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Abstract We extend the result of Downarowicz (Israel J Math 165:189–210, 2008)
to the case of amenable group actions, by showing that every face in the simplex
of invariant measures on a zero-dimensional dynamical system with free action of an
amenable group G can bemodeled as the entire simplex of invariant measures on some
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Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00605-017-1116-0&domain=pdf
http://orcid.org/0000-0002-6084-7292


62 B. Frej, D. Huczek

1 Introduction

Let X be a Cantor space i.e. a compact, metrizable, zero-dimensional perfect space,
and let G be a countable amenable group acting on X via homeomorphisms ϕg, g ∈ G.
Amenability of G means that there exists a sequence of finite sets Fn ⊂ G (called a
Følner sequence, or the sequence of Følner sets), such that for any g ∈ G we have

lim
n→∞

|gFn � Fn|
|Fn| = 0,

where gF = {g f : f ∈ F}, |·| denotes the cardinality of a set, and � is the symmetric
difference. The action of G is free if the equality gx = x for any g ∈ G and x ∈ X
implies that g is the neutral element of G. It is well known that one can represent
the system (X, G) as an inverse limit lim←− X j ⊂ ∏

j∈N X j where each X j is a group

subshift onfinitelymany symbols i.e. a closedG-invariant subset of someΛ j
G , |Λ j | <

∞, with the action of G defined by gx(h) = x(hg). Indeed, if U = {U j : j ∈ N}
is a base for topology in X consisting of clopen sets then we define Λi to be the set
of all elements of the cover of X by the sets of the form V1 ∩ · · · ∩ Vi , where either
Vj = U j or Vj = U c

j for every 1 ≤ j ≤ i . The space Xi is an image of X by the map

πi : X → ΛG
i defined by the formula

πi (x)(g) = λi ⇔ gx ∈ λi

The inverse system whose inverse limit is conjugate to (X, G) is then given by the
sequence of the spaces Xi with bonding maps defined by coordinatewise inclusions.
We will often refer to this inverse limit as a so called array system—an element of
X in this interpretation is a map x(·, ·) on G × N, where x(·, j) ∈ X j . We will call
such a map an array and from now on we will assume that our system is in array
representation. By an (F, k)-block we mean a map B : F × [1, k] → ⋃

j Λ j , where
F is a finite subset of G (which will occasionally be called the shape of a block), k is
a positive integer and [1, k] is an abbreviation for {1, . . . , k}. If E is a subset of the
domain of a block B then by B[E] we will denote a restriction of B to E . By abuse of
the notation, we will mean by |B| the cardinality of the shape of B. We will use the
same letter to denote both a block and a cylinder set induced by this block—the exact
meaning is always clear from the context. A block B occurs in X if B is a restriction
of some x ∈ X .

Let K be an abstract metrizable Choquet simplex, i.e. it is a compact convex set of
a locally convex metric vector space, such that for each v ∈ K there is a unique Borel
probability measure supported on the set of extreme points of K with barycenter in v

(see [9] for an exhaustive course on the theory of Choquet simplices). Following [3]
we define:

Definition 1.1 1. Anassignment on K is a functionΦ defined on K such that for each
p ∈ K , the value ofΦ(p) is ameasure-preserving group action (X p,Σp, μp, G p),
where (X p,Σp, μp) is a standard probability space.
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Faces of simplices of invariant measures for actions of… 63

2. Two assignments Φ on K and Φ ′ on K ′ are equivalent if there exists an affine
homeomorphism π : K → K ′ such that Φ(p) and Φ ′(π(p)) are isomorphic for
every p ∈ K .

3. If (X, G) is a continuous group action on a compact metric space X then
the set of all G-invariant measures supported by X , endowed with the weak*
topology of measures, is a Choquet simplex, and the assignment by identity
Φ(μ) = (X, Bor X , μ, G) (where Bor X is the Borel sigma-field) is the natural
assignment of (X, G).

By a face of a simplex S we mean a compact convex subset of S which is a simplex
itself and whose extreme points are also the extreme points of S. If K is a face of a
simplex MG(X) of all G-invariant probability measures on X then by the identity
assignment on K we mean the restriction of the natural assignment onMG(X) to K .

In the current article we aim to prove the following:

Theorem 1.2 Let X be a Cantor system with free action of an amenable group G and
let K be a face in the simplex MG(X) of G-invariant measures of X. There exists
a Cantor system Y with free action of G, such that the natural assignment on Y is
equivalent to the identity assignment on K .

In case of actions ofZ the theoremwas proved in [3] (evenwithweaker assumptions;
see Sect. 4) and the key tool used there was approximation of an arbitrary ergodic
measure by a block (periodic) measure, i.e. a measure supported on a finite orbit.
Density of periodic measures in the set of all invariant measures is usually a desired
property and was proved to be true in various cases, e.g. for systems with specification
property (see [1]). In case of a one-dimensional subshift one can construct a periodic
measure by choosing a block B occurring in a system and uniformly distributing a
probability mass on the orbit of a sequence obtained by periodic repetitions of B.
Such a sequence need not be an element of a subshift (and the measure need not
belong to its simplex of invariant measures), still it may give a useful approximation
of a measure under consideration. For actions of groups other than Z (even Z

d ) this
procedure usually cannot be performed, roughly saying, because of irregular shapes
of blocks, and the notion of a block measure seems to be obscure. We devote the next
section to implementing it in our setup, but before we proceed, we recall a few facts
about Følner sequences.

In any amenable group there exists a Følner sequence with the following additional
properties (see [6]):

1. Fn ⊂ Fn+1 for all n,
2. e ∈ Fn for all n (e denotes the neutral element of G),
3.

⋃
n∈N Fn = G,

4. Fn = F−1
n for all n.

Following [10] we say that a Følner sequence Fn is tempered if for some C > 0 and
all n,

∣
∣
∣
∣
∣
∣

⋃

k≤n

F−1
k Fn+1

∣
∣
∣
∣
∣
∣
≤ C |Fn+1|.
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64 B. Frej, D. Huczek

Proposition 1.3 ([8]) Every Følner sequence Fn has a tempered subsequence.

Standing assumption
Throughout this paper, we will assume that the Følner sequence which we use is

tempered and has all the above properties.
We recall the pointwise ergodic theorem for amenable groups.

Theorem 1.4 ([8]) Let G be an amenable group acting ergodically on a measure
space (X, μ), and let Fn be a tempered Følner sequence. Then for any f ∈ L1(μ),

lim
n→∞

1

|Fn|
∑

g∈Fn

f (gx) =
∫

f dμ a.e.

If F and A are finite subsets of G and 0 < δ < 1, we say that F is (A, δ)-invariant
if

|F � AF |
|F | < δ,

where AF = {a f : a ∈ A, f ∈ F}. Clearly, if F is (A, δ)-invariant then it is also
(A, δ′)-invariant for all δ′ > δ. Moreover, if F is simultaneously (A, δ)-invariant and
(A′, δ′)-invariant then F is (A ∪ A′, δ + δ′)-invariant. Observe that if A contains the
neutral element of G, then (A, δ)-invariance is equivalent to the simpler condition

|AF | < (1 + δ) |F | .

It is not hard to observe that if F is (A, δ)-invariant then

|{ f ∈ F : A f ∩ Fc 
= ∅}| < δ|A||F | (1.1)

and, equivalently,
|{ f ∈ F : A f ⊂ F}| > |F |(1 − δ|A|) (1.2)

If (Fn) is a Følner sequence, then for every finite A ⊂ G and every δ > 0 there
exists an N such that for n > N the sets Fn are (A, δ)-invariant.

Definition 1.5 For S ⊂ G and a finite, nonempty F ⊂ G denote

DF (S) = inf
g∈G

|S ∩ Fg|
|F | , DF (S) = sup

g∈G

|S ∩ Fg|
|F | .

If (Fn) is a Følner sequence then we define two values

D(S) = lim sup
n→∞

DFn
(S) and D(S) = lim inf

n→∞ DFn (S),

which we call the lower and upper Banach densities of S, respectively.
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Faces of simplices of invariant measures for actions of… 65

Note that D(S) = 1 − D(G \ S). We recall the following standard fact:

Lemma 1.6 Regardless of the set S, the values of D(S) and D(S) do not depend on
the Følner sequence, the limits superior and inferior in the definition are in fact limits,
and moreover

D(S) = sup{DF (S) : F ⊂ G, F is finite} and

D(S) = inf {DF (S) : F ⊂ G, F is finite} ≥ D(S).

For the proof see [5], Lemma 2.9.

Lemma 1.7 Let (X, G) be a Cantor system in the array representation and let μ be
an ergodic measure on X. Denote by e the neutral element of G. Let ϕ : X → X,
ψ : X → X be continuous maps which commute with the action of G.

Then for μ-almost every x then

μ({x ∈ X : ϕ(x)(e) 
= ψ(x)(e)}) ≤ D({g ∈ G : ϕ(x)(g) 
= ψ(x)(g)}).

Proof Denote

S(x) = {g ∈ G : (ϕ(x))(g) 
= (ψ(x))(g)}
B = {x ∈ X : (ϕ(x))(e) 
= (ψ(x))(e)}

Note that (ϕ(x))(g) = (
gϕ(x)

)
(e) = ϕ(gx)(e) (and similarly for ψ), so g ∈ S(x) is

equivalent to gx ∈ B. Then,

DFn (S(x)) = sup
g∈G

|S(x) ∩ Fng|
|Fn|

= sup
g∈G

1

|Fn|
∑

h∈Fn g

1S(x)(h) ≥ 1

|Fn|
∑

h∈Fn

1S(x)(h)

= 1

|Fn|
∑

h∈Fn

1B(hx).

Taking the lower limits we obtain by Theorem 1.4 that D(S(x)) ≥ μ(B).

2 Block measures

We will explicitly define a metric consistent with the weak* topology on the set of
probability measures on X , represented as an array system. First, let Bk be the family
of all blocks with domain Fk × [1, k], occurring in X , and let

dk(μ, ν) = 1

|Bk |
∑

B∈Bk

|μ(B) − ν(B)| .
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66 B. Frej, D. Huczek

Now let

d(μ, ν) =
∞∑

k=1

1

2k
dk(μ, ν).

Note that we may assume that Bk consists only of blocks which yield cylinders of
positive measure for some ergodic measure μ.

Lemma 2.1 Let X be an array system and let (Fn) be a Følner sequence. For every
t ∈ N there exists εt > 0 such that if μ and ν are ergodic measures and x, y satisfy:

1. limn→∞
1

|Fn|
∑

g∈Fn
1B(gx) = μ(B) for all blocks on Fj × [1, j], where j ≤

t + 1,

2. limn→∞
1

|Fn|
∑

g∈Fn
1B(gy) = ν(B) for all blocks on Fj × [1, j], where j ≤

t + 1,
3. D({g ∈ G : x(g) 
= y(g)}) < εt ,

then d(μ, ν) < 1
2t .

Proof We put εt = 1
2t+2(1+|Ft+1|) . Let n be large enough to ensure that

1.
∣
∣
∣

1

|Fn|
∑

g∈Fn
1B(gx) − μ(B)

∣
∣
∣ < εt for all blocks B on Fj × [1, j], where j ≤

t + 1,

2.
∣
∣
∣

1

|Fn|
∑

g∈Fn
1B(gy)−ν(B)

∣
∣
∣ < εt for all blocks B on Fj ×[1, j],where j ≤ t+1,

3. |{g ∈ G : x(g) 
= y(g)}| < 2εt |Fn|.
Then, for B as above

|μ(B) − ν(B)| ≤
∣
∣
∣μ(B) − 1

|Fn|
∑

g∈Fn

1B(gx)

∣
∣
∣

+ 1

|Fn|
∑

g∈Fn

∣
∣
∣1B(gx) − 1B(gy)

∣
∣
∣ +

∣
∣
∣

1

|Fn|
∑

g∈Fn

1B(gy) − ν(B)

∣
∣
∣

< 2εt + 1

|Fn| |{g ∈ G : x(g) 
= y(g)}| · |Ft+1|

< 2εt (1 + |Ft+1|) = 1

2t+1 .

Thus, for k ≤ t + 1 we have

dk(μ, ν) = 1

|Bk |
∑

B∈Bk

|μ(B) − ν(B)| <
1

2t+1
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Faces of simplices of invariant measures for actions of… 67

and

d(μ, ν) ≤
t+1∑

k=1

1

2k
dk(μ, ν) + 1

2t+1 <
1

2t
.

��
For the sake of convenience, we introduce a notion of “distance” between a block

and a measure. Let B be a block occurring in X , with domain F × [1, k] for some
F ⊂ G and k ∈ N. For any block C with domain Fj × [1, j], where j ≤ k, we can
define the frequency of C in B in the following way: let

NF (Fj ) = ∣
∣
{
g ∈ F : Fj g ⊂ F

}∣
∣

NB(C) = ∣
∣
{
g ∈ F : Fj g ⊂ F and B[Fj g × [1, j]] = C

}∣
∣

(by the equality B[Fj g × [1, j]] = C we understand that B( f g, i) = C( f, i) for all
f ∈ Fj and i ∈ [1, j]).
If NF (Fj ) > 0 let

frB(C) = NB(C)

NF (Fj )
.

Otherwise let frB(C) = 0.
We say that A is a (1−δ)-subset of F if A ⊂ F and |A| ≥ (1−δ)|F |. By a standard

argumentwe can draw from the pointwise ergodicTheorem1.4 the following corollary.

Lemma 2.2 Let μ be an ergodic measure on X. For every ε and j we can find n and
η such that if F is a (1− η)-subset of Fm, m ≥ n, then for some block C with domain
F × [1, m] occurring in X we have |frC (D) − μ(D)| < ε for every block D with
domain Fi × [1, i], i = 1, . . . , j .

Moreover, n and η can be chosen so that the union of all blocks C not satisfying
the approximation rule has measure smaller than ε.

Proof Fix ε > 0 and j ∈ N. Taking in Theorem 1.4 f = 1D , where D is any fixed
block with domain Fi × [1, i], i = 1, . . . , j , we obtain that

lim
n→∞

1

|Fn|
∑

g∈Fn

1D(gx) = μ(D)

for almost every x . Since there are only finitely many blocks with such domain, we
may assume that the above equality is satisfied simultaneously for all such blocks D
on a subset of X having measure 1. Hence we can find n such that for every m ≥ n
the inequality ∣

∣
∣
∣
∣
∣

1

|Fm |
∑

g∈Fm

1D(gx) − μ(D)

∣
∣
∣
∣
∣
∣
<

ε

2
(2.1)

123



68 B. Frej, D. Huczek

holds, for all such D, on a set of measure Xε at least 1 − ε. Pick x from this set.
Additionally, increasing n we may demand that each Fm , m ≥ n, is (Fj ,

ε
4|Fj | )-

invariant.
Fix m ≥ n and let C be a block which appears in x on the domain Fm . By (1.2),

|Fm | ≥ NFm (Fi ) > |Fm |
(

1 − ε

4|Fj | |Fi |
)

≥ |Fm |
(
1 − ε

4

)
.

Furthermore, using (1.1)

NC (D) =
∑

{g∈Fm :Fi g⊂Fm }
1D(gx)

≤
∑

g∈Fm

1D(gx) ≤ NC (D) + |{g ∈ Fm : Fi g ∩ Fc
m 
= ∅}|

≤ NC (D) + ε

4|Fj | |Fi ||Fm | ≤ NC (D) + ε

4
|Fm |.

Hence,

NC (D)

NFm (Fi )
(1 − ε

4
) ≤ 1

|Fm |
∑

g∈Fm

1D(gx) ≤ NC (D) + ε
4 |Fm |

|Fm |

implying that

frC (D) − ε

4
≤ 1

|Fm |
∑

g∈Fm

1D(gx) ≤ frC (D) + ε

4
.

Combining it with (2.1) we obtain |frC (D) − μ(D)| < 3ε
4 for blocksC having domain

exactly equal to Fm × [1, m].
Now suppose that F is a (1− η)-subset of Fm and that C is a block which appears

in x on the domain F , while C ′ is x restricted to Fm .

NC ′(D) − η|Fm |
NFm (Fi )

≤ NC (D)

NF (Fi )
≤ NC ′(D)

NFm (Fi ) − η|Fm |
The left hand is greater than

NC ′(D) − η
NFm (Fi )

1−ε/4

NFm (Fi )
≥ frC ′(D) − η

1 − ε/4

while the right hand is bounded from above by

NC ′(D)

NFm (Fi ) − η
NFm (Fi )

1−ε/4

≤ frC ′(D) + η

1 − ε/4 − η
.
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Faces of simplices of invariant measures for actions of… 69

Hence

|frC ′(D) − frC (D)| <
η

1 − ε/4 − η

which can be made smaller than ε
4 by choosing apprioprately small η, irrespective of

m, C and D.
Finally, note that if |frC (D) − μ(D)| < ε is not true for some D as above and

C = x[F], F being a (1 − η-subset of Fm , m ≥ n, then x is not in Xε, as defined by
2.1, which means that the union of all C for which the approximation fails is less than
ε. ��

We can now define the distance between a block and a measure: let

dk(B, ν) = 1

|Bk |
∑

D∈Bk

|frB(D) − ν(D)| ,

and let

d(B, ν) =
∞∑

k=1

1

2k
dk(B, ν).

Remark 2.3 Let ε be a positive number. To ensure that d(B, ν) < ε it is enough to
verify that if j satisfies

∑∞
k= j+1

1
2k < ε

2 then for any block D ∈ Bi , where i =
1, . . . , j ,

|frB(D) − ν(D)| <
ε

2 j
.

Indeed, in this case we have dk(B, ν) < ε
2 j and

d(B, ν) =
j∑

k=1

1

2k
dk(B, ν) +

∞∑

k= j+1

1

2k
dk(B, ν)

<

j∑

k=1

ε

2 j
+

∞∑

k= j+1

1

2k
< ε.

Lemma 2.4 For any ε > 0 and any positive integer j there exists δ such that if F is
an (Fj , δ)-invariant set and B is a block with domain F × [1, j], then there exists a
probability measure μB such that

|frB(D) − μB(D)| <
ε

2 j

for any block D ∈ Bi , where i = 1, . . . , j .
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70 B. Frej, D. Huczek

Consequently, for any ε > 0 and sufficiently large j there exists δ such that if F is
an (Fj , δ)-invariant set and B is a block with domain F × [1, j], then there exists a
probability measure μB such that d(B, μB) < ε.

Proof Let us first observe that the second assertion follows from the first by Remark
2.3. Therefore, it suffices to prove the first statement.

Let Δ j = Λ1 × · · · × Λ j . The full shift ΔG
j is a Cantor set on which we have

the uniform Bernoulli probability measure λ which assigns equal measures M j to all
cylinderswith domain Fj ×[1, j].We shall defineμB by specifying its density fB with
respect to λ. fB will be constant on cylinders with domain Fj × [1, j]: on each such
cylinder associated with a blockC let fB(x) = 1

M j
frB(C). Obviously d j (μB, B) = 0.

We will now estimate di (μB, B) for i < j . Let D be any block from Bi . Let C j be
the family of (distinct) blocks from B j such that D = ⋃

C∈C j
C . We have:

μB(D) =
∑

C∈C j

μB(C) =
∑

C∈C j

frB(C),

and we need to show that the latter quantity is close to frB(D). Since F is (Fj , δ)-
invariant, the set

{
g : Fj g ⊂ F

}
is a (1 − δ

∣
∣Fj

∣
∣)-subset of F by (1.2) (note that{

g : Fj g ⊂ F
}
is indeed a subset of F , because Fj contains the neutral element).

Consequently, the set {g : Fi g ⊂ F} also is a (1−δ
∣
∣Fj

∣
∣)-subset of F , being a superset

of the former. For C ∈ C j , let FC be the set of g such that Fj g ⊂ F , B[Fj g ×
[1, j]] = C (and automatically B[Fi g × [1, i]] = D). That way we can represent
{g : Fi g ⊂ F, B[Fi g × [1, i]] = D} as the following disjoint sum:

{g : Fi g ⊂ F, B[Fi g × [1, i]] = D}
=

⋃

C∈C j

FC ∪ {
g : Fi g ⊂ F, Fj g ∩ Fc 
= ∅, B[Fi g × [1, i]] = D

}
.

Taking cardinalities and dividing by NF (Fi ), we obtain

frB(D) =
∑

C∈C j

NF (Fj )

NF (Fi )
frB(C)

+ 1

NF (Fi )

∣
∣
{
g : Fi g ⊂ F, Fj g ∩ Fc 
= ∅, B[Fi g × [1, i]] = D

}∣
∣

Since both Fj and Fi are (1− δ
∣
∣Fj

∣
∣)-subsets of F , we have

NF (Fj )

NF (Fi )
≥ 1− δ

∣
∣Fj

∣
∣ and

1

NF (Fi )

∣
∣
{
g : Fi g ⊂ F, Fj g ∩ Fc 
= ∅, B[Fi g × [1, i]] = D

}∣
∣

≤ 1

NF (Fi )

∣
∣
{
g ∈ F : Fj g ∩ Fc 
= ∅}∣

∣

≤ δ
∣
∣Fj

∣
∣ |F |

(1 − δ
∣
∣Fj

∣
∣)|F | = δ

∣
∣Fj

∣
∣

1 − δ
∣
∣Fj

∣
∣
.
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Faces of simplices of invariant measures for actions of… 71

If δ is small enough then the expression can be arbitrarily close to 0, while
NF (Fj )

NF (Fi )
can

be arbitrarily close to 1, so we can assume that

|frB(D) − μB(D)| =
∣
∣
∣
∣
∣
∣
frB(D) −

∑

C∈C j

frB(C j )

∣
∣
∣
∣
∣
∣
<

ε

2 j
.

��
Note that in the above lemma δ may be as small as we want.

Corollary 2.5 Let X be a zero-dimensional dynamical system with the action of an
amenable group G and let μ be an ergodic measure on X. For any ε > 0 and any
sufficiently large j there exists δ > 0 such that if F is a (1 − δ)-subset of Fm, where
m is so large that F is (Fj , δ)-invariant, then there is a block C occurring in X,
whose domain is F such that the measure μC (as defined in Lemma 2.4) satisfies
d(μC , μ) < ε.

Proof Choose δ and j from Lemma 2.4 with ε
2 replacing ε. Assume also that

∑∞
k= j+1

1
2k < ε

4 . By Lemma 2.2, we can find a block C on a (Fj , δ)-invariant
domain F , such that |frC (D) − μ(D)| < ε

4 j for any block D with domain Fi ×[1, i],
i = 1, . . . , j . By Remark 2.3 we see that d(C, μ) < ε

2 , and directly from Lemma 2.4
also d(C, μC ) < ε

2 , therefore d(μC , μ) < ε. ��
For actions of Z, it is a well-known fact that if a sufficiently long block C is a concate-
nation of shorter blocks B1, B2, . . . , Bn of equal length, then the probability measure
μC (which for actions of Z can easily be assumed to be shift invariant) can be arbi-
trarily close to the arithmetic average of the measures μBi . An analogous claim can
be made for the action of any amenable group G; however the lack of a natural way
to decompose a subset of G into smaller sets requires the use of quasitilings.

Definition 2.6 A (static) quasitaling of a group G is a family T of finite subsets
of G (called tiles), for which there exist a family S(T ) = {S1, S2, . . . , Sn} of finite
subsets of G (called shapes) and a family C(T ) = {C1, C2, . . . , Cn} of subsets of G
(called centers), such that every T ∈ T has a unique representation T = Si c for some
i ∈ {1, . . . , n} and c ∈ Ci .

Note that every quasitiling can be seen as a symbolic element T ∈ {0, 1, . . . , n}G ,
such that T (g) = i if g ∈ Ci for some i , and T (g) = 0 otherwise.

Definition 2.7 A quasitiling T is:

1. disjoint, if the tiles are pairwise disjoint;
2. α-covering, if the union of all tiles has lower Banach density at least α.
3. congruent with a quasitiling T ′, if for any two tiles T ∈ T , T ′ ∈ T ′ we have

either T ⊃ T ′ or T ∩ T ′ = ∅.
Any (T, k)-block whose shape T belongs to a quasitiling T will be called a (T , k)-
block.
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Let (X, G) be a topological dynamical system. Suppose we assign to every x ∈ X a
quasitiling T (x) of G, with the same set of shapes S1, . . . , Sn for all x . This induces a
map x �→ T (x) which can be seen as a map from (X, G) into {0, 1, . . . , n}G with the
shift action. If such a map is a factor map (i.e. if it is continuous and commutes with
the dynamics), we call it a dynamical quasitiling. A dynamical quastiling is said to be
disjoint and/or α-covering, if T (x) has the respective property for every x . Note that
though the set of shapes is common, the collection of centers depends on x so Ci (x)

become functions assigning to each x a subset of G. We introduce the following new
definition.

Definition 2.8 We will say that a dynamical quasitiling T consisting of shapes
S(T ) = {S1, S2, . . . , Sn} and centers C(T ) = {C1, C2, . . . , Cn} has restricted block
distribution if for every x ∈ X any (T, k)-block B which occurs in x on some domain
Si c may occur in x only on domains of this form for c ∈ Ci (x).

Remark 2.9 Clearly, if T has restricted block distribution then for any block D occur-
ing in x on some domain Si c0 and any B being a block occuring in x on a (disjoint)
union F of tiles we have

frB(D) = 1

NF (S)
|{c ∈ Ci (x) ∩ F : x(Si c) = D}|.

Lemma 2.10 For any ε > 0 there exist j ∈ N and δ > 0 such that if T is a disjoint
quasitiling by (Fj , δ)-invariant sets, and C is a block with domain H × [1, j] such
that some disjoint union of tiles T1, T2, . . . , Tn of T is a (1 − δ)-subset of H, then
the probability measure μC is ε-close to the average of the measures associated with
blocks over individual tiles, i.e. if we denote by Bi the block with domain Ti × [1, j],

d

(

μC ,
1

∑n
i=1 |Ti |

n∑

i=1

|Ti | μBi

)

< ε.

Proof Applying Lemma 2.4, for any j there is δ j such that for any block B with
domain F × [1, j], where F is a (Fj , δ j )-invariant set, and for any block D with
domain Fi × [1, i], i ≤ j , we have |frB(D) − μB(D)| < ε

8 j . Let H be a subset of G
and letT be aquasitiling ofG by (Fj , δ)-invariant sets for some δ > 0. Suppose that the
union

⋃n
i=1 Ti is a (1− δ)-subset of H for some pairwise disjoint tiles T1, T2, . . . , Tn

belonging to T . For every k ≤ j let us define the set

Ek = {
h ∈ H : ∀i Fkh ∩ T c

i 
= ∅}

Then

|Ek | ≤
n∑

i=1

| {h ∈ Ti : ∀i Fkh ∩ T c
i 
= ∅} | + |H \

n⋃

i=1

Ti |

≤
n∑

i=1

δ|Fk ||Ti | + δ|H | ≤ δ|H |(|Fk | + 1),
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hence NH (Fk) ≥ |H | − |Ek | ≥ |H |(1 − δ(1 + |Fk |)). Clearly, we can demand that
δ < δ j (further restrictions will follow). Note that since each T ∈ T is (Fj , δ)-
invariant, for any block B whose domain is a tile of T the measureμB is well-defined.

Now, letC be a blockwith domain H×[1, j], where H is (1−δ)-tiled by T1, . . . , Tn ,
and let C[Ti ] = Bi . For any k ≤ j and for any block D with domain Fk × [1, k] we
have:

NC (D) =
n∑

i=1

NBi (D) + NEk (D)

Therefore, using the traingle inequality,
∣
∣
∣
∣
∣
frC (D) − 1

∑n
i=1 |Ti |

n∑

i=1

frBi (D) |Ti |
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣

∑n
i=1 NBi (D) + NEk (D)

NH (Fk)
− 1

∑n
i=1 |Ti |

n∑

i=1

frBi (D) |Ti |
∣
∣
∣
∣
∣

≤ NEk (D)

NH (Fk)
+

n∑

i=1

NBi (D) ·
∣
∣
∣
∣

1

NH (Fk)
− 1

∑n
i=1 |Ti |

∣
∣
∣
∣

+ 1
∑n

i=1 |Ti | ·
n∑

i=1

(

NBi (D)

∣
∣
∣
∣1 − |Ti |

NTi (Fk)

∣
∣
∣
∣

)

We can estimate that
NEk (D)

NH (Fk)
< δ(|Fk | + 1),

∣
∣
∣1 − |Ti |

NTi (Fk)

∣
∣
∣ ≤ δ|Fk |

1−δ|Fk | and
∣
∣
∣ 1

NH (Fk )
− 1∑n

i=1|Ti |
∣
∣
∣ ≤ 1

NH (Fk )
δ(|Fk |+2)

1−δ
, so the whole expression can be made smaller

than ε
8 j by appropriate choice of a small δ.

Now, for every Bi we have frBi (D) is approximately equal to μBi (D) with error
ε
8 j , and this approximation is preserved by the weighted average we have obtained,
therefore

∣
∣
∣
∣
∣
frC (D) − 1

∑n
i=1 |Ti |

n∑

i=1

|Ti | μBi (D)

∣
∣
∣
∣
∣
<

ε

4 j

If j is sufficiently large, Remark 2.3 implies that

d

(

C,
1

∑n
i=1 |Ti |

n∑

i=1

|Ti | μBi

)

<
ε

2
,

and since d(C, μC ) < ε
2 , we also have

d

(

μC ,
1

∑n
i=1 |Ti |

n∑

i=1

|Ti | μBi

)

< ε.

��
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Remark 2.11 In the above lemma, we can increase j and decrease δ without spoiling
the approximation error ε, because if j ′ ≥ j and δ′ ≤ δ then (Fj ′, δ′)-invariant set is
also (Fj , δ)-invariant and a (1 − δ′)-subset of any H is a (1 − δ)-subset of H .

The next two lemmas concerning the existence of quasitilings were proved in [4].

Lemma 2.12 ([4], Corollary 3.5) Let G be an amenable group acting freely on a
zero-dimensional metric space X. For any ε > 0, any finite K ⊂ G and any δ > 0
there exists a disjoint, (1−ε)-covering dynamical quasitiling T such that every shape
of T is (K , δ)-invariant.

Lemma 2.13 ([4], Lemma 3.6) Let G be an amenable group acting freely on a zero-
dimensional metric space X and let T0 be any disjoint, dynamical quasitiling of G. For
any ε > 0, any finite K ⊂ G and any δ > 0 there exists a disjoint, (1 − ε)-covering
dynamical quasitiling T1 such that every shape of T1 is (K , δ)-invariant, and every
tile of T0 is either a subset of some tile of T1 or is disjoint from all such tiles.

The following lemma is analogous to the case of classical one-dimensional sub-
shifts.

Lemma 2.14 For every ε > 0 there exist J and δ such that if for some j > J the
set F is a (Fj , δ)-invariant and B is a (F, j)-block, then d(B,MG(X)) < ε and
d(μB,MG(X)) < ε.

Proof We will prove the assertion in the language of blocks, i.e. we will show that
d(B,MG(X)) < ε. The assertion for measures will follow from Corollary 2.5.

Suppose that there is ε > 0 such that for every J and δ there exists an integer
j > J and a (F, j)-block BJ,δ on domain DJ,δ × [1, j], which is (Fj , δ)-invariant
and d(BJ,δ,MG(X)) ≥ ε. For ε

2 and every J we choose δ = δJ via Lemma 2.4 with
the additional requirement that δJ |Fj | < ε

J . We denote BJ = BJ,δJ and DJ = DJ,δJ .
Let μ be a limit point of the sequence μBJ . Clearly, d(μ,MG(X)) ≥ ε/2.

We will obtain a contradiction by showing that μ is G-invariant. It suffices to prove
that μ(C) = μ(g(C)) for every (Fi , i)-block C and every g ∈ G, where

g(C) = {gx : x[Fi × [1, i]] = C} = {x : x[Fi g
−1 × [1, i]] = C}

Fix γ > 0, g ∈ G and a cylinder set C on Fi × [1, i]. Let J be large enough to ensure
that

1. |μ(C) − μBJ (C)| + |μ(g(C)) − μBJ (g(C))| <
γ
3 (note that C is clopen),

2. ε
J <

γ
6 ,

3. The domain DJ is (Fj , δJ )-invariant, j ≥ J , where Fj ⊃ Fi ∪ Fi g−1 ∪ {g}.
Then,

|μ(C) − μ(gC)| ≤ |μ(C) − μBJ (C)| + |μBJ (C) − frBJ (C)|
+ |frBJ (C) − frBJ (g(C))|
+ |frBJ (g(C)) − μBJ (g(C))| + |μBJ (g(C)) − μ(g(C))|
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The first condition guarantees that the sum of the first and the last terms are less than
γ
3 . The choice of BJ was made with use of Lemma 2.4, so both the second and the
fourth summands are smaller than ε

4 j . By the second requirement above, their sum is

again less than γ
3 . We only need to show that the middle term is bounded by γ

3 .
Since DJ is (Fj , δJ )-invariant, it is also (Fi , δJ )-invariant and (Fi g−1, δJ )-

invariant, which implies that

(1 − δJ |Fi |)|DJ | ≤ NDJ (Fi ) ≤ |DJ |
(1 − δJ |Fi |)|DJ | ≤ NDJ (Fi g

−1) ≤ |DJ |.

In particular,

|NDJ (Fi g
−1) − NDJ (Fi )| ≤ δJ |Fi ||DJ |.

Note also that BJ [Fi h × [1, i]] = C if and only if BJ [(Fi g−1)(gh) × [1, i]] = C .
Thus, an occurrence of C in BJ ‘at position h’ yields the occurrence of g(C) in BJ ‘at
gh’, if only gh ∈ DJ . By a similar argument, occurrences of g(C) force occurrences
of C . The number of pairs (h, gh) such that only one of these elements belongs to DJ

is smaller than δJ |Fj ||DJ |, so

|NBJ (C) − NBJ (g(C))| < δJ |Fj ||DJ | ≤ δJ |Fj | NDJ (Fi )

1 − δJ |Fi |
Hence

|frBJ (C) − NBJ (g(C))

NDJ (Fi )
| ≤ ε/J

1 − ε/J
<

γ

6

On the other hand,

| NBJ (g(C))

NDJ (Fi )
− frBJ (g(C))| ≤ NBJ (g(C)) · |NDJ (Fi g−1) − NDJ (Fi )|

NDJ (Fi )NDJ (Fi g−1)

≤ δJ |Fi |
1 − δ|Fi | ≤ ε/J

1 − ε/J
<

γ

6
,

which ends the proof. ��
Finally, we prove our last tool.

Lemma 2.15 Let X be a zero-dimensional dynamical system (in array form) with the
shift action of an amenable group G, and let K be a face in the simplex MG(X).
For any δ > 0 and ε > 0 there exist η and j such that if T is a disjoint, (1 − η)-
covering dynamical quasitiling by (Fj , η)-invariant sets, which has restricted block
distribution and B denotes the family of all (T , j)-blocks B such that d(B, K ) > δ,
then

∑
B∈B μ(B) |B| ≤ ε for every μ ∈ K (by convention, the sum over the empty

set is equal to zero).
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Proof Fix δ > 0 and ε > 0. LetF denote the (closed) complement of the open δ/2-ball
around K inM(X) (note that we use here the space of all probabilitymeasures, not the
space of invariantmeasures).Obviously, {μB : B ∈ B} ⊂ F for sufficiently large j . For
every α, consider the set Vα ⊂ M(X) consisting of measures μ with the following
property: if μ = ∫

M(X)
νdξ , and ξ is supported by the closed α-neighborhood of

MG(X), then ξ(F) < ε.

Claim 1 Vα is an open set.
Wewill prove that its complement V c

α is closed. Letμ be the weak* limit of a sequence
μk of elements of V c

α . Then μk = ∫
M(X)

νdξk for some ξk supported by the closed α-
neighborhood ofMG(X) with ξk(F) ≥ ε. The sequence ξk has a subsequence which
converges in the weak* topology to some measure ξ—let us assume that ξk itself is
already convergent. By the portmanteau lemma, ξ(F) ≥ limk→∞ ξk(F) ≥ ε. By the
same lemma, ξ assigns to the closed α-neighborhood of MG(X) the value 1, so it is
supported by this neighborhood.

The only thing left to show is the equality μ = ∫
M(X)

νdξ . For any function
f ∈ C(X) themap ν �→ ν( f ) = ∫

f dν is a real continuousmap ofM(X). Therefore,
by the definition of weak* convergence (used both in spacesM(X) andM(M(X))),

μ( f ) = lim
k→∞ μk( f ) = lim

k→∞

∫

M(X)

ν( f )dξk =
∫

M(X)

ν( f )dξ,

which is the desired equality.

Claim 2 If α is small enough then Vα contains K .
If not then letting α tend to 0, we could find a measure in K that is a barycenter of a
distribution ξ onMG(X) with ξ(F) ≥ ε. This is not possible.

Returning to the main proof, let γ be small enough that the open γ -neighborhood
of K is contained in Vα . Using Lemma 2.10 choose η and j to obtain the the error
of approximation equal γ /2 for any (Fj , η)-quasitiling (i.e. in the lemma γ /2 and η

play the role of ε and δ, respectively). Let T be such a quasitiling. By Lemma 2.14
and Remark 2.11, making j large enough, we can also assume that every block with
domain S×[1, j] (where S is a shape of T ) that occurs in X lies in the α-neighborhood
of the set of invariant measures on X . Note that the union

⋃
B of the collection of

all elements of B (as defined in the statement of the lemma) is clopen, and thus the
function μ �→ μ(

⋃
B) is continuous on the set M(X). Suppose that μ is an ergodic

measure in K such that
∑

B∈B μ(B) |B| > ε. The function ν �→ ∑
B∈B ν(B) |B| is

continuous, therefore if ν is close enough toμ, then
∑

B∈B ν(B) |B| > ε. In particular,
by Corollary 2.5 we can find a block C occurring in X , such that d(μC , μ) <

γ
2 , and∑

B∈B μC (B) |B| > ε. By Lemma 2.4 we can demand that frC B approximates each
B ∈ B so well that also

∑
B∈B frC (B) |B| > ε. Note that by the restricted block

distribution, for elements B of the tiling frC (B) is derived by calculating only the
appropriate elements of the tiling of C . We can also assume that the union of tiles of T
contained in the domain ofC is a (1−η)-subset ofC . ByLemma2.10,μC is closer than
γ
2 to ν = 1∑n

i=1|Bi |
∑n

i=1 |Bi | μBi , where B1, . . . , Bn are all (T , j)-blocks occurring
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in C as elements of the tiling. For all i such that Bi ∈ B, we have δμBi
(F) = 1, so for

ξ = 1∑n
i=1|Bi |

∑n
i=1 |Bi | δμBi

we have

ξ(F) ≥ 1
∑n

i=1 |Bi |
n∑

i=1

|Bi |1B(Bi ) ≥
∑

B∈B
|B| frC (B) > ε.

Since ν is in Vα (where such a decomposition should not exist), this is a contradic-
tion. ��

3 Proof of the main result

Proof (Proof of Theorem 1.2) Let K be a face inMG(X). Recall that X is represented
as an array system, i.e. it is a subset of Z = ∏

j∈N Λ j
G , where |Λ j | < ∞. For every

t ∈ N we choose εt so that the sequence is summable and that 2εt satisfies the
hypotheses of Lemma 2.1.

By Lemma 2.12, we can construct a sequence Tt of disjoint, (1 − 1
t )-covering,

dynamical tilings of X , whose shapes are all (Ft ,
1
t )-invariant subsets of G. Moreover,

by Lemma 2.13 we can assume that every tile of Tt−1 is either a subset of some tile
of Tt or is entirely disjoint from all such tiles.

Having fixed the sequence Tt we slightly change the array representation of X .
We extend each alphabet Λ j to a new alphabet Λ∗

j , doubling the number of symbols
by adding to it for every symbol λ a copy of it with superscript ∗, namely λ∗. For
every x we then add the stars to symbols x(g, t) where g ∈ C(Tt (x)). Thereby,
we have defined a conjugate representation X∗ of X ; we denote the conjugacy by
ψ and the corresponding map on the space of measures by Ψ : M(X) → M(X∗),
Ψ (μ) = μ◦ψ−1 (themapψ is continuous, because the quasitilings are dynamical; it is
invertible, because removing stars we obtain the original system). The set K ∗ = Ψ (K )

is a face of the simplexMG(X∗), affinely homeomorphic to K . Each quasitiling Tt is
carried to a dynamical quasitiling T ∗

t of X∗ by the rule T ∗
t (ψ(x)) = Tt (x). Moreover,

it gains the property of restricted block distribution, because symbols marked with
stars prevent blocks occurring on tiles Sc from occuring on positions not consistent
with the tiling.

We will construct a sequence of maps φt : X∗ → Z∗, Z = ∏
j∈N (Λ∗

j )
G , which

are all going to be invertible continuous maps commuting with the action of a group.
Then we will prove that the sequence of maps Φt : M(X∗) → M(Z∗), Φt (μ) =
μ◦φ−1

t , converges uniformly on K ∗ to an affine homeomorphismΦ, whileφt converge
pointwise on a set of full measure to a map establishing an isomorphism between
(X∗, μ) and some (Y, Φ(μ)) for each μ ∈ K ∗ [hence also between (X, Ψ −1(μ)) and
(Y, Φ(μ))].

The construction will be inductive: let φ0 be the identity map. Now, supposing we
have constructed a map φt−1, let Xt−1 = φt−1(X∗) (in particular, Xt−1 is conjugate
to X ). Please, note that we may treat any tiling T ∗

t as a tiling of Xt−1—we will use the
same symbol to denote T ∗

t transported to Xt−1 by φt−1. By Lemma 2.14 there exist
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Jt and δt > 0 such that if F is a (Fk, δt )-invariant, k ≥ Jt , and B is a (F, k)-block
occurring in Xt−1, then the distance between μB and MG(Xt−1) is less than εt .

For sufficiently large nt we can pick k > Jt such that:

1. The tiling T ∗
nt
consists of tiles whose shapes are (Fk, δt )-invariant,

2. For every shape S of T ∗
nt
there exists a block BS with domain S, such that μBS is

closer than εt to some μ ∈ Φt−1(K ∗) (by Corollary 2.5),
3. If B denotes the family of all (T ∗

nt
, k)-blocks B such that d(B, Φt−1(K ∗)) > δt ,

then
∑

B∈B μ(B) |B| < εt for every μ ∈ Φt−1(K ∗) (by Lemma 2.15).

We shall define an auxiliary map φ̃t on Xt−1 as follows: for any x ∈ Xt−1 and any
tile T of T ∗

nt
(x), let S be the shape of T and let B = x[T × [1, k]]. If the distance

between B and φt−1(K ∗) is more than δt , replace x[T × [1, k]] with BS . Otherwise,
φ̃t introduces no changes. By doing this for all T ∈ Tnt (x), we obtain a new array,
φ̃t (x).

Observe that if x is in the support of any measureμ ∈ Φt−1(K ∗), then (by the third
assumption) the union of tiles T ∈ Tnt (x) such that x[T × [1, k]] is a block distant by
more than δt from Φt−1(K ∗) has upper Banach density less than, say, 2εt , therefore
φ̃t (x) differs from x on a set of coordinates of density less than 2εt . By Lemma 1.7 this
means that the set of points x ∈ Xt−1 such that φ̃t (x) differs from x in column e also
has measure μ less than 2εt for any ergodic μ ∈ Φt−1(K ∗). The map Φt−1 is affine
so it takes ergodic measures to ergodic measures and for every μ ∈ K ∗ the ergodic
decomposition of any Φt−1(μ) ∈ Φt−1(K ∗) is induced by the ergodic decomposition
of μ. Thus this measure is less than 2εt for any μ ∈ Φt−1(K ∗).

Now let φt = φ̃t ◦ φt−1. Since φt makes no changes in rows with indices k
and greater (and they allow us to determine the content of rows 0 through k), it
is a conjugacy. Furthermore, let Xt = φt (X∗) and let ν be an ergodic measure in
MG(Xt ) = Φt (MG(X)). By Corollary 2.5 for sufficiently large n there is x ∈ Xt

such that μx[C], C = Fn × [1, k], is εt -close to ν. By the construction of φt , every
(Tnt , k)-block in x is closer than εt to someμ ∈ Φt−1(K ∗). If Fn is a set sufficiently far
in the Følner sequence, then x[C] is a block that is close to being a concatenation of Tnt

blocks (the union of tiles ofTnt contained in Fn is a (1−δt )-subset of Fn). Therefore, by
Lemma 2.10 the measure μC differs by less than εt from 1∑n

i=1|Bi |
∑n

i=1 |Bi | μx[Bi ].
Since each x[Bi ] is εt -close to μx[Bi ] the combination is 4εt -close to measure in
Φt−1(K ∗).

We will show that the maps Φt converge uniformly on K ∗. To this end, it suffices
to uniformly estimate the distance between Φt (μ) and Φt−1(μ) for ergodic μ ∈ K ∗
by a summable sequence. By Lemma 2.15, for any μ ∈ K ∗ we have the estimate∑

B∈B (Φt−1(μ)) (B) |B| < εt , where B denotes the family of all T ∗
nt
-blocks B such

that d(B, K ∗) > δt . As we have already said, this implies that if x ∈ X∗, then the set
of coordinates in φt−1(x) belonging to tiles of T ∗

nt
that are domains of blocks from

B has upper Banach density less than 2εt . Since φ̃t only makes any changes on these
coordinates, φt (x) differs from φt−1(x) on a set of density less than 2εt . If x is in
the support of some invariant measure μ, then φt−1(x) and φt (x) are in the support
of Φt−1(μ) and Φt (μ), respectively, and since the two points agree on a set of large
upper Banach density, the measures are within distance less than 1

2t (according to the
choice of εt with use of Lemma 2.1).

123



Faces of simplices of invariant measures for actions of… 79

This uniform convergence, together with the fact that Φt (MG(X∗)) is within the
2εt -neighborhood of Φt−1(K ∗), implies that Φ(MG(X∗)) ⊂ Φ(K ∗), and since the
other inclusion is obvious, the two sets are equal.

Now, define the set Y (which will support the desired assignment) as follows:

Y =
∞⋂

s=1

∞⋃

t=s

Xt .

Observe that Y is a closed, shift-invariant set, and that for any Følner set F and
any k ∈ N every block with domain F × [1, k] in Y occurs in infinitely many of
the sets Xt . It follows that every invariant measure on Y can be approximated by
invariant measures on the Xt ’s, and thus the set of invariant measures on Y is contained
in Φ(MG(X∗)) = Φ(K ∗). The other inclusion is generally true: for any weakly*
convergent sequence of measures μt supported by Xt , the limit measure μ is always
supported by

⋂∞
s=1

⋃∞
t=s Xt . Therefore MG(Y ) = Φ(K ∗).

By Lemma 1.7 for every ergodic μ ∈ K ∗ the set of points x ∈ Xt−1 such that the
column x(e) is modified by φ̃t has measure μ less than 2εt , because φ̃t commutes
with the shift map and for any x in the support of μ the set of modified coordinates
has upper Banach density less than 2εt . If this bound works for all ergodic measures it
works for all measures in K ∗. Since the sequence εt is summable, the Borel-Cantelli
lemma implies that for almost every x ∈ X∗ the columns φt (x)(e) are all equal from
some point onwards. By shift-invariance, the same is true for φt (x)(g) for any g,
so ultimately we conclude that if μ ∈ K ∗, then for μ-almost every x ∈ X∗ every
coordinate of x is only changed finitely many times. This means that a limit point
φ(x) is then well-defined, and this map φ is invertible (since every φt (x) retains the
original contents of x in the bottom row). In other words φ is an isomorphism between
the measure-theoretic dynamical systems (X∗, μ) and (Y, Φ(μ)). ��

4 Concluding remarks

Firstly, we note that we can strengthen Theorem 1.2 by combining it with theorem 1.2
of [7], obtaining the following version:

Theorem 4.1 Let X be a Cantor system with free action of an amenable group G and
let K be a face in the simplex MG(X) of G-invariant measures of X. There exists a
Cantor system Y with minimal free action of G, such that the natural assignment on
Y is equivalent to the identity assignment on K .

Secondly, note that the result of this paper is not strictly a strengthening of the main
theorem 4.1 in [3], since while we gain the result for actions of amenable groups, we
add the requirement that the action be free, whereas the original result merely requires
that the face in question contain no periodic measures. Unfortunately, it is very much
unclear how the machinery used to deal with periodic points would transfer to the
group case, which is why the matter of directly extending the result of [3] remains
open.
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