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Abstract We present the new method of “vectorial regularisation” to prove ker-
nel identities. This method is applied to derive both known kernel identities, e.g.
Ḃxy = Ḃx̂⊗εḂy , D′

L1,xy
= D′

L1,x
̂⊗πD′

L1,y
, as well as new ones: Ḃ′

xy = Ḃ′
x̂⊗εḂ′

y and

DL1,xy = DL1,x̂⊗πDL1,y .

Keywords Vector-valued distributions ·Regularisation of distributions ·Convolution
of distributions · Completed topological tensor products

Mathematics Subject Classification 46F05 · 46F10

1 Introduction

Including the famous kernel theorems of L. Schwartz which can be rephrased as

S ′
xy = S ′

x̂⊗S ′
y and D′

xy = D′
x̂⊗D′

y,

in Proposition 28 in [18, p. 98] nine kernel identities are stated. In addition to these
nine identities, Schwartz’ [18,19] treatise on vector-valued distributions contains the
kernel identities

Ḃxy = Ḃx̂⊗εḂy, D′
L1,xy = D′

L1,x
̂⊗D′

L1,y and Dxy = Dx̂⊗ιDy .

Communicated by A. Constantin.

B Christian Bargetz
christian.bargetz@uibk.ac.at

1 Institut für Mathematik, Universität Innsbruck, Technikerstraße 13, 6020 Innsbruck, Austria

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00605-017-1076-4&domain=pdf
http://orcid.org/0000-0001-8525-0532


202 C. Bargetz, N. Ortner

The space D′
L1 is the space of integrable distributions. The usefulness of the kernel

identity for integrable distributions can be seen by considering the proofs for the
equivalence of the following conditions for the convolvabilty of two distributions
S, T ∈ D′(Rn). The convolvability condition

∀ϕ ∈ D(Rn) : ϕ(x + y)S(x)T (y) ∈ D′
L1

(

R
2n
xy

)

(SH)

has been introduced by Schwartz [15, Exposé ◦22] and has been rediscovered by
Horváth [8]. The condition

∀ϕ ∈ D(Rn) : (ϕ ∗ Š)T ∈ D′
L1(R

n) (S)

has been given by Schwartz [18, pp. 131–132]. Making use of the kernel identities
above allows to show the equivalence of (SH) and (S) in a few lines—compare [14]
to [21] or [12] to [13].

In addition, the convolvability condition

∀ϕ,ψ ∈ D(Rn) : (ϕ ∗ Š)(ψ ∗ T ) ∈ L1(Rn) (C)

or, equivalently,

∀ϕ,ψ ∈ D(Rn) : (ϕ ∗ Š)(ψ ∗ T ) ∈ DL1(Rn) (C′)

was introduced by Chevalley [5]. It turns out that all these conditions are, in fact,
equivalent. For a proof of the equivalence of (S) and (C) or (C′) the kernel identities

L1
xy = L1

x̂⊗π L
1
y,

which is due to Grothendieck, see [7, chap. I, pp. 61], or

DL1,xy = DL1,x̂⊗πDL1,y,

see Proposition 10, turn out to be a useful tool.
The spaces Ḃ and Ḃ′ appear naturally in the context of the question of whether

derivatives can be swapped in a convolution product, i.e. the question of whether for
distributions S and T on Rn the identity

(∂ j S) ∗ T = S ∗ (∂ j T ) (1)

holds provided that both convolution products exist. In [11] it is shown that this is true
under the additional assumption that

(ϕ ∗ Š)T ∈ Ḃ′

for all test functions ϕ ∈ D. This condition generalises the classical result that (1)
holds true for convolvable distributions. The kernel identity for distributions vanishing
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Kernel identities and vectorial regularisation 203

at infinity, see Proposition 4, can be used to give a short proof for the equivalence of
the condition above with

ϕ(x + y)S(x)T (y) ∈ Ḃ′
xy

for all test functions ϕ ∈ D. Using the identity

Ḃxy = Ḃx̂⊗εḂy,

see Proposition 17 in [18], it can be shown that the above condition is equivalent to

∀ϕ,ψ ∈ D : (ϕ ∗ Š)(ψ ∗ T ) ∈ Ḃ

which is an analogue of C. Chevalley’s condition mentioned above.
Regularisation results play an important role in Schwartz’ [20] classical mono-

graph. The space S ′(Rn) of temperate distributions is characterised by regularisation
in Théorème VI, [20, p. 239], i.e., it is shown that a distribution T ∈ D′(Rn) is
temperate if and only if ϕ ∗ T ∈ OC for all test functions ϕ ∈ D(Rn). A similar
characterisation of the space O′

C (Rn) is given in Théorème IX, [20, p. 244].
In the following all distribution spaces are defined on the whole of Rn and we

suppress the domain in order to shorten the notation, i.e., we write D′ for D′(Rn),
D′

L p for D′
L p (R

n), etc.
Motivated by the characterisations by regularisation stated above, a regularisation

property is a statement where the elements of a space of distributions are characterised
by the behaviour of their regularisations. In other words, it is a statement of the
following form: Let 1 ≤ p ≤ ∞. For T ∈ D′ the assertions
1. T ∈ D′

L p

2. ∀ϕ ∈ D : ϕ ∗ T ∈ L p

are equivalent byThéorèmeXXVof [20, p. 201]. Bymeans of the associated difference
kernel

T (x − y) ∈ D′
xy = D′ (

R
n
x × R

n
y

)

the equivalence above can be translated into the equivalence

T ∈ D′
L p ⇔ T (x − y) ∈ D′

ŷ⊗L p
x .

The “associated difference kernel” T (x − y) is defined in [18, pp. 103–104]. For a
detailed discussion of this reformulation, we refer the reader to Proposition 3 of [12,
p. 326]. An advantage of such a reformulation is that it no longer contains either test
functions or quantifiers.

A vectorial regularisation property reads as: Let E be a space of distributions and
K (x, z) ∈ D′

x (Ez). Then,

K (x, z) ∈ D′
L p,x (Ez) ⇔ K (x − y, z) ∈

(

D′
ŷ⊗L p

x

)

(Ez).
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204 C. Bargetz, N. Ortner

The space D′
x (Ez) of E-valued distributions is defined as the subspace D′

x ε Ez of
D′

xz wherein the ε-product is defined in [18, p. 18]. Note that by Corollary 1 in [18,
p. 47] D′ ε E = D′

̂⊗εE if E is complete.
The symbol ⊗ without subscript is used if ⊗π = ⊗ε, e.g., if one of the spaces is

nuclear.
If D′

L p̂⊗π E is used instead of D′
L p̂⊗εE we speak of vectorial regularisation with

the completed projective tensor product.
By kernel identities, we understand statements as e.g. L. Schwartz’s classical kernel

theorem, i.e.,D′
xy = D′

x̂⊗D′
y . Two fundamental examples of kernel identities are given

in [7, chap. I, pp. 61, 90]:

L1(X)̂⊗π L
1(Y ) = L1(X × Y ) and C0(X)̂⊗εC0(Y ) = C0(X × Y ), (2)

where X and Y are locally compact spaces. In order to abbreviate the notation, we
will write these identities for X = R

n and Y = R
m as

L1
x̂⊗π L

1
y = L1

xy and C0,x̂⊗εC0,y = C0,xy .

Schwartz [18] found the algebraic and topological kernel identities

D′
L1,x

̂⊗πD′
L1,y = D′

L1,xy (3)

for integrable distributions (Proposition 38 in [18, p. 135]) and

Ḃx̂⊗εḂy = Ḃxy (4)

for smooth functions with derivatives vanishing at infinity (Proposition 17 in [18,
p. 59]). As mentioned above, further kernel identities are given in Proposition 28
in [18, p. 98],

Exy = Ex̂⊗Ey, Sxy = Sx̂⊗Sy, OM,xy = OM,x̂⊗OM,y,

E ′
xy = E ′

x̂⊗E ′
y, S ′

xy = S ′
x̂⊗S ′

y (5)

Note that however,

Dxy = Dx̂⊗ιDy and OC,xy = OC,x̂⊗ιOC,y

by Proposition 1 bis. in [19, p. 17] and [4, p. 34], respectively. Here ⊗ι denotes
the inductive tensor product defined in Definition 3 in [7, Chap. I, p. 74] and ̂⊗ι its
completion.

Concerning the applicability of such identities let us mention that, e.g., (3) is used
to prove the equivalence of the two different convolvability conditions for distributions
S, T ∈ D′:

S(x − y)T (y) ∈ D′
x̂⊗D′

L1,y
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Kernel identities and vectorial regularisation 205

and

δ(z − x − y)S(x)T (y) ∈ D′
ẑ⊗D′

L1,xy

in [12, p. 324], [14, p. 195] and [21, p. 27].
The aim of this article is to prove, in a uniform manner, known and new kernel

identities by vectorial regularisation properties. In Proposition 9 we give a new proof
of the kernel identity (3) and in Proposition 3 an new proof of (4). The new identity

DL1,xy = DL1,x̂⊗πDL1,y (6)

is shown in Proposition 10 and the identity

Ḃ′
xy = Ḃ′

̂⊗εḂ′
y (7)

in Proposition 4. Our proofs of the identities (3, 4, 6, 7) show that they are all conse-
quences of Grothendieck’s fundamental examples (2).

Also it turns out that in some cases the topological part of the kernel identities
follows from the algebraic identity and abstract structural results, e.g. for complete
spaces of distributions H the continuous embeddings

Hx̂⊗εHy ↪→ D′
x̂⊗εD′

y = D′
xy ←↩ Hxy

imply that the identity mapping Hxy → Hx̂⊗εHy has a closed graph. In concrete
cases, sequence-space representations can be used to check whether these spaces
satisfy the assumptions of a suitable closed graph theorem.

We use the notations of Schwartz [20], e.g. the space of distributions E , E ′, D, D′,
DL p , D′

L p for 1 ≤ p ≤ ∞, Ḃ and Ḃ′ (which is not the dual of Ḃ but the closure of E ′
in D′

L∞ ). For vector-valued distributions, constant use is made of Schwartz’ [18,19]
treatise. Instead of K (x̂, ŷ) we simply write K (x, y) for kernels K (x, y) ∈ D′

xy .
Proposition 4 was presented in a talk given by the second author in Vienna, June,

2015.

2 Regularisation and the injective tensor product

Recall that by remarque 3◦ in [20, p. 202] distributions vanishing at infinity can be
characterised by regularisation properties, i.e. a distribution S ∈ D′ is an element of
Ḃ′ if and only if one of the following equivalent conditions is satisfied:

1. ∀ϕ ∈ D : ϕ ∗ S ∈ Ḃ
2. ∀ϕ ∈ D : ϕ ∗ S ∈ C0
3. S(x − y) ∈ D′

ŷ⊗Ḃx

4. S(x − y) ∈ D′
ŷ⊗C0,x .

The following proposition can be understood as a generalisation of these regulari-
sation properties to kernels.
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206 C. Bargetz, N. Ortner

Proposition 1 Let E be a complete space of distributions. For a kernel K (x, z) ∈ D′
xz

the following characterizations hold:

1. K (x, z) ∈ Ḃ′
x̂⊗εEz ⇔ K (x − y, z) ∈ (D′

ŷ⊗C0,x )̂⊗εEz.

2. K (x, z) ∈ Ḃx̂⊗εEz ⇔ K (x − y, z) ∈ (Eŷ⊗C0,x )̂⊗εEz.

Although for a normal space of distributions E the characterization 1 of this Propo-
sition is a special case of Proposition 15 in [3], we include it nevertheless to keep the
article self-contained.

Proof 1. We first show the case of distributions.
⇒: The mapping

τ : Ḃ′ → D′
ŷ⊗C0,x , S �→ S(x − y)

is well-defined, linear and continuous according to Remarque 3 in [20, p. 202].
Hence also the mapping

τ ε idE : Ḃ′
x̂⊗εEz →

(

D′
ŷ⊗C0,x

)

̂⊗εEz, K (x, z) �→ K (x − y, z)

as by Proposition 1 in [18, p. 20] the ε-product of continuous linear mappings
is again continuous.
⇐: Multiplication of K (x − y, z) ∈ D′

y(C0,x̂⊗εEz) by δ(w − y) ∈ Dŷ⊗D′
w

using Proposition 25 in [19, p. 120] leads to

δ(w − y)K (x − y, z) ∈ E ′
y

(D′
w
̂⊗(C0,x̂⊗εEz)

) =
(

E ′
ŷ⊗εC0,x

)

̂⊗ε

(D′
w
̂⊗εEz

)

.

From C0,x̂⊗εE ′
y ↪→ Ḃ′

xy and the invariance of Ḃ′
x,y under the coordinate trans-

form

x − y = u x = u + v

y = v y = v

we deduce

δ(v − w)K (u, z) ∈ Ḃ′
uv

̂⊗εD′
w
̂⊗εEz ⊂ (S ′

v
̂⊗Ḃ′

u

) (D′
w
̂⊗εEz

)

.

Evaluation with e−|v|2 ∈ Sv yields

e−|w|2K (u, z) ∈ Ḃ′
û⊗εD′

w
̂⊗εEz = D′

w

(Ḃ′
û⊗εEz

)

.

Multiplication by e|w|2 ∈ Ew, which is possible by Theorem 7.1 in [17], leads
to

K (u, z) ∈ D′
w

(Ḃ′
û⊗εEz

)
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Kernel identities and vectorial regularisation 207

and hence

K (u, z) ∈ Ḃ′
û⊗εEz .

2. The implication “⇒” is completely analogous to the case of distributions if we use
that the convolution mapping ∗: E ′ × Ḃ → C0 is well defined and hypocontinuous
since E ′ ↪→ D′

L1 and Ḃ ↪→ C0 (see e.g. [10]).
Let us show the implication “⇐”. The vectorial scalar product of

K (x − y, z) ∈ Ey
(C0,x̂⊗εEz

)

with ∂αδ(y) ∈ E ′
y yields ∂α

x K (x, z) ∈ C0,x̂⊗εEz for all α ∈ N
n
0. From this we

deduce K (x, z) ∈ Ḃx̂⊗εEz using the compatibility of the vector-valued scalar
product with continuous linear mappings by [19, p. 18].

��
Remark 2 Note that it is possible to generalize this result to non-complete spaces of
distributions but in this case the completed ε-tensor product has to be replaced by the
ε-product.

Proposition 3 (see Proposition 17 in [18]) The space of smooth functions vanishing
at infinity satisfies the kernel identity

Ḃxy = Ḃx̂⊗εḂy

algebraically and topologically.

Proof In order to show the algebraic part, observe that for K (x, y) ∈ D′
xy we get

K (x, y) ∈ Ḃxy ⇔ K (x − z, y − w) ∈ Ezŵ⊗εC0,xy = (Eẑ⊗C0,x
)

̂⊗ε

(Eŵ⊗C0,y
)

⇔ K (x, y − w) ∈ Ḃx (Eŵ⊗C0,y)
⇔ K (x, y) ∈ Ḃx̂⊗εḂy .

Note that the first two equivalences follow from the kernel identities for E and C0 since
the convolution

Ḃ × E ′ → Ḃ ⊂ C0

is well-defined. The last equivalence is a consequence of Proposition 1.
We are therefore left to show the topological identity. As the ε-product of two

continuous linear mappings is again continuous, we see that the mapping

Ḃx̂⊗εḂy → C0,x̂⊗εC0,y = C0,xy, f �→ ∂α
x ∂β

y f

is continuous for all multi-indices α and β. Therefore the topology of Ḃx̂⊗εḂy is finer
than the one of Ḃxy . Hence, being comparable Fréchet space topologies on the same
vector space, these topologies coincide by the closed graph theorem. ��
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208 C. Bargetz, N. Ortner

Proposition 4 The space of distributions vanishing at infinity satisfies the kernel iden-
tity

Ḃ′
xy = Ḃ′

x̂⊗εḂ′
y

algebraically and topologically.

Proof For K (x, y) ∈ D′
xy we start with the characterization

K (x, y) ∈ Ḃ′
xy ⇔ K (x − z, y − w) ∈ D′

zŵ⊗Ḃxy

of Ḃ′ by regularisation. From this we deduce

K (x, y) ∈ Ḃ′
xy ⇔ K (x − z, y − w) ∈ (D′

ẑ⊗D′
w

)

̂⊗ (Ḃx̂⊗εḂy
)

⇔ K (x − z, y − w) ∈ (D′
ẑ⊗Ḃx

)

̂⊗ε

(D′
w
̂⊗Ḃy

)

.

using the kernel theorem for Ḃ and D′ as well as the commutativity of the ε-tensor
product. From this we obtain by Proposition 1,

K (x, y) ∈ Ḃ′
xy ⇔ K (x, y − w) ∈ Ḃ′

x̂⊗ε

(D′
w
̂⊗Ḃy

) = (D′
w
̂⊗Ḃy

)

̂⊗εḂ′
x

⇔ K (x, y) ∈ Ḃ′
ŷ⊗εḂ′

x ,

which proves the algebraic part of the kernel identity. Using the sequence space rep-
resentation Ḃ′ = s′

̂⊗c0 given in Theorem 3 in [2, p. 13] and

(

s′
̂⊗εc0

)

̂⊗ε

(

s′
̂⊗εc0

) ∼= (

s′
̂⊗s′)

̂⊗ (

c0̂⊗εc0
) ∼= s′

̂⊗c0

we see by Proposition 7 in [2, p. 13] that both Ḃ′
xy and Ḃ′

x̂⊗Ḃ′
y are complete ultra-

bornological (DF)-spaces. From the continuity of the embeddings

Ḃ′
x̂⊗εḂ′

y ↪→ D′
x̂⊗D′

y = D′
xy ←↩ Ḃ′

xy,

we deduce that the identity mapping Ḃ′
x̂⊗εḂ′

y → Ḃ′
x,y has a closed graph. Therefore

the topological identity follows by de Wilde’s closed graph theorem (Theorem 5.4.1
in [9, p. 92]) since complete (DF)-spaces have a completing web by Proposition 12.4.6
in [9, p. 260]. ��

3 Regularisation and the projective tensor product

In order to prove a version of Proposition 1 for the projective tensor product, we need
the following lemma.

Lemma 5 For 1 < q < ∞ the following continuous embeddings hold:

Sx̂⊗DLq ,y ↪→ DLq ,xy ↪→ Ex̂⊗DLq ,y,
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Kernel identities and vectorial regularisation 209

i.e., theses spaces are contained with a finer topology. Moreover these spaces are
contained as dense subspaces.

Proof From Exy = Ex̂⊗Ey , we deduce that DLq ,x̂⊗Ey is a space of smooth func-
tions. Using Lebesgue’s theorem on dominated convergence we conclude that for
f ∈ DLq ,xy the function Rd

x → DLq ,y, x �→ f (x, ·) has continuous derivatives of all
order. Continuity of the embedding DLq ,xy ↪→ Ex̂⊗DLq ,y follows inductively from
the Sobolev trace theorem, see, e.g., Theorem 5.36 in [1].

Given f ∈ Sx̂⊗DLq ,y , the inequality

∫

R
d1+d2

| f (x, y)|q dx dy

=
∫

R
d1+d2

(1 + |x |2)−d1−1(1 + |x |2)d1+1| f (x, y)|q dx dy

≤
∫

R
d1

(1 + |x |2)−d1−1 dx sup
x∈Rd1

∫

R
d2

(1 + |x |2)d1+1| f (x, y)|q dy

≤ C sup
x∈Rd2

(1 + |x |2)d1+1
∫

R
d2

| f (x, y)|q dy

proves Sx̂⊗DLq ,y ↪→ DLq ,xy . The spaces are contained as dense subspaces since

Dxy ↪→ Dx̂⊗Dy ⊂ Sx̂⊗DLq ,y

and the injective tensor product preserves dense subspaces by Proposition 16.2.5 in [9,
p. 349]. ��

Remark 6 A different proof of Lemma 5 can be given by using the representation
of elements of completed π -tensor products of Fréchet spaces and the closed graph
theorem.

Proposition 7 Let E be a space of distributions and 1 ≤ p < ∞. For K (x, z) ∈ D′
xz

the following characterizations hold:

1. K (x, z) ∈ D′
L p,x

̂⊗π Ez ⇔ K (x − y, z) ∈
(

D′
ŷ⊗L p

x

)

̂⊗π Ez.

2. K (x, z) ∈ DL p,x̂⊗π Ez ⇔ K (x − y, z) ∈ (Eŷ⊗L p
x
)

̂⊗π Ez.

Proof 1. ⇒: The mapping τ : D′
L p → D′

ŷ⊗L p
x , S �→ S(x − y) is well-defined,

linear and continuous according to [20, p. 204]. Hence also

τ ⊗ idE : D′
L p,x̂⊗π Ez →

(

D′
ŷ⊗L p

x

)

̂⊗π Ez, K (x, z) �→ K (x − y, z)

as the π -tensor product of continuous linear mappings is again a continuous
and linear mapping.
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210 C. Bargetz, N. Ortner

⇐: Multiplication of K (x − y, z) ∈ D′
y(L

p
x ̂⊗π Ez) with δ(w − y) ∈ Dŷ⊗D′

w

according to Proposition 25 in [19, p. 120] yields

δ(w − y)K (x − y, z) ∈ E ′
y

(

L p
x ̂⊗π

(D′
w
̂⊗π Ez

)) = E ′
ŷ⊗π L

p
x ̂⊗πD′

w
̂⊗π Ez

= D′
w

(

E ′
y

(

L p
x
)

)

̂⊗π Ez

⊂
(

D′
w
̂⊗D′

L p,xy

)

̂⊗π Ez .

The proof of the inclusion L p
̂⊗E ′ ⊂ D′

L p uses the following argument: from
L p ⊂ D′

L p , we obtain L p
̂⊗E ′ ⊂ D′

L p̂⊗E ′ since the injective tensor prod-
uct preserves continuous embeddings. In order to see that the latter space
is contained in D′

L p , we distinguish two cases. For p = 1 we observe that
Ḃxy = Ḃx̂⊗εḂy ↪→ Ḃx̂⊗Ey and for p > 1 we use Lemma 5 to obtain
DLq ⊂ Ex̂⊗DLq . Using these observations we arrive at the above inclusion by
Théorème 12 in [7, chap. II, p. 76] which implies (Ḃ̂⊗E)′ = D′

L1,x
̂⊗E ′

y and

(DLq ̂⊗E)′ = D′
L p̂⊗E ′ for 1 < p < ∞ sinceDL p , Ḃ and E are Fréchet spaces.

The inclusion E ′
y(L

p
x ) ⊂ D′

L p,xy above follows by density and duality since

DLq ,xy ⊂ DLq ,x̂⊗εDLq ,y ⊂ DLq ,x̂⊗Ey,

where the first inclusion is a consequence of [6, p. 98], forq given by 1
p+ 1

q = 1.
Using the coordinate transform

x − y = u x = u + v

y = v y = v

we obtain

δ(w − v)K (u, z) ∈ D′
L p,u,v

̂⊗π

(D′
w
̂⊗π Ez

)

from the invariance of D′
L p,x,y under coordinate transforms.

From D′
L p,x,y ⊂ D′

L p,x
̂⊗S ′

y we deduce that the application of

δ(w − v)K (u, z) ∈ S ′
v

(D′
w
̂⊗ (D′

L p,û⊗π Ez
))

to e−|v|2 ∈ Sv is

e−|w|2K (u, z) ∈ D′
w
̂⊗ (D′

L p,û⊗π Ez
)

.

Multiplication by e|w|2 ∈ Ew according to Theorem 7.1 in [17, p. 31] yields

K (u, z) ∈ D′
w
̂⊗

(

D′
L p,u

̂⊗π Ez

)

and hence K (u, z) ∈ D′
L p,u

̂⊗π Ez .

123



Kernel identities and vectorial regularisation 211

2. The implication “⇒” is completely analogous to the case of distributions if we use
that the convolution mapping ∗: E ′ × DL p → L p is well defined and hypocon-
tinuous since E ′ ↪→ D′

L1 and DL p ↪→ L p (see e.g. [10]).
Let us show the implication “⇐”. The vectorial scalar product of

K (x − y, z) ∈ Eŷ⊗
(

L p
x ̂⊗π Ez

)

with ∂αδ(y) ∈ E ′
y yields ∂α

x K (x, z) ∈ L p
x ̂⊗π Ez for all α ∈ N

n
0. From this we

deduce K (x, z) ∈ DL p,x̂⊗π Ez using the compatibility of the vector-valued scalar
product with continuous linear mappings by [19, p. 18].

��
Remark 8 More general, the proof of equivalence 1 in Proposition 7 also works in
the following situation. Let H′ be a space of distributions and K a space of functions
such that the convolution mapping H′ × D → K is hypocontinuous. If additionally
the embeddings

Kx̂⊗E ′
y ↪→ H′

x,y ↪→ H′
x̂⊗S ′

y (8)

are well-defined and continuous, for kernels K (x, y) ∈ D′
x,y we get the following

equivalence

K (x, z) ∈ H′
x̂⊗π Ez ⇔ K (x − y, z) ∈

(

D′
ŷ⊗Kx

)

̂⊗π Ez .

Examples of spaces H′ satisfying condition (8) are duals of normal spaces of distri-
butions H where the embeddings

Sx̂⊗Hy ↪→ Hx,y ↪→ Ex̂⊗Hy

are well-defined and continuous. Note that the spaces Ŝ⊗H and Ê⊗H are spaces of
H-valued smooth functions. We refer to [16] for a detailed treatment of these spaces.

In the following we will discuss two kernel-identities as applications of Proposi-
tion 7.

Proposition 9 (see Proposition 38 in [18, p. 135]) The space of integrable distribu-
tions satisfies the kernel identity

D′
L1,x,y = D′

L1,x
̂⊗πD′

L1,y

algebraically and topologically.

Proof For K (x, y) ∈ D′
x,y we have the equivalence

K (x, y) ∈ D′
L1,x,y ⇔ K (x − z, y − w) ∈ D′

z,ŵ⊗L1
x,y
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which follows from the characterization of D′
L1 by regularisation given in Théorème

XXV in [20, p. 201]. Using the kernel identitiesD′
x,y = D′

x̂⊗D′
y and L

1
xy = L1

x̂⊗π L1
y ,

we obtain

K (x − z, y − w) ∈ D′
ẑ⊗D′

w

(

L1
x̂⊗π L

1
y

)

=
(

D′
ẑ⊗L1

x

)

̂⊗π

(

D′
w
̂⊗π L

1
y

)

.

Applying Proposition 7 twice to the line above, we finally get

K (x, y) ∈ D′
L1,x,y ⇔ K (x − z, y − w) ∈

(

D′
ẑ⊗L1

x

)

̂⊗π

(

D′
w
̂⊗π L

1
y

)

⇔ K (x, y) ∈ D′
L1,x

̂⊗πD′
L1,y,

i.e. we have shown the algebraic identity D′
L1,xy

= D′
L1,x

̂⊗πD′
L1,y

.
In order to prove the continuity of the identity mapping

D′
L1,x

̂⊗πD′
L1,y → D′

L1,xy

it is sufficient to show the continuity of the bilinear mapping

D′
L1,x × D′

L1,y → D′
L1,xy, (S(x), T (y)) �→ S(x) ⊗ T (y).

The continuity of this mapping follows from the separate continuity due to the fact that
for (DF)-spaces separate continuity of bilinear maps implies continuity. The separate
continuity follows immediately by the closed graph theorem.
By de Wilde’s closed graph theorem (Theorem 5.4.1 in [9, p. 92]) the identity is a
topological isomorphism because D′

L1,xy
is ultrabornological and D′

L1,x
̂⊗πD′

L1,y
is

a complete (DF)-space and, hence, has a completing web by Proposition 12.4.6 in [9,
p. 260]. ��

Proposition 10 The space of integrable smooth functions satisfies the kernel identity

DL1,xy = DL1,x̂⊗πDL1,y

algebraically and topologically.

Proof For S ∈ D′ we get

S ∈ DL1 ⇔ S(x − y) ∈ Eŷ⊗L1
x

and therefore for K ∈ D′
xy ,

K (x, y) ∈ DL1,xy ⇔ K (x − z, y − w) ∈ Ezŵ⊗L1
xy .
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From this equivalence, we deduce

K (x, y) ∈ DL1,xy ⇔ K (x − z, y − w) ∈ Eẑ⊗Eŵ⊗
(

L1
x̂⊗π L

1
y

)

=
(

Eẑ⊗L1
x

)

̂⊗π

(

Eŵ⊗L1
y

)

using the classical kernel identities Exy = Ex̂⊗Ey and L1
xy = L1

x̂⊗π L1
y . From Propo-

sition 7, applied twice, we get

K (x, y) ∈ DL1,xy ⇔ K (x, y − w) ∈ DL1,x̂⊗π

(

Eŵ⊗L1
y

)

⇔ K (x, y) ∈ DL1,xy .

As the π -tensor product of continuous mappings is continuous, the mapping

DL1,x̂⊗πDL1,y → L1
x̂⊗π L

1
y = L1

xy, f �→ ∂α
x ∂β

y f

is continuous for all multi-indices α and β. Hence the π -topology is finer than the
topology ofDL1 . As these topologies are comparable Fréchet space topologies on the
same vector space they coincide by the closed graph theorem. ��
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