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Abstract Let f : E → F be a continuous map of a complete separable metric space
E onto the irrationals. We shall show that if a complete separable metric space M
contains isometric copies of every closed relatively discrete set in E , then M contains
also an isometric copy of some fiber f −1(y). We shall show also that if all fibers of
f have positive dimension, then the collection of closed zero-dimensional sets in E
is non-analytic in the Wijsman hyperspace of E . These results, based on a classical
Hurewicz’s theorem, refine some results from Pol and Pol (Isr J Math 209:187–197,
2015) and answer a question in Banakh et al. (in: Pearl (ed) Open problems in topology
II. Elsevier, Amsterdam, 2007).
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1 Introduction

In [13] we proved that each complete separable metric space containing isometric
copies of every countable complete metric space contains isometric copies of every
separable metric space.
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We shall refine this result to the following effect.

Theorem 1.1 Let f : E → F be a continuous map of a complete separable metric
space onto a non-σ -compact metric space. Then there exists a relatively discrete set
S in E such that, for any complete separable metric space M containing isometric
copies of every subset of S closed in E, some fiber f −1(y) embeds isometrically in M.

The result from [13] follows from this theorem, if we consider the restriction map
f :C[0, 1] → C[ 12 , 1] (recall that by the Banach–Mazur theorem, cf. [8, Theorem
5.17], the space (C(I ), dsup) of all real-valued continuous functions on the interval
I = [0, 1], equipped with the metric dsup( f, g) = sup{| f (t) − g(t) |: t ∈ I }, is
isometrically universal for all separable metric spaces).

Also, as in [13], one can replace in this theorem isometries by uniform homeomor-
phisms.

The proofs will go along the same lines as in [13], and an essential part of the
reasonings can be taken directly from [13], cf. Sect. 4.

However, a classical Hurewicz’s theorem on non-analyticity of the set of compact
subsets of the rationals is applied in a different way than in [13]. We shall prove a
result based on the Hurewicz theorem in a slightly more general form than needed
for Theorem 1.1 in Sect. 3, to establish a link with some questions concerning the
dimension, discussed in Sect. 5.

2 Preliminaries

2.1 The Effros Borel spaces

Our terminology related to the descriptive set theory follows [7,9]. An analytic space
is a metrizable continuous image of the irrationals.

Given an analytic space E , we denote by F(E) the space of closed subsets of E
and BF(E)—the Effros Borel structure in F(E), is the σ -algebra in F(E) generated
by the sets {A ∈ F(E) : A ∩U �= ∅}, where U is open in E .

We shall say thatA ⊂ F(E) is a Souslin set in theEffrosBorel space (F(E),BF(E))

if A is a result of the Souslin operation on sets from BF(E).
If X is a compact metrizable space, we shall consider the hyperspace F(X) with

the Vietoris topology and thenBF(X) coincides with the σ -algebra of Borel sets in the
compact metrizable space F(X).

If X is a compact metrizable extension of an analytic set E ⊂ X , the map A → A
(the closure is taken in X ) from F(E) to F(X) is a Borel isomorphism, with respect
to the Effros Borel structures, onto the analytic subspace {A : A ∈ F(E)} of the
hyperspace F(X) and hence Souslin sets in F(E) are mapped onto analytic sets in
F(X), cf. [7, Section 2]. In particular, if E ⊂ G ⊂ X and G is analytic, the collection
of closures of elements of F(E) in G is a Souslin set in F(G).

2.2 The Hurewicz theorem

Let I = [0, 1] and let Q be the set of rationals in I .
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The classical Hurewicz theorem asserts that any Souslin set in F(I ) containing all
compact subsets of Q, contains an element intersecting I\Q.

We shall derive from this theorem the following observation, which we shall use in
the next section.

Let us arrange points of Q into a sequence q1, q2, . . . (without repetitions), let

D =
{(

qn,
1

m

)
: n = 1, 2, . . . , m ≥ n

}
, L = (I\Q) × {0}, (2.1)

let

T = L ∪ D (2.2)

be the subspace of the plane (notice that D is relatively discrete in T ), and let

D = {A ⊂ D : A is closed in T }. (2.3)

Lemma 2.2.1 For any Souslin set E in F(T ) containingD, some element of E inter-
sects L.

Proof For A ∈ F(T ), A will denote the closure in the plane. As was recalled in 2.1,
the set {A : A ∈ E} is analytic in F(T ) (notice that T = (I × {0}) ∪ D), hence the set
{(K , A) ∈ F(I ) × F(T ) : A ∈ E and K × {0} ⊂ A} is analytic in the product of the
hyperspaces, and so is its projection onto F(I ),

E� = {K ∈ F(I ) : K × {0} ⊂ A for some A ∈ E}. (2.4)

If K ⊂ Q is compact, A = D ∩ (K × I ) is closed in T and K × {0} ⊂ A, hence
K ∈ E�, cf. (2.4). By the Hurewicz theorem, there is A ∈ E such that A intersects L ,
cf. (2.1) and (2.4), and since A is closed in T, A intersects L . 
�

2.3 A remark on continuous maps onto the irrationals

We shall need the following observation. This is close to some well-known results,
but for readers convenience, we shall provide a brief justification.

Lemma 2.3.1 Let f : E → F be a continuous map of an analytic space onto a non-
σ -compact metrizable space. There is a closed copy of the irrationals P in F and
continuous maps gn : P → E such that, for each t ∈ P, {gn(t) : n = 1, 2, . . .} is a
dense subset of f −1(t).

Proof Let p :NN → E be a continuous surjection of the irrationals onto the analytic
space E .

Then u = f ◦ p :NN → F is a continuous surjection onto a non-σ -compact
metrizable space and one can find a closed copy of the irrationals P in F such that the
restriction map u | u−1(P) : u−1(P) → P is open, cf. [14, proof of Theorem 3.1].
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By a selection theorem of Michael [10], one can define a sequence of continuous
selectionswn : P → u−1(P) for the lower-semicontinuous multifunction t → u−1(t)
such that, for each t ∈ P , the set {wn(t) : n = 1, 2, . . .} is dense in u−1(t).

Then the functions gn = p ◦ wn : P → f −1(P) satisfy the assertion. 
�

3 An application of the Hurewicz theorem

The following proposition strengthens a known fact that, for the irrationals NN, any
Souslin set in F(NN) containing all countable closed sets in NN, contains also a non-
σ -compact set (this is stated in [9, Exercises 27.8, 27.9]; to derive this fact from the
proposition, notice that NN is homeomorphic to NN ×NN and consider the projection
NN × NN → NN).

The setting is a bit more general than needed for Theorem 1.1, but it is useful to
establish connections with some topics in the dimension theory, discussed in Sect. 5.

Proposition 3.1 Let f : E → F be a continuous map of an analytic space onto a
non-σ -compact metrizable space. Then there exists a relatively discrete set S in E
such that for any Souslin set A in F(E) containing all subsets of S closed in E, there
are A ∈ A and y ∈ F with f −1(y) ⊂ A.

Proof Let P be a closed copy of the irrationals in F and gn : P → E continuous maps
described in Lemma 2.3.1, and let T = L ∪ D be the subspace of the plane defined in
(2.1) and (2.2).

Since T is a zero-dimensional Gδ-subset of the plane, there is a homeomorphic
embedding

h : T → P, h(T ) closed in P. (3.1)

Let us arrange points of D into a sequence without repetitions

D = {d1, d2, . . .} and cn = h(dn). (3.2)

We shall check that, cf. (3.2),

S = {gm(cn) : n = 1, 2, . . . , m ≤ n} ⊂ E (3.3)

satisfies the assertion of the proposition.
Since gm(cn) ∈ f −1(cn), f (S) = h(D) is relatively discrete and S intersects each

fiber of f in at most finite set, cf. (3.3). Therefore S is relatively discrete.
Let, for X ∈ F(T ),

ϕ(X) = f −1(h(X ∩ L)) ∪ (S ∩ f −1(h(X ∩ D))). (3.4)

Since all accumulation points of S in E are in f −1(h(L)) and h(X) is closed in F , cf.
(3.1), we have ϕ(X) ∈ F(E).
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On isometric embeddings and continuous maps onto the irrationals 341

We shall check that

ϕ : F(T ) → F(E) is Borel, (3.5)

with respect to the Effros Borel structure.
To that end, let us fix an open set U in E , and let

U = {X ∈ F(T ) : ϕ(X) ∩U �= ∅}. (3.6)

Let X ∈ U. If for some m ≤ n, dn ∈ X and gm(cn) ∈ U , cf. (3.2), (3.3), (3.4), the
element {Y ∈ F(T ) : dn ∈ Y } of BF(T ) contains X and is contained in U.

Let a ∈ X ∩ L and f −1(h(a)) ∩ U �= ∅. Since the points gm(h(a)) are dense in
f −1(h(a)), there is m such that gm(h(a)) ∈ U . Let V be a neighbourhood of h(a) in
F such that gm(V ) ⊂ U , and let us pick a rectangle J = (r, s) × [0, 1

p ) disjoint from
{d1, . . . , dm} with r, s ∈ Q, containing a, such that h(J ∩ T ) ⊂ V . If Y ∈ F(T ) hits
J , there is either b ∈ Y ∩ L with h(b) ∈ V and then f −1(h(b)) ⊂ ϕ(Y ) intersects U ,
or there is dn ∈ Y ∩ J with n > m and then, cf. (3.3), (3.4), gm(cn) ∈ ϕ(Y ) ∩U .

Therefore the element {Y ∈ F(T ) : Y ∩ J �= ∅} of BF(T ) contains X and is
contained in U.

We demonstrated that U is a countable union of elements of BF(T ), hence belongs
to the Effros Borel structure of F(T ).

Having checked (3.5), let us consider the set

S = {A ⊂ S : A ∈ F(E)} (3.7)

and let

S ⊂ A, A is Souslin in (F(E),BF(E)). (3.8)

By (3.5),

E = ϕ−1(A) is Souslin in (F(T ),BF(T )). (3.9)

If X ⊂ D is closed in T, h(X) is closed in F and ϕ(X) is closed in E , cf. (3.4), hence
ϕ(X) ∈ S, cf. (3.7). Therefore, by (3.8), for the setD defined in (2.3), we haveD ⊂ E

and Lemma 2.2.1 provides X ∈ E and a point a ∈ X ∩ L . By (3.4) and (3.9) we get
A = ϕ(X) ∈ A and f −1(h(a)) ⊂ A. 
�

4 Proof of Theorem 1.1

We shall recall briefly some reasonings from [13] to derive this theorem from Propo-
sition 3.1.

Given f : E → F as in this theorem, let us pick S satisfying the assertion of
Proposition 3.1.
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Let e be the complete metric on E and let (M, d) be any complete separable metric
space, containing isometric copies of every subset of S closed in E . Let

H = {T ∈ F(E × M) : for every (x1, y1), (x2, y2) ∈ T, e(x1, x2) = d(y1, y2)}.

One checks, cf. [13, p. 193], thatH is inBF(E×M) and themap T → π(T ) associating
to T ∈ H its projection onto E is a Borel map π :H → F(E).

Therefore A = π(H) is a Souslin set in (F(E),BF(E)). If X ⊂ S is closed in E ,
there is an isometry f : X → f (X) ⊂ M and the graph of f is an element ofH.

It follows that the Souslin set A contains all subsets of S closed in E , and by the
choice of S, some A ∈ A contains a fiber f −1(y).

Now, A = π(T ) and T is the graph of an isometry that embeds A in M . In effect,
f −1(y) embeds isometrically in M .

5 The collections of zero-dimensional sets in Effros Borel spaces

Our terminology concerning the dimension theory follows [15].
Given an analytic space, we shall write

F0(E) = {A ∈ F(E) : dimA = 0}. (5.1)

We shall derive from Proposition 3.1 the following result.

Proposition 5.1 Let E be an analytic space that admits a continuous map f : E → F
onto a non-σ -compact metrizable space such that all fibers f −1(y) have positive
dimension. Then for any analytic extension G of E with dim(G\E) ≤ 0, the set
F0(G) is not Souslin in the Effros Borel space (F(G),BF(G)).

Proof By Proposition 3.1, there is a relatively discrete set S in E such that for any
Souslin set A in F(E) containing S = {A ∈ F(E) : ∅ �= A ⊂ S}, some element of
the set A contains a fiber of f and hence has positive dimension.

Now, consider an analytic extension G of E with dim(G\E) ≤ 0 and, aiming at
a contradiction assume that F0(G) is Souslin in F(G). As was recalled in Sect. 2.1,
the map A → A from F(E) to F(G) is Borel, and hence we would get that the set
A = {A ∈ F(E) : dimA ≤ 0} is Souslin in F(E).

If A ∈ S, then A is a relatively discrete closed set in E , and hence A\A is a closed
subset of G contained in G\E . This implies that dimA = 0, i.e., S ⊂ A. However, all
members of A are zero-dimensional, which contradicts properties of S. 
�

In particular, if P is the set of irrationals in I = [0, 1],

F0(P × I ) is not Souslin in F(P × I ) (5.2)

(this rectifies a remark in [5, §3.A]).
Banakh et al. [1, Question 9.12], asked about the Borel type of the collection F0(E)

in the spaceCL(E) = F(E)\{∅}, when E is a completely metrizable separable space,
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and CL(E) is considered with the Wijsman topology τW , determined by some metric
d generating the topology of E (i.e., τW is the weakest topologymaking all functionals
A → dist(z, A), z ∈ E , continuous), cf. [2,4].

TheWijsman hyperspace (CL(E), τW ) is completely metrizable, separable, cf. [6],
and the Borel sets with respect to τW coincide with the members of the Effros Borel
structure in CL(E). Therefore,

F0(P × I ) is not a Borel (or even Souslin) set in CL (P × I ). (5.3)

One can check that its complement F(P× I )\F0(P× I ) is Souslin. Let us consider,
however, the subspace I 2\Q2 of the square,Q = I\P. Since (I 2\Q2)\(P× I ) = Q×P

is zero-dimensional, also F0(I 2\Q2) is not Souslin in F(I 2\Q2), by Proposition 5.1.
But it is not clear to us whether F(I 2\Q2)\F0(I 2\Q2) is Souslin.

In fact, we do not know an answer to the following general question.

Question 5.2 Does there exist an analytic space E such that F(E)\F0(E) is not
Souslin in the Effros Borel structure?

This question is related to the following problem, asked in [11], where countable-
dimensional spaces are countable unions of zero-dimensional spaces.

Problem 5.3 Is the collection C of all countable-dimensional compact sets in the
Hilbert cube IN coanalytic in the hyperspace F(IN) equipped with the Vietoris topol-
ogy?

To see the link between these two questions, let us consider a Borel set E ⊂ IN

such that IN\E is countable-dimensional and all countable-dimensional subsets of E
are at most zero-dimensional, cf. [12]. We shall assume in addition that E is disjoint
from the set � consisting of points in IN with all but finitely many coordinates zero.

By [3, Ch.V, §5], there is a homeomorphism h : IN\� → RN × RN (where R is
the real line), let p :RN × RN → RN be the projection and let f = p ◦ h | E : E →
RN. Then f is a continuous surjection whose all fibers are uncountable-dimensional.
Therefore, by Corollary 5.1, F0(E) is not Souslin in the Effros Borel space.

We do not know if the set E = F(E)\F0(E) is Souslin. Let us show, however, that
if this is the case, C in Problem 5.3 is coanalytic.

Suppose that E is Souslin in (F(E),BF(E)). Then, as was noticed in Sect. 2.1,
the collection E� = {A : A ∈ E} of the closures in IN is analytic in the hyperspace
F(IN). Now, K ∈ F(IN)\C if and only if K ∩ E is uncountable-dimensional, which
is equivalent to K ∩ E /∈ F0(E). Therefore, F(IN)\C is the projection of the analytic
set {(K , L) ∈ F(IN) × F(IN) : L ⊂ K and L ∈ E�}, hence it is analytic.
Added in the revision Concerning Question 5.2, Debs and Saint Raymond gave in a
recent paper “The descriptive complexity of the set of all closed zero-dimensional
subsets of a Polish space” a subtle construction of a Gδ-set E in I 3 such that F0(E)

is not even a C-set in F(E) (in particular, F(E)\F0(E) is not Souslin). The question
concerning F0(I 2\Q2) remains open.
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