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Abstract Let C0(G) denote the near-ring of congruence preserving functions of the
groupG. We investigate the question “When isC0(G) a ring?”.We obtain information
externally via the lattice structure of the normal subgroups of G and internally via
structural properties of the group G.
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1 Introduction: background and notation

Let G = 〈G,+, 0〉 be a group, written additively but not necessarily abelian, with
neutral element 0. The structure of the near-ring C0(G) = 〈C0(G),+, ◦〉 of zero
fixing congruence preserving functions on G has been the topic of several previous
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investigations [1,4]. In this paper we initiate the study of characterizing those groups
G such that C0(G) is a ring.

This investigation also has roots in universal algebra. Recall that a unary polynomial
function p : G → G is a function that can be written in the form p(x) := a0 + k0x +
a1 + k1x +· · ·+an−1 + kn−1x +an, x ∈ G, n a nonnegative integer, a0, a1, . . . , an ∈
G, k0, . . . , kn−1 ∈ Z. We let P0(G) = 〈P0(G),+, ◦〉 denote the near-ring of zero
preserving polynomial functions on G (See [1,11].)

The near-ring C0(G) is a subnear-ring of the near-ring M0(G) := { f : G → G |
f (0) = 0} of zero fixing self maps on G where, as usual, the operations in M0(G)

are pointwise addition of functions and composition of functions. Let Inn (G) denote
the semigroup (under composition) of inner automorphisms of the group G and let
I (G) denote the subnear-ring of M0(G) generated additively by Inn (G). From the
definitions we see P0(G) = I (G).

Now let f ∈ C0(G). Then by definition, for each congruence, ρ of G, for each
x, y ∈ G, xρy implies f (x)ρ f (y). As is well-known, there is a lattice isomorphism
between the congruence lattice, Con(G), of congruences onG and the lattice, η(G), of
normal subgroups ofG. Thus f ∈ M0(G) is congruence preserving if f is compatible
with every normal subgroup of G. That is for x, y ∈ G we have f ∈ C0(G) if and
only if x + H = y + H implies f (x) + H = f (y) + H , for each H ∈ η(G).

Recall for any subgroup H of G the normal closure of H in G, denoted by H , is
defined by H = ⋂{N � G | H ⊆ N }. For x ∈ G we write x for 〈x〉, the principal
closure of x . Thus we get the following characterization of congruence preserving
functions: Let f ∈ M0(G). Then f ∈ C0(G) if and only if f (x) − f (y) ∈ x − y for
each x, y ∈ G.

Using the above definitions one finds that every zero fixing unary polynomial on G
is congruence preserving so I (G) = P0(G) ⊆ C0(G) ⊆ M0(G). If every congruence
preserving function is also a polynomial then the group G is said to be 1-affine com-
plete. Finite abelian 1-affine complete groups have been characterized by Nöbauer
[14]. All 1-affine complete groups of order up to 100 can be found in [17]. In relation
to our problem under consideration, C0(G) will be a ring if P0(G) is a ring and G is
1-affine complete.

It is known when I (G) = P0(G) is a ring [8]. A group G is said to be a 2-Engel
group if [x, [x, y]] = 0 for all x, y ∈ G. Equivalently (see [8,12,13]) G is a 2-Engel
group if every element of G commutes with all of its conjugates. A 2-Engel group G
is nilpotent of class at most 3 and, for finite groups, a 2-Engel group of class 3 must
be a group of order 3n . The smallest 2-Engel group of class 3 is the Burnside group,
B(3, 3), of order 37.

Theorem 1.1 (Chandy) The near-ring I (G) is a ring if and only if G is a 2-Engel
group. Moreover, I (G) is a commutative ring if and only if G is of class 2.

In the remainder of this paper we restrict to finite groups G. In the next section we
first show when considering C0(G) we may restrict to p-groups, p a prime. Using
results of Nöbauer [14] we completely characterize those finite abelian groups G such
that C0(G) is a ring.

In Sect. 3 we turn to nonabelian groups and find several necessary conditions
for C0(G) to be a ring. In this section we focus on certain properties of the lattice
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Rings of congruence preserving functions 533

η(G) of normal subgroups. In the final section we consider internal properties of the
group G and we conclude with a complete answer to our question for groups of order
pn, 1 ≤ n ≤ 5, p > 2.

2 The abelian case

We begin this section by showing that, for finite groups, we can restrict to p-groups,
where as usual p denotes a prime integer. We use results of Nöbauer, [14], to obtain
this restriction.

We recall from [14] that a direct sum G = G1 ⊕ · · · ⊕Gn is said to be skew-free if
every congruence ρ ofG is of the form ρ = ρ1+· · ·+ρn where the ρi are congruences
on the Gi , i = 1, 2, . . . , n. In particular when G is a finite nilpotent group with direct
sum of its unique Sylow subgroups G = Sp1(G)⊕ · · ·⊕ Spn (G) then G is skew-free.
Recall from the introduction that Con(G) is lattice isomorphic to η(G), the lattice of
normal subgroups of G.

Theorem 2.1 [14, Satz 1] Let G = A⊕ B be skew-free. Then the map ψ : C0(G) →
C0(A) + C0(B) given by ψ(ρ) = (ρA, ρB), ρ ∈ C0(G) is a near-ring isomorphism.

From straight forward calculations one finds the following theorem and corollary.

Theorem 2.2 Let G be a finite nilpotent group, G = Sp1(G) ⊕ · · · ⊕ Spn (G). Then
C0(G) ∼= C0(Sp1(G)) ⊕ · · · ⊕ C0(Spn (G)).

Corollary 2.3 Let G be a finite group with Sylow decomposition as in Theorem 2.2.
Then C0(G) is a ring if and only if C0(Spi (G)) is a ring for each i ∈ {1, 2, . . . , n}.

Hencewe only need to consider groups,G, of prime power orderwhen investigating
the structure of the near-ring, C0(G), of zero fixing congruence preserving functions
on G.

We now turn to abelian groups. We need a further result of Nöbauer [14].

Theorem 2.4 [14, Satz 3,4] Let p be a prime, Zpα be the cyclic group of order pα

and let A = Zpα1 ⊕· · ·⊕Zpαn with α1 ≥ α2 ≥ · · · ≥ αn. Then A is 1-affine complete
if and only if one of the following conditions holds:

(a) n > 1, α1 = α2, p arbitrary,
(b) n > 1, α1 = α2 + 1, p = 2 or
(c) n = 1, α1 = 1, p = 2.

Theorem 2.5 Let A be an abelian group of prime power order. The following are
equivalent:

(1) A is 1-affine complete;
(2) C0(A) is a ring;
(3) C0(A) is a commutative ring.

Proof Since A is abelian, A is a 2-Engel group of nilpotency class at most 2 so
I (A) = P0(A) is a commutative ring. If A is 1-affine complete then C0(A) is a ring.
Thus (1) implies (3).
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534 C. J. Maxson, F. Saxinger

It is clear that (3) implies (2) so it remains to show (2) implies (1). We assume A is
not 1-affine complete and show C0(A) is not a ring. From Theorem 2.4 we know the
form A has to be so that A is not 1-affine complete.

Case (i) |A| = pm for some prime p > 2. In this case we must have A ∼= Zpα1 ⊕
· · · ⊕ Zpαn with n = 1 or α1 > α2 ≥ · · · ≥ αn . We let Zpα1 = 〈g〉 and let
D = {x ∈ A | pα1−1x = 0} = {(a1, . . . , an) | a1 ∈ 〈pg〉}.
Define c : A → A by

c(x) =
{

(0, . . . , 0), x ∈ D

(pα1−1g, 0, . . . , 0), x /∈ D.

We show c ∈ C0(A). To this end, let x, y ∈ A. If x, y ∈ D or
x, y /∈ D then c(x) − c(y) = (0, . . . , 0) ∈ x − y so we take x /∈
D, y ∈ D. Thus c(x) − c(y) = (pα−1g, 0, . . . , 0). Now pα1−1(x − y) =
(pα1−1kg, 0, . . . , 0), p � k so x /∈ D. But then (pα1−1g, 0, . . . , 0) ∈ x − y
so c ∈ C0(A). Further, [c(id + id)]((g, 0, . . . , 0)) = c(id((g, 0, . . . , 0)) +
id((g, 0, . . . , 0))) = c((2g, 0, . . . , 0)) = (pα1−1g, 0, . . . , 0) while [c ◦
id + c ◦ id]((g, 0, . . . , 0)) = 2c((g, 0, . . . , 0)) = 2(pα1−1g, 0, . . . , 0) �=
(pα1−1g, 0, . . . , 0). Hence C0(G) is not a ring.

Case (ii) |A| = 2m . In this case A = Z2α1 ⊕ · · · ⊕ Z2αn with either n > 1 and
α1 − 1 > α2 ≥ · · · ≥ αn or n = 1 and α1 > 1. Again we handle both cases
together and as above we let Z2α1 = 〈g〉. Let D = {x ∈ A | 2α1−2x = 0} =
{(a1, . . . , an) | a1 ∈ 〈4g〉} and further let D̄ = D ∪ (D + (2g, 0, . . . , 0)).
Define c : A → A by

c(x) =
{

(0, 0, . . . , 0), x ∈ D̄

(2α1−2g, 0, . . . , 0), x /∈ D̄.

As above we show c ∈ C0(A). Let x, y ∈ A, x /∈ D̄, y ∈ D̄.
Then c(x) − c(y) = (2α1−2g, 0, . . . , 0). Now since x /∈ D̄, x =
(kg, 0, . . . , 0) where k ∈ {1, 3}. Thus 2α1−2(x − y) = (2α1−2kg, 0, . . . , 0)
so (2α1−2g, 0, . . . , 0) ∈ x − y. Using f = id, h = 3 · id we have [c( f +
g)]((g, 0, . . . , 0)) = [c(id + 3 · id)]((g, 0, . . . , 0)) = c(id((g, 0, . . . , 0)) +
3·id((g, 0, . . . , 0))) = c((4g, 0, . . . , 0)) = (0, . . . , 0) �= c((g, 0, . . . , 0))+
c((3g, 0, . . . , 0)). So C0(A) is not a ring. ��

We now have a characterization of those finite abelian groups A for which C0(A)

is a ring.

Corollary 2.6 Let A be a finite abelian group. The following are equivalent:

(1) A is 1-affine complete;
(2) C0(A) is a ring;
(3) C0(A) is a commutative ring.
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Proof As in Theorem 2.5 (1) implies (3) and (3) implies (2). Using the Sylow decom-
position of A we see that (2) implies (1) follows from Theorem 2.5 and Nöbauer [14,
Lemma 5]. ��

In the next section we give several necessary conditions for C0(G) to be a ring.

3 Lattice conditions

We start with some conditions on the congruence lattice, Con(G). Since Con(G) is
lattice isomorphic to the normal subgroup lattice, η(G), we often state our properties
in terms of normal subgroups.

We recall that G must be a 2-Engel group, and thus nilpotent of class at most 3, for
C0(G) to be a ring.

Our first lattice concept is that of splitting pair. This property has been used pre-
viously [3,5,15]. Let D, E ∈ η(G), D ⊂ G, {0} ⊂ E . The pair (D, E) is called a
splitting pair if for each N ∈ η(G), N ⊆ D or N ⊇ E . If G has a splitting pair then
G splits.

Now let (D, E) be a splitting pair for G and let 0 �= b ∈ E . Define f : G → G by

f (x) =
{
0, x ∈ D

b, otherwise.

We show f ∈ C0(G). Let x, y ∈ G and let H ∈ η(G)with x+H = y+H . If E ⊆ H
then since f (x) − f (y) ∈ {−b, 0, b} ⊆ E we get f (x) + H = f (y) + H . If H ⊆ D
and x ∈ D then x + H ⊆ D and so y + H ⊆ D which means y ∈ D. By symmetry
if x /∈ D then y /∈ D, hence in both cases f (x) + H = f (y) + H . This establishes
that f ∈ C0(G). Now if C0(G) is a ring then for v /∈ D, [ f ◦ (id + id)](v) =
[( f ◦ id + f ◦ id)](v) or f (2v) = 2 f (v). If 2v /∈ D then b = 2b, which contradicts
b �= 0. Therefore 2v ∈ D and further 0 = 2b. Since 0 �= b was arbitrary in E we get
E ∼= (Z2)

n for some n > 0. This establishes:

Theorem 3.1 Let G be a finite group such that 2 � |G|. If G splits then C0(G) is not
a ring.

Proof From the above discussion, when G splits then G has a subgroup E ∼=
(Z2)

n, n > 0 which is a contradiction since 2 � |G|. ��
In particular if G is a finite p-group, p > 2, and G splits, then C0(G) is not a ring.

The situation is different in the non-split case as the next examples illustrate. These
examples and some of the calculations have been done with GAP using the package
Sonata [2].

Example 3.2 (1) GroupwithGAP index37/6010.G = 〈e1, e2, e3, e4, c1, c2, c3〉, 3ei
= 3c j = 0, [ei , c j ] = [ck, c j ] = 0, [e1, e2] = c1, [e1, e3] = c2, [e2, e3] = c3
otherwise [el , em] = 0, i = 1, 2, 3, 4, j, k = 1, 2, 3. Thus G is a group of
exponent 3, nilpotent of class 2 with G ′ = 〈c1, c2, c3〉 ⊆ Z(G) [9]. From GAP, G
does not split but is 1-affine complete so C0(G) is a ring since nilpotent of class 2
means G is 2-Engel.
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(2) GAP index 37/6576. G = 〈e1, e2, e3, e4, c1, c2, c3〉, 3ei = 3ci = 0, [ei , c j ] =
[ck, c j ] = 0, i = 1, 2, 3, 4, j, k = 1, 2, 3 with [e1, e2] = c1, [e1, e3] =
[e2, e4] = c2, [e3, e4] = c3, otherwise [em, el ] = 0. Again G is of exponent
3, nilpotent of class 2, with G ′ = 〈c1, c2, c3〉 ⊆ Z(G) [9]. Using GAP, G
does not split and is not 1-affine complete. We show C0(G) is not a ring. For
x ∈ G, x = αe1 + βe2 + γ e3 + δe4 + d where d ∈ G ′. Define f : G → G by

f (x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

2(c1 + c2 + c3), if β + γ = 3,

2c3, if β = 0, γ �= 0,

2c1, if β �= 0, γ = 0,

2c1 + c2 + 2c3, if β = γ �= 0,

0, otherwise.

Calculations show that f ∈ C0(G). Now f ◦ (id+ id)(e3) = f (2e3) = 2c3 while
( f ◦ id + f ◦ id)(e3) = 2c3 + 2c3 = c3 �= 2c3. Thus C0(G) is not a ring.

Above we denoted the normal closure of x ∈ G by x . For x ∈ G, let P0(G)x =
{p(x) | p ∈ P0(G)} and C0(G)x = {c(x) | c ∈ C0(G)}.
Lemma 3.3 Let G be a group and let x ∈ G.

(1) P0(G)x = x.
(2) P0(G)x = C0(G)x.

If further G is 2-Engel then
(3) x is abelian;
(4) 〈C0(G),+〉 is an abelian group.
(5) If G is nilpotent of class at most 2 then x = 〈x〉 + [x,G].
Proof (1) Clearly P0(G)x ⊆ x . On the other hand, P0(G)x is a normal subgroup of

G containing x , so x ⊆ P0(G)x .
(2) One has P0(G)x ⊆ C0(G)x . For c ∈ C0(G), c(x) − c(0) ∈ x − 0 so c(x) ∈ x .

Thus C0(G)x ⊆ x = P0(G)x .
(3) When G is 2-Engel, P0(G) is a ring so with 1) we get that P0(G)x is an abelian

group.
(4) Follows from 2) since G is 2-Engel.
(5) In [10] Ecker shows p ∈ P0(G) has the form p(x) = kx +[x, g] for some integer

k and g ∈ G when G is nilpotent of class at most 2. Thus P0(G)x ⊆ 〈x〉+[x,G].
But 〈x〉 + [x,G] ⊆ x = P0(G)x . ��

We next give a characterization of those groups G for which C0(G) is a ring.
The usefulness of this result is somewhat limited since it requires knowledge of all
c ∈ C0(G).

Theorem 3.4 Let G be a finite 2-Engel group. Then C0(G) is a ring if and only if
c|x ∈ End(x) for each c ∈ C0(G) and x ∈ G.

Proof Let c, f, g be arbitrary in C0(G) and let x ∈ G. From Lemma 3.3 〈C0(G),+〉
is an abelian group. Suppose c|x ∈ End(x) for each x ∈ G. Then c ◦ ( f + g)(x) =
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Rings of congruence preserving functions 537

c( f (x) + g(x)) = c( f (x)) + c(g(x)) = (c ◦ f + c ◦ g)(x), since f (x), g(x) ∈ x̄ by
(1) and (2) of Lemma 3.3. Thus C0(G) is a ring.

For the converse let a, b ∈ x . Thus by 1) and 2) of Lemma 3.3 there exist h, l ∈
C0(G), a = h(x), b = l(x). Now let c ∈ C0(G). It is clear that c(x) ⊆ x . Moreover
since C0(G) is a ring we have c(a + b) = c(h(x) + l(x)) = c(h(x)) + c(l(x)) =
c(a) + c(b) which shows c ∈ End(x). ��

Therefore if one can construct a congruence preserving function that is not linear
on some normal closure x, x ∈ G, where G is 2-Engel, then C0(G) is not a ring.
In the next example, using Theorem 3.4, we show that the result of Theorem 3.1 on
groups which split is not true for p = 2.

Example 3.5 Let G be a semidirect product of Z4 and Z4: G = 〈x, y | 4x = 4y =
0, y + x = 3x + y〉. We have Z(G) = 〈2x, 2y〉 and one verifies that D = Z(G) and
E = 〈2x〉 is a splitting pair for η(G). Define c : G → G by

c(w) =
{
0, w ∈ Z(G),

2x, w /∈ Z(G).

Let u, v ∈ G. If u, v ∈ Z(G) or u, v /∈ Z(G) then c(u) − c(v) = 0 ∈ u − v. If
u /∈ Z(G) and v ∈ Z(G) then u−v /∈ Z(G) and so u − v ⊇ 〈2x〉 since (Z(G), 〈2x〉)
is a splitting pair. Thus c(u) − c(x) = 2x ∈ u − v so c ∈ C0(G) but c /∈ P0(G) since
c(x) = 2x while c(y) = 2x �= 2y.

Using GAP one finds |P0(G)| = 16 and |C0(G)| = 32 so we have C0(G) =
P0(G) + 〈c〉 = {p + lc | l ∈ {0, 1}, p ∈ P0(G)}. For w /∈ Z(G), calculations
show that c is linear on w. Thus for all w ∈ G, c|w ∈ End(w). Thus for each
p ∈ P0(G), p + c is linear on each w so from Theorem 3.4 C0(G) is a ring.

We turn to another lattice condition, a particular case of a splitting pair. If (D, E)

is a splitting pair for η(G) and D = E we say D is a cutting element and G cuts.

Lemma 3.6 Let G be a finite p-group of nilpotency class at most 2 such that I is a
cutting element for η(G). Then I ⊆ Z(G).

Proof Let T be the maximal cutting element for η(G) which exists since G is finite
and cutting elements form a chain in η(G). We have T ⊇ I . If G is abelian then
I ⊆ Z(G) = G so we take G of class 2, hence G ′ ⊆ Z(G). If T is also a maximal
element in η(G) then G has a unique maximal normal subgroup. Thus from [16], G
is cyclic, contrary to G being of class 2. Thus we suppose T is not a maximal element
in η(G). If T ⊆ G ′ then T , hence I , is contained in Z(G). To complete the proof
we show G ′ ⊂ T cannot occur. Suppose G ′ ⊂ T and let N ∈ η(G) be maximal
with G ′ ⊆ N ⊂ T . Since G/G ′ is abelian, G/N is also abelian. Therefore G/N
has a unique minimal normal subgroup T/N . But this means that G/N is subdirectly
irreducible and (from [7] p. 64) G/N is cyclic. However this contradicts the fact that
T is the unique maximal cutting element but not a maximal element in η(G). Thus
we have I ⊆ Z(G). ��
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Theorem 3.7 Let G be a finite nonabelian p-group such that G cuts. Then C0(G) is
not a ring.

Proof Let I be a cutting element. If G is of nilpotency class greater than 3 then G
is not 2-Engel, hence C0(G) is not a ring. Further if p > 2 then from Theorem 3.1,
C0(G) is not a ring. Therefore p = 2 and G is nilpotent of class 2, |G| = 2n, n ≥ 3.
From Lemma 3.6 we get I ⊆ Z(G).

Let T1 be a transversal of G/I with 0 ∈ T1. Let t ∈ T1 − {0} and define T2 =
(T1\(t + t + I )) ∪ {t + t}. We note T2 is a transversal of G/I with {t, t + t} ⊆ T2.
Suppose first that t + t /∈ I so 0 ∈ T2. Let 0 �= e be in I and define h : G → G by

h(x) =
{
e, x ∈ t + t + I,

0, otherwise.

We note that h(0) = 0. To show h ∈ C0(G) it suffices to show for r ∈ T2 − {t +
t}, d1, d2 ∈ I that h(t + t + d1) − h(r + d2) ∈ t + t + d1 − d2 − r , that is, we
must show e ∈ t + t + d1 − d2 − r . We first observe that t + t + d1 − d2 − r =
t + t −r +d1−d2 /∈ I since r ∈ T2 −{t + t}. Therefore t + t + r + d1 − d2 � I and,
since I cuts η(G), I ⊆ t + t + r + d1 − d2 giving the desired result that h ∈ C0(G).
But h(t + t) = e �= h(t) + h(t). Since h is not linear on t, C0(G) is not a ring.

Suppose next we have 0 �= t + t ∈ I . Using T1 we define f : G → G by f (x) = j
where x = r + j, r ∈ T1, j ∈ I . Since 0 ∈ T1, f (0) = 0. For x = r1 + j1, y =
r2+ j2, f (x)− f (y) = j1− j2. If r1 = r2, j1− j2 ∈ r1 − r2 + j1 − j2. If r1 �= r2 then
r1−r2+ j1− j2 /∈ I so I ⊆ r1 − r2 + j1 − j2, hence f (x)− f (y) = j1− j2 ∈ x − y.
Thus f ∈ C0(G). Since t + t ∈ I, t + t = 0 + t + t which means f (t + t) = t + t .
But t = t + 0 so f (t) = 0 = f (t) + f (t) �= f (t + t). This shows that C0(G) is not
a ring.

For the final case we have t + t ∈ I and t + t = 0. Define l : G → G by

l(x) =
{
0, x ∈ I,

j, x /∈ I and x = r + j, r ∈ T2 = T1.

For x /∈ I, y ∈ I say x = r + j, r ∈ T2, j ∈ I we have l(x) − l(y) = j . Moreover
I ⊆ r + j − y since r + j − y /∈ I . Thus l ∈ C0(G). Since t + t ∈ I for any
0 �= i ∈ I, l(t + t + i) = 0. Further since t /∈ I, I ⊆ t , hence t + i ∈ t . Now
l(t) + l(t + i) = 0 + i �= 0 so l is not linear on t . Thus in all cases we have found
when G is cut, C0(G) is not a ring. ��

4 Structural conditions

In this section we focus on group theoretical properties of a group G to determine
when C0(G) is a ring. We restrict to nilpotency class 2 and p-groups p ≥ 3.

Theorem 4.1 Let G be a nonabelian p-group, p > 2 such that G ′ is cyclic. Then
C0(G) is not a ring.
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Proof Let x ∈ G − Z(G). Thus {0} �= [x,G] ⊆ [G,G]. By hypothesis, G ′ = 〈r〉 for
some r ∈ G so we have r = 〈r〉 = G ′.

Let 〈r ′〉 be the unique subgroup of order p in G ′. Since [x,G] is a nonzero cyclic
subgroup of G ′, [x,G ′] contains a cyclic subgroup of order p of G ′, hence we have
〈r ′〉 is a subgroup of [x,G ′]. Moreover, for each g ∈ G, p(−g + r ′ + g) = 0 so
−g + r ′ + g is in 〈r ′〉 which in turn leads to the fact that 〈r ′〉 is a normal subgroup of
[x,G]. Therefore, for x ∈ G − Z(G), r ′ = 〈r ′〉 ⊆ [x,G] ⊆ x .

Define h : G → G by

h(x) =
{
r ′, x /∈ Z(G),

0, x ∈ Z(G).

We show h ∈ C0(G). To this end let u /∈ Z(G), v ∈ Z(G). Then h(u) − h(v) = r ′
which is in u − v since u − v /∈ Z(G). This gives h ∈ C0(G). For w /∈ Z(G), 2w =
w + w /∈ Z(G) since p > 2 so if 2w ∈ Z(G), we would have w ∈ Z(G), a
contradiction. From this observation, h(w+w) = r ′ �= 2r ′ = h(w)+h(w). Therefore
C0(G) is not a ring. ��

We actually have a little more.

Corollary 4.2 If G is a nonabelian p-group, p > 2, such that G ′ is cyclic, then η(G)

splits.

Proof From the proof of Theorem 4.1 we get if N � G and N � Z(G) then for
x ∈ N − Z(G), N ⊇ x ⊇ r ′. Thus 〈Z(G), r ′〉 is a splitting pair for η(G). ��
Corollary 4.3 Let G be a p-group, p > 2, of nilpotency class 2. If G is 2-generated
(generated by 2 elements) then C0(G) is not a ring.

Proof If G = 〈x, y〉 then one finds G ′ = 〈[x, y]〉 so G ′ is cyclic [6]. The result now
follows from the above theorem. ��

We remark that Example 3.5 shows that Corollary 4.3 does not hold for p = 2.
Recall that a group G is abelian by cyclic, or G is said to be an extension of an

abelian group by a cyclic group if there exists an abelian normal subgroup A of G
such that G/A is cyclic. For finite G one may always take A to be a maximal abelian
normal subgroup.

Theorem 4.4 Let G be a nonabelian p-group, p > 2, of nilpotency class 2 which is
abelian by cyclic. Then C0(G) is not a ring.

Proof We let A be a maximal abelian normal subgroup such that G/A ∼= Zpk , k a
positive integer. Let G/A = 〈b + A〉 so G = 〈A, b〉. Since G is nonabelian there
exists a1 ∈ A such that [a1, b] �= 0. Every x ∈ G can be decomposed into a sum of
the form x = a + βb + c, with a ∈ A, β ∈ Z, c ∈ G ′. (Recall the basic assumption
that G is of class 2 so [G,G] ⊆ Z(G).)
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Using this decomposition we define f : G → G by

f (x) =
{

[b, a1], p � β,

0, p | β.

Let x ∈ G. We note [x, a1] = β[b, a1] so when p � β, [b, a1] ∈ x . Also, f ∈ C0(G).
For if u, v ∈ G, u = a + βb + c, v = a′ + β ′b + c′, a, a′ ∈ A, β, β ′ ∈ Z, c, c′ ∈
[G,G]with p � β and p | β ′ then p � (β−β ′) so [b, a1] ∈ u − v. Thus f (u)− f (v) =
[b, a1] ∈ u − v. For u = a + βb + c with p � β, f (u) + f (u) = [b, a1] + [b, a1]
while f (u + u) = f (2u) = [b, a1]. Using Theorem 3.4, Co(G) is not a ring. ��
Corollary 4.5 Let G be a nonabelian p-group, p > 2, of class 2 such that there exists
g ∈ G with G/CG(g) cyclic. Then C0(G) is not a ring.

Proof Let G/CG(g) = 〈b + CG(g)〉 so G = 〈CG(g), b〉. For x ∈ G, x = w +
βb + c, w ∈ CG(g), β ∈ Z, c ∈ G ′ and since b /∈ CG(g), [b, g] �= 0. Now
[x, g] = β[b, g]. The remainder of the proof is as above and is omitted. ��

As we did following Theorem 4.1, we again show that under the hypothesis of
Theorem 4.4, η(G) splits.

Theorem 4.6 Let G be a p-group, nilpotent of class 2, which is abelian by cyclic.
Then η(G) splits.

Proof As above we let A be a maximal abelian normal subgroup with G/A = 〈b +
A〉. Then G = 〈A, b〉 and b /∈ A so there exists a1 ∈ A, [a1, b] �= 0. Let A =
〈a1, a2, . . . , an〉 so G = 〈a1, . . . , an, b〉. Let A0 = 〈a1, . . . , an, pb〉. If pb = 0 then
A0 = A and the same type of argument works. We first show that A0 is a normal
subgroup of G. Let g = a + βb + c ∈ G, a ∈ A, β ∈ Z, c ∈ G ′. It suffices to show
−g + pb+ g ∈ A0. To this end, −g + pb+ g = −c− βb− a + pb+ a + βb+ c =
−βb−a+ pb+a+βb = −βb+ pb+[pb, a]+βb = pb+[pb, a] ∈ A0. Therefore
A0 � G.

Further A0 ⊂ G. For if A0 = G then b ∈ A0 = 〈a1, a2, . . . , an, pb〉. From this,
b = a+α(pb)+ c where a ∈ A and c is a sum of commutators. Since A is a maximal
abelian normal subgroup we have Z(G) ⊆ A and since G is nilpotent of class 2,
[G,G] ⊆ Z(G) ⊆ A. Thus c ∈ A. Hence (1 − αp)b ∈ A which implies b ∈ A since
1 − αp is invertible modulo p, a contradiction. Thus A0 �= G.

Now let N ∈ η(G) such that N � A0. For n ∈ N−A0, n = a+δb+c, a ∈ A, p �

δ, c ∈ G ′, hence [n, a1] = δ[b, a1] and since p � δ, 0 �= [b, a1] ∈ n ⊆ N . From this,
〈[b, a1]〉 ⊆ N for each N ∈ η(G) such N � A0. This shows that (A0, 〈[b, a1]〉) is a
splitting pair for η(G). ��

In Theorems 4.6 and 4.1 one has the situation where G has a partition G = X ∪
(G − X) with the property that

⋂{u | u ∈ X} �= {0} and, for each u ∈ X , for each
v ∈ G − X, u − v ∈ X . It is an open question if this condition implies the splitting of
η(G).

We apply the above results to p-groups, p > 2, of small order. Let G be a group of
order pn, p > 2, 1 ≤ n ≤ 5. When n = 1 or n = 2, G is abelian so C0(G) is a ring
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if and only if G ∼= Zp + Zp. Thus we take n ≥ 3 and since the abelian case is known
from Theorems 2.4 and 2.5 we restrict to nonabelian groups.

Theorem 4.7 Let G be a nonabelian p-group, p > 2 of order pn, 3 ≤ n ≤ 5 such
that G is nilpotent of class 2. Then C0(G) is not a ring.

Proof (i) n = 3. Since g is nonabelian we have |Z(G)| = p. Thus {0} �= G ′ ⊆
Z(G), hence G ′ is cyclic and the result follows from Theorem 4.1.

(ii) n = 4. Let 	(G) denote the Frattini subgroup of G. We know G ′ ⊆ 	(G) and
if |G/	(G)| = pk then G is generated by k elements [16]. If |	(G)| = p then
G ′ is cyclic while if |	(G)| = p2 then G is generated by 2 elements. Using
Theorem 4.1 and Corollary 4.3 we see that C0(G) is not a ring. If |	(G)| = p3

then G has a unique maximal normal subgroup which cuts G. The result now
follows from Theorem 3.7.

(iii) n = 5. If |	(G)| = p or p3 or p4 then as in the above casewe haveC0(G) is not a
ring. It remains to consider |	(G)| = p2. We must have G ′ = 	(G) for if G ′ �=
	(G) then G ′ is cyclic and we are finished. Thus we have G ′ = 	(G) ⊆ Z(G)

since G is of class 2. For x ∈ G− Z(G) define ϕx : G → G by ϕx (w) = [x, w].
Since G is of class 2, ϕx is an endomorphism of G and ker ϕx = CG(x) ⊇
〈x〉 + Z(G) while Imϕx = [x,G] ⊆ x . We have |〈x〉 + Z(G)| = p|Z(G)| so if
G ′ ⊂ Z(G) then |Z(G)| = p3 and | ker ϕx | = |CG(x)| = |〈x〉 + Z(G)| = p4.
But this means G is abelian by cyclic so the result follows from Theorem 4.4.
Thus we take |G ′| = |	(G)| = |Z(G)| = p2. Thus | ker ϕx | = |CG(x)| ≥
|〈x〉 + Z(G)| = p3. If |CG(x)| = p4 then the result follows from Corllary 4.5,
so we take | ker ϕx | = |CG(x)| = p3. But then |Imϕx | = |G/ker ϕx | = p2.
Thus |[x,G]| = p2, so [x,G] = G ′ which means G ′ ⊆ x for each x /∈ Z(G).
Thus, if N � G and N � Z(G) then N ⊇ G ′. This shows that Z(G) cuts η(G)

and so C0(G) is not a ring. �
��

In conclusion we have found that when G is a finite abelian p-group then C0(G) is
a ring if and only if G is 1-affine complete. For nonabelian p-groups, p = 2, we have
seen that C0(G) can be a ring properly containing P0(G). For p > 2 we have several
classes for which C0(G) is not a ring. In fact, for p > 2 the authors have no example
of a nonabelian p-group for which C0(G) is a ring unless G is 1-affine complete. We
thus close with the following.

Conjecture For finite nonabelian p-groups G, p > 2, C0(G) is a ring if and only if
G is 1-affine complete.
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