : H → H be a linear densely defined operator in H. Denote
Dom(L∞) := ⋂

k∈N0
Dom(Lk) with Dom(Lk) := { f : Li f ∈ H, i = 2, ..., k − 1}.

We say that a bilinear associative and commutative operation ∗L is an L-convolution
if for any f, g ∈ Dom(L∞) we have

L( f �L g) = (L f ) �L g = f �L (Lg).

Proposition 4.4 implies that U-convolution is a special case of L-convolutions:

Corollary 6.2 Assume that L : H → H is an operator associated with the pair
(U ,�), whereU is a Riesz basis inH. Then theU-convolution �U is anL-convolution.

We finally show that an L-convolution does not have to be a U-convolution for any
choice of the set �.

For this, let us consider anL-convolution associated to the so-called Ionkin operator
considered in [18]. The Ionkin operator Y : H → H is the operator inH := L2(0, 1)
generated by the differential expression

− d2

dx2
, x ∈ (0, 1),

with the boundary conditions

u(0) = 0, u′(0) = u′(1).

It has eigenvalues

λξ = (2πξ)2, ξ ∈ Z+,

and an extended set of eigenfunctions

u0(x) = x, u2ξ−1(x) = sin(2πξ x), u2ξ (x) = x cos(2πξ x), ξ ∈ N,

which give a basis in L2(0, 1), whichwe denote byU . The corresponding biorthogonal
basis is given by

v0(x) = 2, v2ξ−1(x) = 4(1 − x) sin(2πξ x), v2ξ (x) = 4 cos(2πξ x), ξ ∈ N,
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for more details, see [18]. We consider the Y-convolution (Ionkin–Kanguzhin’s con-
volution) given by the formula

f �Y g(x) := 1

2

∫ 1

x
f (1 + x − t)g(t)dt

+ 1

2

∫ 1

1−x
f (x − 1 + t)g(t)dt +

∫ x

0
f (x − t)g(t)dt

− 1

2

∫ 1−x

0
f (1 − x − t)g(t)dt + 1

2

∫ x

0
f (1 + t − x)g(t)dt.

(6.1)

This is a Y-convolution in the sense of Definition 6.1, namely, it satisfies

Y( f �Y g) = (Y f ) �Y g = f �Y (Yg),

see [20]. For the collection

U := {uξ : u0(x) = x, u2ξ−1(x) = sin(2πξ x), u2ξ (x) = x cos(2πξ x), ξ ∈ N},

it can be readily checked that the corresponding U-Fourier transform satisfies

f̂ �Y g(0) = f̂ (0)ĝ(0),

f̂ �Y g(2ξ) = f̂ (2ξ)ĝ(2ξ),

f̂ �Y g(2ξ − 1) = f̂ (2ξ − 1)ĝ(2ξ) + f̂ (2ξ)ĝ(2ξ) + f̂ (2ξ)ĝ(2ξ − 1), ξ ∈ N.

Therefore, by Theorem 2.2, the Y-convolution (Ionkin–Kanguzhin convolution) does
not coincide with the U-convolution for any choice of numbers �.
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