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Abstract We consider the Fréchet *-algebra L(s’, s) € L(£») of the so-called smooth
operators, i.e. continuous linear operators from the dual s’ of the space s of rapidly
decreasing sequences to s. This algebra is a non-commutative analogue of the algebrass.
We characterize closed *-subalgebras of £(s’, s) which are at the same time isomorphic
to closed *-subalgebras of s and we provide an example of a closed commutative *-
subalgebra of L(s’, s) which cannot be embedded into s.
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1 Introduction

The algebra L£(s’, s) is isomorphic as a Fréchet *-algebra to the algebra

Koo := 1 (xjk)jkeN € eV, sup |x;jxlj9k? < oo forall ¢ € Ny
Jj.keN
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of rapidly decreasing matrices (with matrix multiplication and matrix complex conju-
gation). Another representation of £(s’, s) is the algebra S (R?) of Schwartz functions
on R? with the Volterra convolution

(f - &)x.y) :=/Rf(x,z)g(z,y)dz
as multiplication and the involution

[reey) = f(, 0.

In these forms, the algebra L£(s’, s) usually appears and plays a significant role in
K -theory of Fréchet algebras (see Bhatt and Inoue [1, Ex. 2.12], Cuntz [6, p. 144], [7,
p. 64-65], Glockner and Langkamp [11], Phillips [14, Def. 2.1]) and in C*-dynamical
systems (Elliot, Natsume and Nest [9, Ex. 2.6]). Very recently, Piszczek obtained sev-
eral results concerning closed ideals, automatic continuity (for positive functionals and
derivations), amenability and Jordan decomposition in K (see Piszczek [16—-19] and
his forthcoming paper “The noncommutative Schwartz space is weakly amenable”).
Moreover, in the context of algebras of unbounded operators, the algebra L(s’, s)
appears in the book [20] as

Bi(s) := {x € L(£2): xty C 5, x*¢» C s and axb is nuclear for all a, b € L*(s)},

where L£*(s) is the so-called maximal O*-algebra on s (see also [20, Def. 2.1.6, Prop.
2.1.8, Def. 5.1.3, Cor. 5.1.18, Prop. 5.4.1 and Prop. 6.1.5]).

The algebra of smooth operators can be seen as a noncommutative analogue of the
commutative algebra s. The most important features of this algebra are the following:

e it is isomorphic as a Fréchet space to the Schwartz space S(R) of smooth rapidly
decreasing functions on the real line;

e itisisomorphic as a Fréchet *-algebra to many algebras of operators acting between
natural spaces of distributions and functions, e.g. to the algebra of operators from
the space S’(R) of tempered distributions on the real line to the space S(R) (see
also [8, Th. 1.1]);

e itis a dense *-subalgebra of the C*-algebra /C(¢;) of compact operators on £5;

e it is (properly) contained in the intersection of all Schatten classes S, (£2) over
p > 0;in particular £(s’, s) is contained in the class HS(¢2) of Hilbert-Schmidt
operators, and thus it is a unitary space;

e the operator C*-norm || - ||¢,—¢, is the so-called dominating norm on that algebra
(the dominating norm property is a key notion in the structure theory of nuclear
Fréchet spaces — see [3, Prop. 3.2] and [13, Prop. 31.5]).

The main result of the present paper is a characterization of closed *-subalgebras
of L(s’,s) which are at the same time isomorphic as Fréchet *-algebras to closed
*-subalgebras of the algebra s (Theorem 6.2). It turns out that these are exactly those
subalgebras which satisfy the classical condition (£2) of Vogt, i.e. which are isomorphic
(as Fréchet spaces) to complemented subspaces of s. Then in Theorem 6.9 we give an
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example of a closed commutative *-subalgebra of L(s’, s) which does not satisfy this
condition.

To prove this result we characterize in Sect.4 closed *-subalgebras of Kothe
sequence algebras (Proposition 4.3). In particular, we give such a description for closed
*-subalgebras of s (Corollary 4.4). In Sect.5 we describe all closed *-subalgebras of
L(s’, s) as suitable Kothe sequence algebras (see Corollary 5.4 and compare with [3,
Th.4.8]).

The present paper is a continuation of [3,8] and it focuses on descriptions of closed
commutative *-subalgebras of L(s’, s) (especially those with the property (£2)). Most
of the results have been already presented in the author’s PhD dissertation [2].

2 Notation and terminology

Throughout the paper, N denotes the set of natural numbers {1, 2, ...} and Ny :=
NU {0}.

By a projection on the complex separable Hilbert space ¢, we always mean a
continuous orthogonal (i.e. self-adjoint) projection.

By e we denote the vector in CN whose k-th coordinate equals 1 and the others
equal 0.

By a Fréchet space we mean a complete metrizable locally convex space over C
(we will not use locally convex spaces over R). A Fréchet algebra is a Fréchet space
which is an algebra with continuous multiplication. A Fréchet *it algebra is a Fréchet
algebra with continuous involution.

For locally convex spaces E, F, we denote by L(E, F) the space of all continuous
linear operators from E to F'. To shorten notation, we write L(E) instead of L(E, E).

We use standard notation and terminology. All the notions from functional analysis
are explained in [4,13] and those from topological algebras in [10,24].

3 Preliminaries
3.1 The space s and its dual

We recall that the space of rapidly decreasing sequences is the Fréchet space

12
o0
si=1&=()jen e CV 1 g, = Z|.§j|2j2‘1 < oo forall g € Ny
j=1

with the topology corresponding to the system (| - |4)4eN, of norms. We may identify
the strong dual of s (i.e. the space of all continuous linear functionals on s with the
topology of uniform convergence on bounded subsets of s, see e.g. [13, Definition on
p- 267]) with the space of slowly increasing sequences
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172

o0
si=1E=EDjen e CV gl = [ D] 1g 12 < oo for some ¢ € Ny
j=1

equipped with the inductive limit topology given by the system (| - |;)quO of norms
(note that for a fixed g, | - | ; is defined only on a subspace of s”). More precisely, every
n € s’ corresponds to the continuous linear functional on s:

Er (E.0) =D &)
j=1

(note the conjugation on the second variable). These functionals are continuous,
because, by the Cauchy—Schwartz inequality, for all ¢ € Ny, & € s and n € s
we have

(&, m1 < 1&lqInly-

Conversely, one can show that for each continuous linear functional y on s there is
n € s’ such that y = (-, ).
Similarly, we identify each & € s with the continuous linear functional on s’:

N> (0, €)= > n;&;.
j=1

In particular, for each continuous linear functional y on s’ there is & € s such that

We emphasize that the “scalar product” (-, -) is well-defined on s x s’ Us” x s and,
of course, on £» x £5.

3.2 The property (DN) for the space s

Closed subspaces of the space s can be characterized by the so-called property (DN).

Definition 3.1 A Fréchet space (X, (|| - Il4)q4en,) has the property (DN) (see [13,
Definition on p. 359]) if there is a continuous norm || - || on X such that for all ¢ € Ny
there is r € Ny and C > 0 such that

2
[lxlly = Cllx|[ [|x]-

for all x € X. The norm || - || is called a dominating norm.

Vogt (see [23] and [13, Ch. 31]) proved that a Fréchet space is isomorphic to a
closed subspace of s if and only if it is nuclear and it has the property (DN).

The property (DN) for the space s reads as follows (see [13, Lemma 29.2(3)] and
its proof).
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Proposition 3.2 For every p € Ng and & € s we have

E12 < 1IEle, 1€ ]2p-

In particular, the norm || - ||, is a dominating norm on s.

3.3 The algebra L(s’, s)

It is a simple matter to show that £(s’, s) with the topology of uniform convergence
on bounded sets in s’ is a Fréchet space. It is isomorphic to s®s, the completed tensor
product of s (see [12, §41.7(5)] and note that, s being nuclear, there is only one
tensor topology), and thus L(s’, s) = s as Fréchet spaces (see e.g. [13, Lemma 31.1]).
Moreover, it is easily seen that (|| - ||4)geN,>

[Ix]lg :== sup |x&lq,
{4

is a fundamental sequence of norms on £(s’, s).

Let us introduce multiplication and involution on £(s’, s). First observe that s is a
dense subspace of £,. Moreover, £5 is a dense subspace of s, and, finally, the inclusion
maps ji: s <> £y, jo: €y < s’ are continuous. Hence,

v L(s',8) > L(£), 1(x):=jioxo j,

is a well-defined (continuous) embedding of L£(s’, s) into the C*-algebra £(¢3), and
thus it is natural to define a multiplication on L£(s’, s) by

xy =) o u(y)),
ie.
Xy=xojoy,
where j := j» o ji: s <> s'. Similarly, an involution on £(s’, s) is defined by
o= ),

where ((x)* is the hermitian adjoint of ¢(x). One can show that these definitions are
correct, i.e. t(x) o t(y), t(x)* € t(L(s',s)) forall x, y € L(s', s) (see also [3, p.148]).

From now on, we will identify x € L£(s’,s) and ((x) € L(£3) (we omit ¢ in the
notation).

A Fréchet algebra E is called locally m-convex if E has a fundamental system of
submultiplicative seminorms. It is well-known that £(s’, s) is locally m-convex (see
e.g. [14, Lemma 2.2]), and moreover, the norms || - ||, are submultiplicative (see [3,
Proposition 2.5]). This shows simultaneously that the multiplication introduced above
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is separately continuous, and thus, by [24, Theorem 1.5], it is jointly continuous.
Moreover, by [10, Corollary 16.7], the involution on £(s’, s) is continuous.

We may summarize this paragraph by saying that £(s’, s) is a noncommutative
*-subalgebra of the C*-algebra L£(¢3) which is (with its natural topology) a locally
m-convex Fréchet *-algebra isomorphic as a Fréchet space to s.

4 Kothe algebras

In this section we collect and prove some folklore facts on Kothe algebras which are
known for specialists but probably never published.

Definition 4.1 A matrix A = (@, ¢) jeN, geN, Of non-negative numbers such that

(i) for each j € N there is ¢ € Ng such thata;, > 0
(ii) aj 4 < ajqs1for j e Nandg € Ny

is called a Kothe matrix.
For 1 < p < oo and a Kothe matrix A we define the Kothe space

o0
M(A) =& =(&))jen € CV: [&]h 4 = D Igj1Pal < oo forallq € Ny
j=1

and for p = 00

AP (A) = {E =(§j)jeN € cN . 1€ lo0,q == §u§|$j|aj,q < ooforallg € NO]
JE

with the locally convex topology given by the seminorms (| - |, 4)4eN, (see e.g. [13,
Definition p. 326]).

Sometimes, for simplicity, we will write A°°(a; 4 ) (i.e. only the entries of the matrix)
instead of A%°(A).

It is well-known (see [13, Lemma 27.1]) that the spaces A”(A) are Fréchet spaces
and sometimes they are Fréchet *-algebras with pointwise multiplication and conju-
gation (e.g.if aj , > 1 forall j € Nand g € Ny, see also [15, Proposition 3.1]); in
that case they are called Kothe algebras.

Clearly, s is the Kothe space A%(A) for A = (j9) jeN,geN, and it is a Fréchet *-
algebra. Moreover, since the matrix A satisfies the so-called Grothendieck—Pietsch
condition (see e.g. [13, Proposition 28.16(6)]), s is nuclear, and thus it has also other
Kothe space representations (see again [13, Proposition 28.16 and Example 29.4(1)]),
ie. foralll < p < oo, s = AP(A) as Fréchet spaces.

We use ¢>-norms in the definition of s to clarify our ideas, for example we have
|€lo = [1£]le, for & € s and |n| = |Inlle, for n € £>. However, in some situations the
supremum norms | - |, (as they are relatively easy to compute) or the £1-norms will
be more convenient.
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Proposition 4.2 Let A = (aj 4)jeN,geNy B = (D) ¢)jeN g4eN, be Kothe matrices
and for a bijection 0 : N — N let Ay := (Ao (j).q) jeN,qeN,- Assume that \*°(A) and
A°(B) are Fréchet *-algebras. Then the following assertions are equivalent:
(i) A°°(A) = A°°(B) as Fréchet *-algebras;
(i) there is a bijection o : N — N such that A>°(As;) = A°°(B) as Fréchet *-
algebras;
(iii) there is a bijection o : N — N such that .°°(A,) = A°°(B) as sets;
(iv) there is a bijection o : N — N such that
(0)Vg eNgIr e NgdC >0Vj eN Ag(j),q = Cbj
B) vr' e Np Hq/ e Ny ac’ > OVjeN bj,r’ < C/ag(j)’q/.

Proof (i) = (ii) Assume that there is an isomorphism ® : A°°(A) — A°°(B) of Fréchet
*-algebras. Clearly, if £2 = £, then ® (&) = ®(£2) = (P (£))?, and the same is true of
&', i.e. ® maps the idempotents of A°°(A) onto the idempotents of 1°°(B). Hence
for a fixed k € N, there is I C N such that

D(er) = ey,

where e; is a sequence which has 1 onanindex set I C Nand 0 otherwise. Suppose that
|[I| > 2andlet j € I.Thene; = ej+ep\(j}, Wheree; € A°(B) andep\(j) = ej—ej €
A%°(B). Therefore, there are nonempty subsets /;, I]f C N such that CD(e]_/.) =e¢; and
CD(te,) = ey\(j}- We have

ere; = @7 (e)@7 (enj) = @7 (ejen;) = 0.
and thus I; N [ j/ = {J. Consequently,
D(ex) =ej+engjy = Pler;) + ‘13(61;.) = d)(e,jU,}),

whence 1 = |{k}| = |I; U I]/.| > 2, a contradiction. Hence ®(ex) = e,, for some
ni € N, i.e. for the bijection o : N — N defined by ns ) := k we have ® (e ) =
ex. Therefore, a Fréchet *-isomorphism ® is given by (5;))keN — (Ei)ken for
(&) keN € A*°(A), and thus A*°(Ay) = A°°(B) as Fréchet *-algebras.

(ii) = (iii) Obvious.

(iii) = (iv) The proof follows from the observation that the identity map
Id: A%°(As) — A%°(B) is continuous (use the closed graph theorem).

(iv) = (i) It is easy to see that ®: A°°(A) — A°°(B) defined by ey ) > e is an
isomorphism of Fréchet *-algebras. O

In the following proposition we characterize infinite-dimensional closed *-
subalgebras of nuclear Kothe algebras whose elements tend to zero (note that if a
Kothe space is contained in £, then it is a Kothe algebra). Consequently, we obtain a
characterization of closed *-subalgebras of s (Corollary 4.4).

Proposition 4.3 For N' C N let ey denote a sequence which has 1 on N and 0
otherwise. Let A = (aj 4) jeN,qeN, be a Kothe matrix such that \°°(A) is nuclear and
A°(A) C cg. Let E be an infinite-dimensional closed *-subalgebra of \°°(A). Then
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(i) there is a family {Ni}ren of finite nonempty pairwise disjoint sets of natural

numbers such that (e )keN is a Schauder basis of E;

(i) E =21 (maxjeNk aj,q) as Fréchet *-algebras and the isomorphism is given by
en, > e fork e N.
Conversely, if {NilreN is a family of finite nonempty pairwise disjoint sets of
natural numbers and F is the closed *-subalgebra of \°°(A) generated by the
set {enr JkeN, then

(iii) (en;)keN is a Schauder basis of F;

(iv) F = A%(max e, ajq) as Fréchet *-algebras and the isomorphism is given by
en, > e fork e N

Proof In order to prove (i) and (ii) set
No:={jeN:& =0 forall§ € E}
and define an equivalence relation ~ on N\ by
i~j&§=¢foral £ € E.

Since E is infinite-dimensional, our relation produces infinitely many equivalence
classes N, say

Ni = [min(N\Np U - - - U N 1]/~

for k e N.
Fix ¥ € Nandtake & € E suchthat§; # Ofor j € N,. Denote ng := &;if j € M.
Let

My = 1jeN:n;| = SuP|’7i|]-
ieN
Assume we have already defined M, ..., M;_;.Ifthereis j € N\{MU-.-UM;_;}
such that ; # 0 then we define

My :={j e N: |n;| =sup{lni|: i e N\M;U---UM;_1}}.

Otherwise, denote Z := {1, ...,[ — 1}. If this procedure leads to infinitely many sets
M then we set Z := N. It is easily seen that for each [ € 7 there is Z; C N such that
M = Uyex, Nk- By assumption & € co, hence (|nx|)ken € co as well, and thus each
M, is a finite nonempty set.

We first show that enq, € E forl € Z. Forl € Z fix m; € M;. If T = {1}, then

& =0forj ¢ My,andepq, = |n§§\2 € E. Let us consider the case |Z| > 1. Since
mi

in nuclear Fréchet spaces every basis is absolute (and thus unconditional), we have

D ilery, =D I&Pe; =EE € E,

leZ j=1
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and, consequently,

Il Y
=3 () —(_) e
IeT |77m1| |77m||2

for all n € N. Then for ¢ and n we get

(Il
xn_e./\/l1|00,q= E (|77 |) EM; — EM,
leT m 00,q
Il \>" Il \*"
=1 2 A1) ] = 2 ) lelea
leT\(1y N S AV VA
U (Inm N
2
< |(| |) > Il lealoog-
nl‘nl nm1 IGI\{I}

Since (¢;) jen is an absolute basis in A°°(A), the above series is convergent. Note also
that 9, | < |9m, |. This shows that x, — exq, in A°°(A), and epq, € E. Assume that

emM,»---reM,_, € E.If |Z| =1 — 1 then we are done. Otherwise, 1,,, # 0 and
n
£E —&& emM;
o PYE] cE
|77m[|

for n € N. As above we show that x() — epq, in A%°(A), and thus epq, € E.
Proceeding by induction, we prove that e, € E forl € 1.

Now, we shall prove that (ep;, )ren is a Schauder basis of E. Choose ¢ € Z such
that k¥ € Z, and for k € T, let n; be an arbitrary element of ;. Then ZkeL NngeN;, =
&epr, € E. Consequently, by [3, Lemma 4.1], enr,. € E. Since « was arbitrarily
choosen, each e, isin E and itis a simple matter to show that (eas, )xen 18 a Schauder
basis of E.

Moreover, e, |oo,q = Max ey aj.4 hence, by [13, Corollary 28.13] and nuclear-
ity, E is isomorphic as a Fréchet space to A% (max ;e v, @;,4)- The analysis of the proof
of [13, Corollary 28.13] shows that this isomorphism is given by ex;, —> ¢ fork € N,
and thus it is also a Fréchet *-algebra isomorphism.

Now, we prove (iii) and (iv). First note that every element of F is the limit of elements
of the form Z,iwzl cken;, where M € Nand ¢y, ..., cy € C. Therefore, if § € F,
then§; = &; fork € Nandi, j € Ny. This shows thateach& € F has the unique series
representation £ = Z,fi 1 &npen,» where (np)ien is an arbitrarily choosen sequence
such that n; € N for k € N. Since the series is absolutely convergent, (ep; Jken is a
Schauder basis of F. Statement (iv) follows by the same method as in (ii). O

Corollary 4.4 Every infinite-dimensional closed *-subalgebra of s is isomorphic as a
Fréchet *-algebra to AOO(nZ) for some strictly increasing sequence (ny)renN of natural
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numbers. Conversely, if (ni)reN is a strictly increasing sequence of natural num-
bers, then 1*° (nZ) is isomorphic as a Fréchet *-algebra to some infinite-dimensional
closed *-subalgebra of s. Moreover, every closed *-subalgebra of s is a complemented
subspace of s.

Proof We apply Proposition 4.3 to the Kthe matrix (j9) jen geN,- Let {Ni}ken be a
family of finite nonempty pairwise disjoint sets of natural numbers. We have

max j¢ = (max{j : j € Ni}? (1)

JeNk

forall g € Noand k € N. Let 0: N — N be the bijection for which (max{;j : j €
N o Dien is (strictly) increasing and let ng := max{j : j € Ny} for k € N. Then,
by Proposition 4.2,

A% (max jq) =2

JEeNK

as Fréchet *-algebras, and therefore the first two statements follow from Proposition
4.3.

Now, let E be a closed *-subalgebra of s. If E is finite dimensional then, clearly, E
is complemented in s. Otherwise, by Proposition 4.3(i), E is a closed linear span of
the set {ep;, }xen for some family { Ny }xen of finite nonempty pairwise disjoint sets of
natural numbers. Define 7 : s — E by

[ xne forj € No
(rx)j = [0 otherwise

where (ny)ren and o are as above. From (1) we have for every ¢ € Ny

|7 X|o0,q = sup [(wx);1j9 < sup |xy,| max j7 = sup|x, |(max{j: j € Ni}h?

jeN keN JeNsw) keN
= sup |x,, [n < sup |x;]j? = |X|oog.
keN jeN

and thus 7 is well-defined and continuous. Since 7 is a projection, our proof is com-
plete. O

5 Representations of closed commutative *-subalgebras of L(s’, s)
by Kothe algebras

The aim of this section is to describe all closed commutative *-subalgebras of L(s’, s)
as Kothe algebras A°°(A) for matrices A determined by orthonormal sequences whose
elements belong to the space s (Theorem 5.3 and Corollaries 5.4 and 5.5). For the
convenience of the reader, we quote two results from [3] (with minor modifications
which do not require extra arguments).
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For a subset Z of L(s’,s) we will denote by alg(Z) ({in(2), resp.) the closed
*-subalgebra of L(s’, s) generated by Z (the closed linear span of Z, resp.).

By [3, Lemma 4.4], every closed commutative *-subalgebra E of L(s’, s) admits
a special Schauder basis. This basis consists of all nonzero minimal projections in E
([3, Lemma 4.4] shows that these projections are pairwise orthogonal) and we call it
the canonical Schauder basis of E.

Proposition 5.1 [3, Proposition 4.7] Every sequence { Px}ren C L(s', s) of nonzero
pairwise orthogonal projections is the canonical Schauder basis of the algebra
alg({ PrlkenN). In particular, {Pilren is a basic sequence in L(s',s), Le. it is a
Schauder basis of the Fréchet space in({ P} e ).

Theorem 5.2 [3, Theorem 4.8] Let E be an infinite-dimensional closed commutative
*_subalgebra of L(s', s) and let { P }ieN be the canonical Schauder basis of E. Then

E = alg({ Pi}ren) = A% Pellg)

as Fréchet *-algebras and the isomorphism is given by Py v+ ey, for k € N.

Please note that a projection P is in £(s’, s) if and only if it is of the form

PE =D (& filfx

kel

for some finite set / and an orthonormal sequence (fx)xesr C S.
We will also use the identity

A1 fi) fillg) = A% (1 frlg) @)

which holds for every orthonormal sequence (fx)ren C . (see [3, Rem. 4.11]).
Now we are ready to state and prove the main result of this section.

Theorem 5.3 Every closed commutative *-subalgebra of L(s', s) is isomorphic as
a Fréchet *-algebra to some closed *-subalgebra of the algebra A*°(| fi|4) for some
orthonormal sequence (fi)ren C s. More precisely, if E is an infinite-dimensional
closed commutative *-subalgebra of L(s', s) and (Zje/\fk (-, [i) fi)keN is its canon-
ical Schauder basis for some family of finite pairwise disjoint subsets (Ni)ken Of
natural numbers and an orthonormal sequence (fj)jeN C s, then E is isomor-
phic as a Fréchet *-algebra to the closed *-subalgebra of L°°(| fi|y) generated by
{Zje./\fk ej}ken and the isomorphism is given by Zje./\fk<" fiVfi— Zje/\/k ej for
k eN.

Conversely, if (fi)xen C s is an orthonormal sequence, then every closed *-sub-
algebra of A*°(| fx|q) is isomorphic as a Fréchet *-algebra to some closed commutative
*_subalgebra of L(s', s).

Proof By Theorem 5.2, E = alg ({ZjEM<'s fj)fj}keN) for (Mp)ren and
(fj)jen C s as in the statement. Let F be the closed *-subalgebra of A°°(] fx|4)
generated by {Zjej\fk ej}ken. Define
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@ alg({ (s fi) fidken) = 2%(1 filg)

by (-, fk) fi > ex, where N' := [JycnNk. By Proposition 5.1, {(-, fx) fx}keN
is the canonical Schauder basis of alg({(-, fx) fx}xen’), and thus Theorem 5.2 and
(2) imply that @ is a Fréchet *-algebra isomorphism. Hence, (3 jeN; €keN =
(dD(ZjENk(~, fiYfi)ken is a Schauder basis of ®(E) and ®(E) is a closed *-
subalgebra of A°°(] f|4). Therefore,

QE)=Tin (1> e C F C ®(E),
JeN keN

whence ®(E) = F.In consequence ®|f is a Fréchet *-algebra isomorphism of £ and
F, which completes the proof of the first statement.

If now (fx)xen C s is an arbitrary orthonormal sequence then, according to Propo-
sition 5.1, Theorem 5.2 and identity (2), A°°(| fk|4) is isomorphic as a Fréchet *-algebra
to alg({(-, fk) fr}ken). Consequently, every closed *-subalgebra of A°°(] fi|,) is iso-
morphic as a Fréchet *-algebra to some closed *-subalgebra of alg({(-, fx) fk}reN)-

O

The following characterization of infinite-dimensional closed commutative *-

subalgebras of L(s’,s) is a straightforward consequence of Proposition 4.3 and
Theorem 5.3.

Corollary 5.4 Every infinite-dimensional closed commutative *-subalgebra of L(s’, s)
is isomorphic as a Fréchet *-algebra to the algebra \°°(max e | fjlg) for some
orthonormal sequence (fi)ren C s and some family {Ni}ren of finite nonempty
pairwise disjoint sets of natural numbers. In fact, if E is an infinite-dimensional
closed commutative *-subalgebra of L(s’, s) and (Zjej\/k (s fi) fikeN is its canoni-
cal Schauder basis, then

E = )% | max | f;
(jeM'f’l")

as Fréchet *-algebras and the isomorphism is given by szNk<-, iV fi — ek for
k eN.

Conversely, if (fi)reN C S is an orthonormal sequence and {Ny )i is a family of
finite nonempty pairwise disjoint sets of natural numbers, then A°°(max e, | filq) is
isomorphic as a Fréchet *-algebra to some infinite-dimensional closed commutative

*-subalgebra of L(s', s).

At the end of this section we consider the case of maximal commutative subalgebras
of L(s', s). A closed commutative *-subalgebra of L(s', s) is said to be maximal com-
mutative if it is not properly contained in any larger closed commutative * -subalgebra
of L(s', s).

We say that an orthonormal system ( f )N of £2 is s-complete, if every fi belongs
to s and for every £ € s the following implication holds: if (¢, fy) = O for every
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k € N, then £ = 0. A sequence { P;}renN of nonzero pairwise orthogonal projections
belonging to L(s', s) is called L(s’, s)-complete if there is no nonzero projection P
belonging to L(s’, s) such that Py P = 0 for every k € N.

One can easily show that an orthonormal system ( fx)xeN is s-complete if and only if
the sequence of projections ({-, fx) fi)ren is L(s, s)-complete. Hence, by [3, Theorem
4.10], closed commutative *-subalgebra E of L(s’,s) is maximal commutative if
and only if there is an s-complete sequence (fi)ren such that ((-, fx) fi)ken is the
canonical Schauder basis of E. Combining this with Corollary 5.4, we obtain the first
statement of the following corollary.

Corollary 5.5 Every closed maximal commutative *-subalgebra of L(s', ) is isomor-
phic as a Fréchet *-algebra to the algebra 1.*° (| fi|4) for some s-complete orthonormal
sequence ( fi)ren- More precisely, if E is a closed maximal commutative *-subalgebra
of L(s', s) with the canonical Schauder basis ({-, fi) fi)reN, then

E =2 fklg)

as Fréchet *-algebras and the isomorphism is given by (-, fi) fx +> ex fork € N.
Conversely, if (fi)keN is an s-complete orthonormal sequence, then X°°(| fi|y) is
isomorphic as a Fréchet *-algebra to some closed maximal commutative *-subalgebra

of L(s', s).

Proof In order to prove the second statement, take an arbitrary s-complete ortho-
normal sequence ( fx)xeN. By Proposition 5.1 and the remark above our Corollary,
alg({(-, fx) fx}ren) is maximal commutative and from the first statement it follows
that it is isomorphic as a Fréchet *-algebra to A%°(] fi|,). O

It is also worth pointing out the following result.

Proposition 5.6 Every commutative (not necessary closed) *-subalgebra of L(s', s)
is contained in some maximal commutative *-subalgebra of L(s', s).

Proof Let E be a commutative *-subalgebra of L(s’, s). Clearly,
X = {E : E commutative® -subalgebra of L(s’,s) and E C E}

with the inclusion relation is a partially ordered set. Consider a nonempty chain C in X’
andlet E¢ := |J pcc F. Itis easy to check that E¢ € X, and, of course, E¢ is an upper

bound of C. Hence, by the Kuratowski—Zorn lemma, X has a maximal element; let us

s) . .
is a closed commutative

*-subalgebra of L(s’, s), hence from the maximality of M, we have M = Mc(s ’S),

i.e. M is a (closed) maximal commutative *-subalgebra of L(s’, s) containing E. O

call it M. By the continuity of the algebra operations, ML(S ’

6 Closed commutative *-subalgebras of L(s’, s) with the property (2)

The main purpose of the last section is to prove that a closed commutative *-subalgebra
of L(s’, s) is isomorphic as a Fréchet *-algebra to some closed *-subalgebra of s if
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and only if it is isomorphic as a Fréchet space to some complemented subspace of s
(Theorem 6.2), i.e. if it has the so-called property (£2).

Definition 6.1 A Fréchet space £ with a fundamental sequence (|| - ||4)4en, of semi-
norms has the property (R2) if the following condition holds:

Vp3g¥r30 e 0.1)3C >0VyeE |yll, < Cliyll, Iyl

where E’ is the topological dual of E and ||y||;, = sup{ly()| : [|x]|, < 1}

The property (£2) (together with the property (DN)) plays a crucial role in the theory
of nuclear Fréchet spaces (for details, see [13, Ch. 29]).

Recall that a subspace F of a Fréchet space E is called complemented (in E) if there
isacontinuous projectionw : E — E withimm = F. Since every subspace of L(s', s)
has the property (DN) (and, by [3, Proposition 3.2], the norm || - ||¢,—¢, is already a
dominating norm) [13, Proposition 31.7] implies that a closed *-subalgebra of L(s’, s)
is isomorphic to a complemented subspace of s if and only if it has the property (£2).
The class of complemented subspaces of s is still not well-understood (e.g. we do not
know whether every such subspace has a Schauder basis—the Petczyriski problem)
and, on the other hand, the class of closed *-subalgebras of s has a simple description
(see Corollary 4.4). The following theorem implies that, when restricting to the family
of closed commutative *-subalgebras of L(s’, s), these two classes of Fréchet spaces
coincide.

Theorem 6.2 Let E be an infinite-dimensional closed commutative *-subalgebra of
L(s', s) and let (Zie/\fk (-, [i) f)keN be its canonical Schauder basis. Then the fol-
lowing assertions are equivalent:

(i) E is isomorphic as a Fréchet *-algebra to some closed *-subalgebra of s;

(ii) E is isomorphic as a Fréchet space to some complemented subspace of s;
(iii) E has the property (2);
(iv) 3p Vg Ir 3C > 0 Vk max;cp; | fily < Cmaxjepn, |fj|;,.

In order to prove Theorem 6.2, we will need Lemmas 6.3, 6.4 and Propositions 6.5,
6.6.

The following result is a consequence of nuclearity of closed commutative *-
subalgebras of L(s’, s).

Lemma 6.3 Let (fi)ren C s be anorthonormal sequence and let (N} )xen be afamily
of finite pairwise disjoint subsets of natural numbers. Forr € Ny leto,: N — Nbea
bijection such that the sequence (max jen,, . | fjlr)keN is non-decreasing. Then there
is ro € N such that

k

lim —— =0
k—o0 manENgr(k) |fj|r

forallr > ry.
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Proof By Corollary 5.4, A°°(max;ens | fjlg) is a nuclear space. Hence, by the
Grothendieck—Pietsch theorem (see e.g. [13, Theorem 28.15]), for every ¢ € Ny
there is r € Ny such that

o0
maxjen; | filq
= maxjen; | flr

In particular (for g = 0), there is ro such that for r > ry we have

S

=1 aXjeN; If] |r

max]e./\/‘o'r(k) |fj |I’

Since the sequence (maxjen, ., | fjlr)ken 1s non-decreasing, the conclusion follows
from the elementary theory of number series. O

Lemma 6.4 Let (ay)ren C [1, 00) be a non-decreasing sequence such that ay > 2k
for k big enough. Then there exist a strictly increasing sequence (by)reN of natural
numbers and C > 0 such that

—1 <b,<C
a a
Ck k k

forevery k € N.
Proof Let kg € N be such that a; > 2k for k > ko and choose C € N so that

! <k<C 2

—a, a

cHr="="%
for k € No := {1, ..., ko}. Denote also N} := {k € N : ax = ay,+1} and, recur-
sively, Njy1 := {k € N ax = amax N +1}- Clearly, N; are finite, pairwise disjoint,
Ujen,Nj = Nandk<lforke]\/,l€/\/]+1

Let by, := k for k € Ny and let
by +1-1 7= CTmax{ag, i, am,}] +1

for j e Nand 1 <1 < |N|, where m; := min N and [x] := min{n € Z : n > x}

stands for the ceiling of x € R. We will show inductively that (by)cn is a strictly
increasing sequence of natural numbers such that

1
s Shi = Cai A3)

for every k € N.
Clearly, the condition (3) holds for k € Nj. Assume that (bk)ke_/\/bu...u_/\/'j is a
strictly increasing sequence of natural numbers for which the condition (3) holds. For
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simplicity, denote m := min J\/}-H. By the inductive assumption, we obtain b,,_; <
C a,zni1 , hence

by — bp—1 > C|'max{a,2n_1, am}l+1— Ca,i_l > Ca,%l_l +1-— Ca31_1 > 1

S0 by—1 < by, and, clearly, by, < byy4+1 < -+ < bpax
Fix 1 <1 < |Nj41]. We have

Jj+1°

bmyi—1 =2 Cam = Capq1-1 > Eaerlfl
so the first inequality in (3) holds for k € Nj . Next, by assumption, we get
amii—1 = 2(m+1-1), 4)

whence
I <ap_jy1—m+1 (5)

Consider two cases. If a,, > a? then, from (5)

m—1°

bn—iv1 =Clan] +1=Clapp11+1 <2Capqi—1 +app—1 —m+1

< QC+ Damyi—1 < Cap .
where the last inequality holds because C > 1 and, from (4), we have
am—i+1 =2m+1—1) > 2m > 2(ko + 1) > 4.

Finally, if afnf | > am, then, from (4), we obtain (note that, by the definition of N b
and Nj41, we have a,,—1 < ap)

bm_141 = Cla2 |1+
< Clam = D*1+1
= ClaZ — 2am +11+1
< C(a2 —2ap, +2)+1
< Ca? —2Cay 4 2C + CI
=Cas 1 — CQapsi—1 —2—1)
<Cal,  —Clm+Il—-1)—2-1

=Cal | —C@m+31—6) <Ca’y_,.

Hence we have shown that the second inequality in (3) holds for k € N, and the
proof is complete. O
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Proposition 6.5 Let E be an infinite-dimensional closed commutative *-subalgebra
of L(s', s) and let (Zje/\/k (-, i) fi)ken be its canonical Schauder basis. Moreover,
let (ny)reN be a strictly increasing sequence of natural numbers and let F be the
closed *-subalgebra of s generated by {e,, }xen. Then the following assertions are
equivalent:

(1) E is isomorphic to F as a Fréchet *-algebra;

(i) A (max;en; | filg) =A% (nZ) as Fréchet *-algebras;

(iii) there is a bijection o : N — N such that )\,oo(maneNo(k) [filg) = AOO(nZ) as
Fréchet *-algebras,

(iv) there is a bijection 0 : N — N such that )\,OO(manENa(k) [ filg) = AOO(nZ) as
sets;

(V) there is a bijection o : N — N such that

(@) Vg € NoIr e Ng 3C > 0Vk € N maxen, | filg < Cny,

(B)Vr' €Ng3g' eNg3IC' > 0Vk €N nf < C'maxen, | fily-
Proof This is an immediate consequence of Proposition 4.2 and Corollary 5.4. O

In view of Corollary 4.4, every closed *-subalgebra of s is isomorphic as a Fréchet
*-algebra to A% (nZ) (i.e. the closed *-subalgebra of s generated by {e,, }¢cn) for some
strictly increasing sequence (nx)xen C N, hence Proposition 6.5 characterizes closed
commutative *-subalgebras of L(s’, s) which are isomorphic as Fréchet *-algebras to
some *-subalgebra of s.

The property (DN) for the space s gives us the following inequality.

Proposition 6.6 For every p,r € Ny there is g € Ng such that for all & € s with
[1€11¢, = 1 the following inequality holds

€L < [l

Proof Take p,r € Ny and let j € Ny be such that r < 2/. Applying iteratively
(j-times) the inequality from Proposition 3.2 to & € s with [|£]|,, = 1 we get

HAES I
and thus the required inequality holds for ¢ = 2/ p. O

Now we are ready to prove Theorem 6.2.

Proof of Theorem 6.2. (1)=(ii): By Corollary 4.4, each closed *-subalgebra of s is a
complemented subspace of s.

(i1)<(iii): See e.g. [13, Proposition31.7].

(iili)=(iv): By Corollary 5.4 and nuclearity (see e.g. [13, Proposition28.16]),

E = )% | max | f; = ! ax | fi
(jeNk |f,|q) (,-GM, |fj|q)
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as Fréchet *-algebras. Hence, by [21,22, Proposition 5.3], the property (2) yields

¥l 3m Vn 3t 3C > 0Vk max | f;| max | fi|, < C max | f;| ).
jeM'fmjeNk'f/'n_ jE./\/k|fj|m

In particular, taking / = 0, we get (iv).
(iv)=(): Take p from the condition (iv). By Lemma 6.3(ii), there is p; > p
and a bijection o: N — N such that (max;en,, | fjlp)keN is non-decreasing and

limy— oo v N = 0. Consequently, for k£ big enough

o Ol

max | fjlp > 2k,

JENG (k)

and therefore, by Lemma 6.4, there is a strictly increasing sequence (nx)reny C N and
C1 > 0 such that

1
— max |fjlp <np <C; max |f| (6)
Ci jeNow s JENG®) !

for every k € N. Now, by the conditions (iv) and (6), we get that for all g there is r
and C; := CCYy such that

max |fjly < C max |f;]), < Cong
]E o (k) ]ENa(k)

for all k € N, so the condition () from Proposition 6.5(v) holds. Finally, by (6) and
Proposition 6.6 we obtain that for all 7’ there is ¢" and C3 := C{ such that

n, <Cs max |fj|p| =G H}\%X | filg

Je€Ns®) o (k)

for every k € N. Hence the condition (8) from Proposition 6.5(v) is satisfied, and
therefore, by Proposition 6.5, E is isomorphic as a Fréchet *-algebra to the closed
*-subalgebra of s generated by {e,, }reN. O

Now we shall give an example of some class of closed commutative *-subalgebras
of L(s’, s) which are isomorphic to closed *-subalgebras of s.

Example 6.7 Let H; := [1]. We define recursively Hadamard matrices

o Hznfl Hanl
Hzn T I:Hznl —H2nli|

for n € N. Then the matrices ﬂzn = 2_%H2n are unitary, and thus their rows form an
orthonormal system of 2" vectors. Now fix an arbitrary sequence (dy,),en C No and
define
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Hy, 0 0
O H2dz (/)\
U=10 0 Hy

Let fi denote the k-th row of the matrix U. Then (fx)iecN is an orthonormal basis
of £, and clearly each f; belongs to s. We will show that the closed (maximal) com-
mutative *-subalgebra alg({{, -, fx) fi}xen) of L(s', s) is isomorphic to some closed
*-subalgebra of 5. By Theorem 6.2, it is enough to prove that

Ap Vg 3r 3C > 0Vk | filooq < Clfkl, p- (N

Fix ¢ € No, k € Nand find n € N such that 241 4. .. 4291 < f <291 ... 4 2,
Then

_dn
floog _ 272 @0 20y g |y gya <
|fk|ig,1 2-dnq (241 4 ... 4 2dn)2q -

and thus the condition (7) holds with p = C = 1 and r = 2g.

The next theorem solves in negative [3, Open Problem 4.13]. In contrast to the alge-
bra s, all of whose closed *-subalgebras are complemented subspaces of s (Corollary
4.4), Theorems 6.2 and 6.9 imply that there is a closed commutative *-subalgebra of
L(s’, s) which is not complemented in L(s’, s) (otherwise it would have the property
(2), see [13, Proposition 31.7]). In the proof we will use the following identity.

Lemma 6.8 For every increasing sequence (aj)jen C (0, 00) and every p € N we
have

p
sup (o Ha, ~ [
i=1

jeN

Proof For j > p 4+ 1 we get

p j+1 = j—1
H 10{, p—j+l Hl p+1 ai
=« . H o = <1
HP o J j—p— T i—p—1
i=1"1 i=p+1 o
and, similarly, for j < p — 1 we obtain
17 Jj+1 Jj— p—j+l
I1; 1 o«
= <1
Hl’ o 14 ; —
i=1"1 i= ]
p—p+1 14 . . .
Since a) ]_[l 1 o; = [];_, a;, the supremum is attained for j = p, and we are
done. m|
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Theorem 6.9 There is a closed commutative *-subalgebra of L(s', s) which is not
isomorphic to any closed *-subalgebra of s.

. N i .
Proof Let my be the k-th prime number, Ny 1 := my, Ni j+1 := m, 7 for j,k eN.
Define ax,1 := ck and

H Nkl

ag,j = Ck——— /—1
Ni

for j > 2, where the sequence (ck)ken is choosen so that || (ax, ;) jenlle, = 1, i.e.

o X 2 —-1/2
-
_ lel Ni,i
Ck = E =
j=1 Nk,j

2 . 2

< Nkz < —j+1
Z =2 (Vi T Ve

j -1
Jj=1 Nk/

Finally, define an orthonormal sequence ( fx)rcn by

00
fk = Zak,jeNk.j.

J=l1

We will show that alg({({-, fx) fx}xen) is a closed *-subalgebra of L(s’, s) which is
not isomorphic as an algebra to any closed *-subalgebra of s. By Theorem 6.2 and
nuclearity, it is enough to show that each f; belongs to s and for every p,r € N the
following condition holds

| feloo,p+1

koo | fello

)

where [&]oo,4 = sup;en €1/
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Note first that | fi |0, p = ak,pN,ﬁp. In fact, by Lemma 6.8, we get

=1
B r p Hi:l k,i
| filoo.p = sup ax, j Ny ; = cxsup | N ;- ———
jeN jeN Ni i
.
i1
p—j+l1
=cksup | N ;7 - H Ni,i
jEN i=

. J
. J Hi:l Nii
J kN 1 7 j
ak~]+1Nk,j+l Wt Nij+1 [T Nk j
- —1 j—1 k,
ak:/ Ck Hzlzl Nii Hllzl Ni.,i J
=T =
Nij N

Moreover, for every j,r € N we get

Ni.j .
N jy1 my - 2Nk, j
= 00
r r — r ’
Nij  Nij o Ny koo

and clearly a; ; < 1 for j, k € N. Hence, for p, 7 € N we obtain

p+l P
| filoo, p+1 k. p+1 N} iy _ p+1Ng o1 1 Nipt

r r pr - r—1 pr
|fk|oo,p ak,ka,p ak,p ak,p Nk,p
p 1 Nipt+t _ Nipti
=Nep 5o T 2 T P oo,
. Nk,p Nk,p —00
which is the desired conclusion. O

We end this section with two consequences of Theorem 6.2.
For a monotonically increasing sequence o« = (ax)ren in [0, 00) such that
lim;_, o o; = oo we define the power series space of infinite type

o0
Aoo(@) = {(§)jen C ' D" [5?e¥% < 0o forallg € No}.
k=1

Corollary 6.10 Let E be a closed commutative *-subalgebra of L(s', s) isomorphic
as Fréchet space to Ao (). Then E is isomorphic to A~ (@) as a Fréchet *-algebra.
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Proof Let (Py)ren be the canonical Schauder basis of E. In view of Proposition 4.2,
we should show that there is a bijection o : N — N such that

(@)Vqg €Ng3r e Ng3IC > 0Vk e N [|Pyplly < Ce™*,

(B)Vr' eNop3q’ e Ng3IC'>0Vk eN e < C'N| Py llg-
By Theorem 6.2, E is isomorphic as a Fréchet *-algebra to some infinite-dimensional
closed *-subalgebra of s, and thus by Corollary 4.4, E is isomorphic as a Fréchet

*-algebra to A% (nZ) for some strictly increasing sequence (nx)ren in N. Hence, by
Proposition 4.2, there is a bijection o : N — N such that

Vg €NodreNg3C >0Vk e N [|Pylly < Cnj, (8)
Vi’ €Ng3g' €eNg3C' > 0Vk eN nf < C'||Popylly- ©)

Since AOO(nZ) = Aco(logny), it follows from [13, Theorem 29.1] that there is ¢ € N
and ko such that for k£ > kg

—ay < logny < qo.
q

Consequently, there is ¢ € N and D > 0 such that
e® < Dn] and np < De?™

for all £ € N. Now (8) and (9) yield the desired conclusion. O

By the theorem of Crone and Robinson [5] it follows that all bases of the space
s are quasi-equivalent, i.e. given any two bases (fx)reN and (gx)ren of s, there is a
bijection o : N — N and a sequence (cy )N of non-zero scalars such that the operator
T:s — s defined by Tex = ci fox) is a Fréchet space isomorphism. Our last result
shows that in the case of bases of s which form an orthonormal sequence of ¢, the
sequence (cx)reN can always be taken constant and equal to 1.

Corollary 6.11 For every Schauder basis ( fi)reN of the space s which is at the same
time an orthonormal sequence of € there is a bijectiono : N — NsuchthatT: s — s
defined by Tey = fo (), k € N, is a Fréchet space isomorphism.

Proof Clearly, the closed *-subalgebra E of L(s', s) generated by the sequence of one-
dimensional projections ({-, fx) fr)renN 1S isomorphic as a Fréchet space to s. Hence,
by Corollaries 5.5 and 6.10, A°°(| fi|,) = E = s as Fréchet *-algebras. Now, by
Proposition 4.2, there is a bijection o : N — N such that

VgeNyIreNy3IC >0Vk eN |fowl <Ck",

Vi’ eNo3g' € Ng3C' > 0Vk eN k" < C'|foly

This shows that the map T: s — s which sends ¢, to f,x), k € N, defines an
automorphism of the Fréchet space s. O
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