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Abstract We consider the Fréchet ∗-algebraL(s′, s) ⊆ L(�2) of the so-called smooth
operators, i.e. continuous linear operators from the dual s′ of the space s of rapidly
decreasing sequences to s. This algebra is a non-commutative analogue of the algebra s.
We characterize closed ∗-subalgebras ofL(s′, s)which are at the same time isomorphic
to closed ∗-subalgebras of s and we provide an example of a closed commutative ∗-
subalgebra of L(s′, s) which cannot be embedded into s.
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1 Introduction

The algebra L(s′, s) is isomorphic as a Fréchet ∗-algebra to the algebra

K∞ :=
{

(x j,k) j,k∈N ∈ C
N2 : sup

j,k∈N
|x j,k | jqkq < ∞ for all q ∈ N0

}
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of rapidly decreasing matrices (with matrix multiplication and matrix complex conju-
gation). Another representation ofL(s′, s) is the algebra S(R2) of Schwartz functions
on R2 with the Volterra convolution

( f · g)(x, y) :=
∫
R

f (x, z)g(z, y)dz

as multiplication and the involution

f ∗(x, y) := f (y, x).

In these forms, the algebra L(s′, s) usually appears and plays a significant role in
K -theory of Fréchet algebras (see Bhatt and Inoue [1, Ex. 2.12], Cuntz [6, p. 144], [7,
p. 64–65], Glöckner and Langkamp [11], Phillips [14, Def. 2.1]) and in C∗-dynamical
systems (Elliot, Natsume and Nest [9, Ex. 2.6]). Very recently, Piszczek obtained sev-
eral results concerning closed ideals, automatic continuity (for positive functionals and
derivations), amenability and Jordan decomposition inK∞ (see Piszczek [16–19] and
his forthcoming paper “The noncommutative Schwartz space is weakly amenable”).
Moreover, in the context of algebras of unbounded operators, the algebra L(s′, s)
appears in the book [20] as

B1(s) := {x ∈ L(�2) : x�2 ⊆ s, x∗�2 ⊆ s and axb is nuclear for all a, b ∈ L∗(s)},

where L∗(s) is the so-called maximal O∗-algebra on s (see also [20, Def. 2.1.6, Prop.
2.1.8, Def. 5.1.3, Cor. 5.1.18, Prop. 5.4.1 and Prop. 6.1.5]).

The algebra of smooth operators can be seen as a noncommutative analogue of the
commutative algebra s. The most important features of this algebra are the following:

• it is isomorphic as a Fréchet space to the Schwartz space S(R) of smooth rapidly
decreasing functions on the real line;

• it is isomorphic as a Fréchet ∗-algebra tomany algebras of operators acting between
natural spaces of distributions and functions, e.g. to the algebra of operators from
the space S ′(R) of tempered distributions on the real line to the space S(R) (see
also [8, Th. 1.1]);

• it is a dense ∗-subalgebra of the C∗-algebra K(�2) of compact operators on �2;
• it is (properly) contained in the intersection of all Schatten classes Sp(�2) over

p > 0; in particular L(s′, s) is contained in the class HS(�2) of Hilbert-Schmidt
operators, and thus it is a unitary space;

• the operator C∗-norm || · ||�2→�2 is the so-called dominating norm on that algebra
(the dominating norm property is a key notion in the structure theory of nuclear
Fréchet spaces – see [3, Prop. 3.2] and [13, Prop. 31.5]).

The main result of the present paper is a characterization of closed ∗-subalgebras
of L(s′, s) which are at the same time isomorphic as Fréchet ∗-algebras to closed
∗-subalgebras of the algebra s (Theorem 6.2). It turns out that these are exactly those
subalgebraswhich satisfy the classical condition (�) ofVogt, i.e.which are isomorphic
(as Fréchet spaces) to complemented subspaces of s. Then in Theorem 6.9 we give an
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example of a closed commutative ∗-subalgebra of L(s′, s) which does not satisfy this
condition.

To prove this result we characterize in Sect. 4 closed ∗-subalgebras of Köthe
sequence algebras (Proposition 4.3). In particular, we give such a description for closed
∗-subalgebras of s (Corollary 4.4). In Sect. 5 we describe all closed ∗-subalgebras of
L(s′, s) as suitable Köthe sequence algebras (see Corollary 5.4 and compare with [3,
Th.4.8]).

The present paper is a continuation of [3,8] and it focuses on descriptions of closed
commutative ∗-subalgebras of L(s′, s) (especially those with the property (�)). Most
of the results have been already presented in the author’s PhD dissertation [2].

2 Notation and terminology

Throughout the paper, N denotes the set of natural numbers {1, 2, . . .} and N0 :=
N ∪ {0}.

By a projection on the complex separable Hilbert space �2 we always mean a
continuous orthogonal (i.e. self-adjoint) projection.

By ek we denote the vector in C
N whose k-th coordinate equals 1 and the others

equal 0.
By a Fréchet space we mean a complete metrizable locally convex space over C

(we will not use locally convex spaces over R). A Fréchet algebra is a Fréchet space
which is an algebra with continuous multiplication. A Fréchet ∗it algebra is a Fréchet
algebra with continuous involution.

For locally convex spaces E, F , we denote by L(E, F) the space of all continuous
linear operators from E to F . To shorten notation, we write L(E) instead of L(E, E).

We use standard notation and terminology. All the notions from functional analysis
are explained in [4,13] and those from topological algebras in [10,24].

3 Preliminaries

3.1 The space s and its dual

We recall that the space of rapidly decreasing sequences is the Fréchet space

s :=

⎧⎪⎨
⎪⎩ξ = (ξ j ) j∈N ∈ C

N : |ξ |q :=
⎛
⎝ ∞∑

j=1

|ξ j |2 j2q

⎞
⎠

1/2

< ∞ for all q ∈ N0

⎫⎪⎬
⎪⎭

with the topology corresponding to the system (| · |q)q∈N0 of norms. We may identify
the strong dual of s (i.e. the space of all continuous linear functionals on s with the
topology of uniform convergence on bounded subsets of s, see e.g. [13, Definition on
p. 267]) with the space of slowly increasing sequences
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s′ :=

⎧⎪⎨
⎪⎩ξ = (ξ j ) j∈N ∈ C

N : |ξ |′q :=
⎛
⎝ ∞∑

j=1

|ξ j |2 j−2q

⎞
⎠

1/2

< ∞ for some q ∈ N0

⎫⎪⎬
⎪⎭

equipped with the inductive limit topology given by the system (| · |′q)q∈N0 of norms
(note that for a fixed q, | · |′q is defined only on a subspace of s′). More precisely, every
η ∈ s′ corresponds to the continuous linear functional on s:

ξ 	→ 〈ξ, η〉 :=
∞∑
j=1

ξ jη j

(note the conjugation on the second variable). These functionals are continuous,
because, by the Cauchy–Schwartz inequality, for all q ∈ N0, ξ ∈ s and η ∈ s′
we have

|〈ξ, η〉| ≤ |ξ |q |η|′q .

Conversely, one can show that for each continuous linear functional y on s there is
η ∈ s′ such that y = 〈·, η〉.

Similarly, we identify each ξ ∈ s with the continuous linear functional on s′:

η 	→ 〈η, ξ 〉 :=
∞∑
j=1

η jξ j .

In particular, for each continuous linear functional y on s′ there is ξ ∈ s such that
y = 〈·, ξ 〉.

We emphasize that the “scalar product” 〈·, ·〉 is well-defined on s × s′ ∪ s′ × s and,
of course, on �2 × �2.

3.2 The property (DN) for the space s

Closed subspaces of the space s can be characterized by the so-called property (DN).

Definition 3.1 A Fréchet space (X, (|| · ||q)q∈N0) has the property (DN) (see [13,
Definition on p. 359]) if there is a continuous norm || · || on X such that for all q ∈ N0
there is r ∈ N0 and C > 0 such that

||x ||2q ≤ C ||x || ||x ||r

for all x ∈ X . The norm || · || is called a dominating norm.

Vogt (see [23] and [13, Ch. 31]) proved that a Fréchet space is isomorphic to a
closed subspace of s if and only if it is nuclear and it has the property (DN).

The property (DN) for the space s reads as follows (see [13, Lemma 29.2(3)] and
its proof).
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Proposition 3.2 For every p ∈ N0 and ξ ∈ s we have

|ξ |2p ≤ ||ξ ||�2 |ξ |2p.

In particular, the norm || · ||�2 is a dominating norm on s.

3.3 The algebra L(s′, s)

It is a simple matter to show that L(s′, s) with the topology of uniform convergence
on bounded sets in s′ is a Fréchet space. It is isomorphic to s⊗̂s, the completed tensor
product of s (see [12, §41.7(5)] and note that, s being nuclear, there is only one
tensor topology), and thus L(s′, s) ∼= s as Fréchet spaces (see e.g. [13, Lemma 31.1]).
Moreover, it is easily seen that (|| · ||q)q∈N0 ,

||x ||q := sup
|ξ |′q≤1

|xξ |q ,

is a fundamental sequence of norms on L(s′, s).
Let us introduce multiplication and involution on L(s′, s). First observe that s is a

dense subspace of �2. Moreover, �2 is a dense subspace of s′, and, finally, the inclusion
maps j1 : s ↪→ �2, j2 : �2 ↪→ s′ are continuous. Hence,

ι : L(s′, s) ↪→ L(�2), ι(x) := j1 ◦ x ◦ j2,

is a well-defined (continuous) embedding of L(s′, s) into the C∗-algebra L(�2), and
thus it is natural to define a multiplication on L(s′, s) by

xy := ι−1(ι(x) ◦ ι(y)),

i.e.

xy = x ◦ j ◦ y,

where j := j2 ◦ j1 : s ↪→ s′. Similarly, an involution on L(s′, s) is defined by

x∗ := ι−1(ι(x)∗),

where ι(x)∗ is the hermitian adjoint of ι(x). One can show that these definitions are
correct, i.e. ι(x) ◦ ι(y), ι(x)∗ ∈ ι(L(s′, s)) for all x, y ∈ L(s′, s) (see also [3, p.148]).

From now on, we will identify x ∈ L(s′, s) and ι(x) ∈ L(�2) (we omit ι in the
notation).

A Fréchet algebra E is called locally m-convex if E has a fundamental system of
submultiplicative seminorms. It is well-known that L(s′, s) is locally m-convex (see
e.g. [14, Lemma 2.2]), and moreover, the norms || · ||q are submultiplicative (see [3,
Proposition 2.5]). This shows simultaneously that the multiplication introduced above

123



306 T. Ciaś

is separately continuous, and thus, by [24, Theorem 1.5], it is jointly continuous.
Moreover, by [10, Corollary 16.7], the involution on L(s′, s) is continuous.

We may summarize this paragraph by saying that L(s′, s) is a noncommutative
∗-subalgebra of the C∗-algebra L(�2) which is (with its natural topology) a locally
m-convex Fréchet ∗-algebra isomorphic as a Fréchet space to s.

4 Köthe algebras

In this section we collect and prove some folklore facts on Köthe algebras which are
known for specialists but probably never published.

Definition 4.1 A matrix A = (a j,q) j∈N,q∈N0 of non-negative numbers such that

(i) for each j ∈ N there is q ∈ N0 such that a j,q > 0
(ii) a j,q ≤ a j,q+1 for j ∈ N and q ∈ N0

is called a Köthe matrix.
For 1 ≤ p < ∞ and a Köthe matrix A we define the Köthe space

λp(A) :=
⎧⎨
⎩ξ = (ξ j ) j∈N ∈ C

N : |ξ |p
p,q :=

∞∑
j=1

|ξ j |pa p
j,q < ∞ for all q ∈ N0

⎫⎬
⎭

and for p = ∞

λ∞(A) :=
{

ξ = (ξ j ) j∈N ∈ C
N : |ξ |∞,q := sup

j∈N
|ξ j |a j,q < ∞ for all q ∈ N0

}

with the locally convex topology given by the seminorms (| · |p,q)q∈N0 (see e.g. [13,
Definition p. 326]).

Sometimes, for simplicity,wewillwriteλ∞(a j,q) (i.e. only the entries of thematrix)
instead of λ∞(A).

It is well-known (see [13, Lemma 27.1]) that the spaces λp(A) are Fréchet spaces
and sometimes they are Fréchet ∗-algebras with pointwise multiplication and conju-
gation (e.g. if a j,q ≥ 1 for all j ∈ N and q ∈ N0, see also [15, Proposition 3.1]); in
that case they are called Köthe algebras.

Clearly, s is the Köthe space λ2(A) for A = ( jq) j∈N,q∈N0 and it is a Fréchet ∗-
algebra. Moreover, since the matrix A satisfies the so-called Grothendieck–Pietsch
condition (see e.g. [13, Proposition 28.16(6)]), s is nuclear, and thus it has also other
Köthe space representations (see again [13, Proposition 28.16 and Example 29.4(1)]),
i.e. for all 1 ≤ p ≤ ∞, s = λp(A) as Fréchet spaces.

We use �2-norms in the definition of s to clarify our ideas, for example we have
|ξ |0 = ||ξ ||�2 for ξ ∈ s and |η|′0 = ||η||�2 for η ∈ �2. However, in some situations the
supremum norms | · |∞,q (as they are relatively easy to compute) or the �1-norms will
be more convenient.
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Proposition 4.2 Let A = (a j,q) j∈N,q∈N0 , B = (b j,q) j∈N,q∈N0 be Köthe matrices
and for a bijection σ : N → N let Aσ := (aσ( j),q) j∈N,q∈N0 . Assume that λ∞(A) and
λ∞(B) are Fréchet ∗-algebras. Then the following assertions are equivalent:

(i) λ∞(A) ∼= λ∞(B) as Fréchet ∗-algebras;
(ii) there is a bijection σ : N → N such that λ∞(Aσ ) = λ∞(B) as Fréchet ∗-

algebras;
(iii) there is a bijection σ : N → N such that λ∞(Aσ ) = λ∞(B) as sets;
(iv) there is a bijection σ : N → N such that

(α) ∀q ∈ N0 ∃r ∈ N0 ∃C > 0 ∀ j ∈ N aσ( j),q ≤ Cb j,r ,
(β) ∀r ′ ∈ N0 ∃q ′ ∈ N0 ∃C ′ > 0 ∀ j ∈ N b j,r ′ ≤ C ′aσ( j),q ′ .

Proof (i)⇒ (ii)Assume that there is an isomorphism� : λ∞(A) → λ∞(B) of Fréchet
∗-algebras. Clearly, if ξ2 = ξ , then �(ξ) = �(ξ2) = (�(ξ))2, and the same is true of
�−1, i.e. � maps the idempotents of λ∞(A) onto the idempotents of λ∞(B). Hence
for a fixed k ∈ N, there is I ⊂ N such that

�(ek) = eI ,

where eI is a sequencewhich has 1 on an index set I ⊂ N and 0 otherwise. Suppose that
|I | ≥ 2 and let j ∈ I . Then eI = e j +eI\{ j}, where e j ∈ λ∞(B) and eI\{ j} = eI −e j ∈
λ∞(B). Therefore, there are nonempty subsets I j , I ′

j ⊂ N such that �(eI j ) = e j and
�(eI j ′ ) = eI\{ j}. We have

eI j eI ′
j
= �−1(e j )�

−1(eI\{ j}) = �−1(e j eI\{ j}) = 0,

and thus I j ∩ I ′
j = ∅. Consequently,

�(ek) = e j + eI\{ j} = �(eI j ) + �(eI ′
j
) = �(eI j ∪I ′

j
),

whence 1 = |{k}| = |I j ∪ I ′
j | ≥ 2, a contradiction. Hence �(ek) = enk for some

nk ∈ N, i.e. for the bijection σ : N → N defined by nσ(k) := k we have �(eσ(k)) =
ek . Therefore, a Fréchet ∗-isomorphism � is given by (ξσ(k))k∈N 	→ (ξk)k∈N for
(ξσ(k))k∈N ∈ λ∞(A), and thus λ∞(Aσ ) = λ∞(B) as Fréchet ∗-algebras.

(ii) ⇒ (iii) Obvious.
(iii) ⇒ (iv) The proof follows from the observation that the identity map

Id : λ∞(Aσ ) → λ∞(B) is continuous (use the closed graph theorem).
(iv) ⇒ (i) It is easy to see that � : λ∞(A) → λ∞(B) defined by eσ(k) 	→ ek is an

isomorphism of Fréchet ∗-algebras. ��
In the following proposition we characterize infinite-dimensional closed ∗-

subalgebras of nuclear Köthe algebras whose elements tend to zero (note that if a
Köthe space is contained in �∞ then it is a Köthe algebra). Consequently, we obtain a
characterization of closed ∗-subalgebras of s (Corollary 4.4).

Proposition 4.3 For N ⊂ N let eN denote a sequence which has 1 on N and 0
otherwise. Let A = (a j,q) j∈N,q∈N0 be a Köthe matrix such that λ∞(A) is nuclear and
λ∞(A) ⊂ c0. Let E be an infinite-dimensional closed ∗-subalgebra of λ∞(A). Then
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(i) there is a family {Nk}k∈N of finite nonempty pairwise disjoint sets of natural
numbers such that (eNk )k∈N is a Schauder basis of E;

(ii) E ∼= λ∞ (
max j∈Nk a j,q

)
as Fréchet ∗-algebras and the isomorphism is given by

eNk 	→ ek for k ∈ N.
Conversely, if {Nk}k∈N is a family of finite nonempty pairwise disjoint sets of
natural numbers and F is the closed ∗-subalgebra of λ∞(A) generated by the
set {eNk }k∈N, then

(iii) (eNk )k∈N is a Schauder basis of F;
(iv) F ∼= λ∞(max j∈Nk a j,q) as Fréchet ∗-algebras and the isomorphism is given by

eNk 	→ ek for k ∈ N.

Proof In order to prove (i) and (ii) set

N0 := { j ∈ N : ξ j = 0 for all ξ ∈ E}

and define an equivalence relation ∼ on N\N0 by

i ∼ j ⇔ ξi = ξ j for all ξ ∈ E .

Since E is infinite-dimensional, our relation produces infinitely many equivalence
classes Nk , say

Nk := [min(N\N0 ∪ · · · ∪ Nk−1)]/∼
for k ∈ N.

Fix κ ∈ N and take ξ ∈ E such that ξ j �= 0 for j ∈ Nκ . Denote ηk := ξ j if j ∈ Nk .
Let

M1 :=
{

j ∈ N : |η j | = sup
i∈N

|ηi |
}

.

Assumewehave already definedM1, . . . ,Ml−1. If there is j ∈ N\{M1∪· · ·∪Ml−1}
such that η j �= 0 then we define

Ml := { j ∈ N : |η j | = sup{|ηi | : i ∈ N\M1 ∪ · · · ∪ Ml−1}}.

Otherwise, denote I := {1, . . . , l − 1}. If this procedure leads to infinitely many sets
Ml then we set I := N. It is easily seen that for each l ∈ I there is Il ⊂ N such that
Ml = ⋃

k∈Il
Nk . By assumption ξ ∈ c0, hence (|ηk |)k∈N ∈ c0 as well, and thus each

Ml is a finite nonempty set.
We first show that eMl ∈ E for l ∈ I. For l ∈ I fix ml ∈ Ml . If I = {1}, then

ξ j = 0 for j /∈ M1, and eM1 = ξξ

|ηm1 |2 ∈ E . Let us consider the case |I| > 1. Since

in nuclear Fréchet spaces every basis is absolute (and thus unconditional), we have

∑
l∈I

|ηl |2eMl =
∞∑
j=1

|ξ j |2e j = ξξ ∈ E,
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and, consequently,

xn :=
∑
l∈I

( |ηl |
|ηm1 |

)2n

eMl =
(

ξξ

|ηm1 |2
)n

∈ E

for all n ∈ N. Then for q and n we get

|xn − eM1 |∞,q =
∣∣∣∣∣

∞∑
l∈I

( |ηl |
|ηm1 |

)2n

eMl − eM1

∣∣∣∣∣
∞,q

=
∣∣∣∣∣∣
∑

l∈I\{1}

( |ηl |
|ηm1 |

)2n

eMl

∣∣∣∣∣∣∞,q

≤
∑

l∈I\{1}

( |ηl |
|ηm1 |

)2n

|eMl |∞,q

≤ 1

|ηm1 |
( |ηm2 |

|ηm1 |
)2n−1 ∑

l∈I\{1}
|ηl | |eMl |∞,q .

Since (e j ) j∈N is an absolute basis in λ∞(A), the above series is convergent. Note also
that |ηm2 | < |ηm1 |. This shows that xn → eM1 in λ∞(A), and eM1 ∈ E . Assume that
eM1 , . . . , eMl−1 ∈ E . If |I| = l − 1 then we are done. Otherwise, ηml �= 0 and

x (l)
n :=

(
ξξ − ξξ

∑l−1
j=1 eM j

|ηml |2
)n

∈ E

for n ∈ N. As above we show that x (l)
n → eMl in λ∞(A), and thus eMl ∈ E .

Proceeding by induction, we prove that eMl ∈ E for l ∈ I.
Now, we shall prove that (eNk )k∈N is a Schauder basis of E . Choose ι ∈ I such

that κ ∈ Iι and for k ∈ Iι let nk be an arbitrary element ofNk . Then
∑

k∈Iι
ηnk eNk =

ξeMι
∈ E . Consequently, by [3, Lemma 4.1], eNκ

∈ E . Since κ was arbitrarily
choosen, each eNk is in E and it is a simple matter to show that (eNk )k∈N is a Schauder
basis of E .

Moreover, |eNk |∞,q = max j∈Nk a j,q hence, by [13, Corollary 28.13] and nuclear-
ity, E is isomorphic as a Fréchet space to λ∞(max j∈Nk a j,q). The analysis of the proof
of [13, Corollary 28.13] shows that this isomorphism is given by eNk 	→ ek for k ∈ N,
and thus it is also a Fréchet ∗-algebra isomorphism.

Now,weprove (iii) and (iv). First note that every element of F is the limit of elements
of the form

∑M
k=1 ckeNk , where M ∈ N and c1, . . . , cM ∈ C. Therefore, if ξ ∈ F ,

then ξi = ξ j for k ∈ N and i, j ∈ Nk . This shows that each ξ ∈ F has the unique series
representation ξ = ∑∞

k=1 ξnk eNk , where (nk)k∈N is an arbitrarily choosen sequence
such that nk ∈ Nk for k ∈ N. Since the series is absolutely convergent, (eNk )k∈N is a
Schauder basis of F . Statement (iv) follows by the same method as in (ii). ��
Corollary 4.4 Every infinite-dimensional closed ∗-subalgebra of s is isomorphic as a
Fréchet ∗-algebra to λ∞(nq

k ) for some strictly increasing sequence (nk)k∈N of natural
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numbers. Conversely, if (nk)k∈N is a strictly increasing sequence of natural num-
bers, then λ∞(nq

k ) is isomorphic as a Fréchet ∗-algebra to some infinite-dimensional
closed ∗-subalgebra of s. Moreover, every closed ∗-subalgebra of s is a complemented
subspace of s.

Proof We apply Proposition 4.3 to the Köthe matrix ( jq) j∈N,q∈N0 . Let {Nk}k∈N be a
family of finite nonempty pairwise disjoint sets of natural numbers. We have

max
j∈Nk

jq = (max{ j : j ∈ Nk})q (1)

for all q ∈ N0 and k ∈ N. Let σ : N → N be the bijection for which (max{ j : j ∈
Nσ(k)})k∈N is (strictly) increasing and let nk := max{ j : j ∈ Nσ(k)} for k ∈ N. Then,
by Proposition 4.2,

λ∞
(
max
j∈Nk

jq
)

∼= λ∞(nq
k )

as Fréchet ∗-algebras, and therefore the first two statements follow from Proposition
4.3.

Now, let E be a closed ∗-subalgebra of s. If E is finite dimensional then, clearly, E
is complemented in s. Otherwise, by Proposition 4.3(i), E is a closed linear span of
the set {eNk }k∈N for some family {Nk}k∈N of finite nonempty pairwise disjoint sets of
natural numbers. Define π : s → E by

(πx) j :=
{

xnk for j ∈ Nσ(k)

0 otherwise

where (nk)k∈N and σ are as above. From (1) we have for every q ∈ N0

|πx |∞,q = sup
j∈N

|(πx) j | jq ≤ sup
k∈N

|xnk | max
j∈Nσ(k)

jq = sup
k∈N

|xnk |(max{ j : j ∈ Nk})q

= sup
k∈N

|xnk |nq
k ≤ sup

j∈N
|x j | jq = |x |∞,q ,

and thus π is well-defined and continuous. Since π is a projection, our proof is com-
plete. ��

5 Representations of closed commutative ∗-subalgebras of L(s′, s)
by Köthe algebras

The aim of this section is to describe all closed commutative ∗-subalgebras of L(s′, s)
as Köthe algebras λ∞(A) for matrices A determined by orthonormal sequences whose
elements belong to the space s (Theorem 5.3 and Corollaries 5.4 and 5.5). For the
convenience of the reader, we quote two results from [3] (with minor modifications
which do not require extra arguments).
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For a subset Z of L(s′, s) we will denote by alg(Z) (lin(Z), resp.) the closed
∗-subalgebra of L(s′, s) generated by Z (the closed linear span of Z , resp.).

By [3, Lemma 4.4], every closed commutative ∗-subalgebra E of L(s′, s) admits
a special Schauder basis. This basis consists of all nonzero minimal projections in E
([3, Lemma 4.4] shows that these projections are pairwise orthogonal) and we call it
the canonical Schauder basis of E .

Proposition 5.1 [3, Proposition 4.7] Every sequence {Pk}k∈N ⊂ L(s′, s) of nonzero
pairwise orthogonal projections is the canonical Schauder basis of the algebra
alg({Pk}k∈N ). In particular, {Pk}k∈N is a basic sequence in L(s′, s), i.e. it is a
Schauder basis of the Fréchet space lin({Pk}k∈N ).

Theorem 5.2 [3, Theorem 4.8] Let E be an infinite-dimensional closed commutative
∗-subalgebra of L(s′, s) and let {Pk}k∈N be the canonical Schauder basis of E. Then

E = alg({Pk}k∈N) ∼= λ∞(||Pk ||q)

as Fréchet ∗-algebras and the isomorphism is given by Pk 	→ ek for k ∈ N.

Please note that a projection P is in L(s′, s) if and only if it is of the form

Pξ =
∑
k∈I

〈ξ, fk〉 fk

for some finite set I and an orthonormal sequence ( fk)k∈I ⊂ s.
We will also use the identity

λ∞(||〈·, fk〉 fk ||q) = λ∞(| fk |q) (2)

which holds for every orthonormal sequence ( fk)k∈N ⊂ s. (see [3, Rem. 4.11]).
Now we are ready to state and prove the main result of this section.

Theorem 5.3 Every closed commutative ∗-subalgebra of L(s′, s) is isomorphic as
a Fréchet ∗-algebra to some closed ∗-subalgebra of the algebra λ∞(| fk |q) for some
orthonormal sequence ( fk)k∈N ⊂ s. More precisely, if E is an infinite-dimensional
closed commutative ∗-subalgebra of L(s′, s) and (

∑
j∈Nk

〈·, f j 〉 f j )k∈N is its canon-
ical Schauder basis for some family of finite pairwise disjoint subsets (Nk)k∈N of
natural numbers and an orthonormal sequence ( f j ) j∈N ⊂ s, then E is isomor-
phic as a Fréchet ∗-algebra to the closed ∗-subalgebra of λ∞(| fk |q) generated by
{∑ j∈Nk

e j }k∈N and the isomorphism is given by
∑

j∈Nk
〈·, f j 〉 f j 	→ ∑

j∈Nk
e j for

k ∈ N.
Conversely, if ( fk)k∈N ⊂ s is an orthonormal sequence, then every closed ∗-sub-

algebra of λ∞(| fk |q) is isomorphic as a Fréchet ∗-algebra to some closed commutative
∗-subalgebra of L(s′, s).

Proof By Theorem 5.2, E = alg
({∑

j∈Nk
〈·, f j 〉 f j

}
k∈N

)
for (Nk)k∈N and

( f j ) j∈N ⊂ s as in the statement. Let F be the closed ∗-subalgebra of λ∞(| fk |q)

generated by {∑ j∈Nk
e j }k∈N. Define
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� : alg({〈·, fk〉 fk}k∈N ) → λ∞(| fk |q)

by 〈·, fk〉 fk 	→ ek , where N := ⋃
k∈NNk . By Proposition 5.1, {〈·, fk〉 fk}k∈N

is the canonical Schauder basis of alg({〈·, fk〉 fk}k∈N ), and thus Theorem 5.2 and
(2) imply that � is a Fréchet ∗-algebra isomorphism. Hence, (

∑
j∈Nk

e j )k∈N =
(�(

∑
j∈Nk

〈·, f j 〉 f j ))k∈N is a Schauder basis of �(E) and �(E) is a closed ∗-
subalgebra of λ∞(| fk |q). Therefore,

�(E) = lin

⎛
⎝
⎧⎨
⎩
∑
j∈Nk

e j

⎫⎬
⎭

k∈N

⎞
⎠ ⊂ F ⊂ �(E),

whence�(E) = F . In consequence�|E is a Fréchet ∗-algebra isomorphism of E and
F , which completes the proof of the first statement.

If now ( fk)k∈N ⊂ s is an arbitrary orthonormal sequence then, according to Propo-
sition 5.1, Theorem5.2 and identity (2),λ∞(| fk |q) is isomorphic as a Fréchet ∗-algebra
to alg({〈·, fk〉 fk}k∈N). Consequently, every closed ∗-subalgebra of λ∞(| fk |q) is iso-
morphic as a Fréchet ∗-algebra to some closed ∗-subalgebra of alg({〈·, fk〉 fk}k∈N).

��
The following characterization of infinite-dimensional closed commutative ∗-

subalgebras of L(s′, s) is a straightforward consequence of Proposition 4.3 and
Theorem 5.3.

Corollary 5.4 Every infinite-dimensional closed commutative ∗-subalgebra ofL(s′, s)
is isomorphic as a Fréchet ∗-algebra to the algebra λ∞(max j∈Nk | f j |q) for some
orthonormal sequence ( fk)k∈N ⊂ s and some family {Nk}k∈N of finite nonempty
pairwise disjoint sets of natural numbers. In fact, if E is an infinite-dimensional
closed commutative ∗-subalgebra of L(s′, s) and (

∑
j∈Nk

〈·, f j 〉 f j )k∈N is its canoni-
cal Schauder basis, then

E ∼= λ∞
(
max
j∈Nk

| f j |q
)

as Fréchet ∗-algebras and the isomorphism is given by
∑

j∈Nk
〈·, f j 〉 f j 	→ ek for

k ∈ N.
Conversely, if ( fk)k∈N ⊂ s is an orthonormal sequence and {Nk}k∈N is a family of

finite nonempty pairwise disjoint sets of natural numbers, then λ∞(max j∈Nk | f j |q) is
isomorphic as a Fréchet ∗-algebra to some infinite-dimensional closed commutative
∗-subalgebra of L(s′, s).

At the end of this sectionwe consider the case ofmaximal commutative subalgebras
of L(s′, s). A closed commutative ∗-subalgebra of L(s′, s) is said to be maximal com-
mutative if it is not properly contained in any larger closed commutative ∗ -subalgebra
of L(s′, s).

We say that an orthonormal system ( fk)k∈N of �2 is s-complete, if every fk belongs
to s and for every ξ ∈ s the following implication holds: if 〈ξ, fk〉 = 0 for every
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k ∈ N, then ξ = 0. A sequence {Pk}k∈N of nonzero pairwise orthogonal projections
belonging to L(s′, s) is called L(s′, s)-complete if there is no nonzero projection P
belonging to L(s′, s) such that Pk P = 0 for every k ∈ N.

One can easily show that an orthonormal system ( fk)k∈N is s-complete if and only if
the sequence of projections (〈·, fk〉 fk)k∈N isL(s′, s)-complete.Hence, by [3, Theorem
4.10], closed commutative ∗-subalgebra E of L(s′, s) is maximal commutative if
and only if there is an s-complete sequence ( fk)k∈N such that (〈·, fk〉 fk)k∈N is the
canonical Schauder basis of E . Combining this with Corollary 5.4, we obtain the first
statement of the following corollary.

Corollary 5.5 Every closed maximal commutative ∗-subalgebra ofL(s′, s) is isomor-
phic as a Fréchet ∗-algebra to the algebra λ∞(| fk |q) for some s-complete orthonormal
sequence ( fk)k∈N. More precisely, if E is a closed maximal commutative ∗-subalgebra
of L(s′, s) with the canonical Schauder basis (〈·, fk〉 fk)k∈N, then

E ∼= λ∞(| fk |q)

as Fréchet ∗-algebras and the isomorphism is given by 〈·, fk〉 fk 	→ ek for k ∈ N.
Conversely, if ( fk)k∈N is an s-complete orthonormal sequence, then λ∞(| fk |q) is

isomorphic as a Fréchet ∗-algebra to some closed maximal commutative ∗-subalgebra
of L(s′, s).

Proof In order to prove the second statement, take an arbitrary s-complete ortho-
normal sequence ( fk)k∈N. By Proposition 5.1 and the remark above our Corollary,
alg({〈·, fk〉 fk}k∈N) is maximal commutative and from the first statement it follows
that it is isomorphic as a Fréchet ∗-algebra to λ∞(| fk |q). ��

It is also worth pointing out the following result.

Proposition 5.6 Every commutative (not necessary closed) ∗-subalgebra of L(s′, s)
is contained in some maximal commutative ∗-subalgebra of L(s′, s).

Proof Let E be a commutative ∗-subalgebra of L(s′, s). Clearly,

X := {Ẽ : Ẽ commutative∗ -subalgebra of L(s′, s) and E ⊂ Ẽ}

with the inclusion relation is a partially ordered set. Consider a nonempty chain C inX
and let EC := ⋃

F∈C F . It is easy to check that EC ∈ X , and, of course, EC is an upper
bound of C. Hence, by the Kuratowski–Zorn lemma, X has a maximal element; let us

call it M . By the continuity of the algebra operations, M
L(s′,s)

is a closed commutative
∗-subalgebra of L(s′, s), hence from the maximality of M , we have M = M

L(s′,s)
,

i.e. M is a (closed) maximal commutative ∗-subalgebra of L(s′, s) containing E . ��

6 Closed commutative ∗-subalgebras of L(s′, s) with the property (�)

Themain purpose of the last section is to prove that a closed commutative ∗-subalgebra
of L(s′, s) is isomorphic as a Fréchet ∗-algebra to some closed ∗-subalgebra of s if
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and only if it is isomorphic as a Fréchet space to some complemented subspace of s
(Theorem 6.2), i.e. if it has the so-called property (�).

Definition 6.1 A Fréchet space E with a fundamental sequence (|| · ||q)q∈N0 of semi-
norms has the property (�) if the following condition holds:

∀p ∃q ∀r ∃θ ∈ (0, 1) ∃C > 0 ∀y ∈ E ′ ||y||′q ≤ C ||y||′1−θ
p ||y||′θr ,

where E ′ is the topological dual of E and ||y||′p := sup{|y(x)| : ||x ||p ≤ 1}.
The property (�) (together with the property (DN)) plays a crucial role in the theory

of nuclear Fréchet spaces (for details, see [13, Ch. 29]).
Recall that a subspace F of a Fréchet space E is called complemented (in E) if there

is a continuous projectionπ : E → E with imπ = F . Since every subspace ofL(s′, s)
has the property (DN) (and, by [3, Proposition 3.2], the norm || · ||�2→�2 is already a
dominating norm) [13, Proposition 31.7] implies that a closed ∗-subalgebra ofL(s′, s)
is isomorphic to a complemented subspace of s if and only if it has the property (�).
The class of complemented subspaces of s is still not well-understood (e.g. we do not
know whether every such subspace has a Schauder basis—the Pełczyński problem)
and, on the other hand, the class of closed ∗-subalgebras of s has a simple description
(see Corollary 4.4). The following theorem implies that, when restricting to the family
of closed commutative ∗-subalgebras of L(s′, s), these two classes of Fréchet spaces
coincide.

Theorem 6.2 Let E be an infinite-dimensional closed commutative ∗-subalgebra of
L(s′, s) and let (

∑
j∈Nk

〈·, f j 〉 f j )k∈N be its canonical Schauder basis. Then the fol-
lowing assertions are equivalent:

(i) E is isomorphic as a Fréchet ∗-algebra to some closed ∗-subalgebra of s;
(ii) E is isomorphic as a Fréchet space to some complemented subspace of s;
(iii) E has the property (�);
(iv) ∃p ∀q ∃r ∃C > 0 ∀k max j∈Nk | f j |q ≤ C max j∈Nk | f j |rp.

In order to prove Theorem 6.2, we will need Lemmas 6.3, 6.4 and Propositions 6.5,
6.6.

The following result is a consequence of nuclearity of closed commutative ∗-
subalgebras of L(s′, s).

Lemma 6.3 Let ( fk)k∈N ⊂ s be an orthonormal sequence and let (Nk)k∈N be a family
of finite pairwise disjoint subsets of natural numbers. For r ∈ N0 let σr : N → N be a
bijection such that the sequence (max j∈Nσr (k)

| f j |r )k∈N is non-decreasing. Then there
is r0 ∈ N such that

lim
k→∞

k

max j∈Nσr (k)
| f j |r = 0

for all r ≥ r0.
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Proof By Corollary 5.4, λ∞(max j∈Nk | f j |q) is a nuclear space. Hence, by the
Grothendieck–Pietsch theorem (see e.g. [13, Theorem 28.15]), for every q ∈ N0
there is r ∈ N0 such that

∞∑
k=1

max j∈Nk | f j |q
max j∈Nk | f j |r < ∞.

In particular (for q = 0), there is r0 such that for r ≥ r0 we have

∞∑
k=1

1

max j∈Nσr (k)
| f j |r =

∞∑
k=1

1

max j∈Nk | f j |r < ∞.

Since the sequence (max j∈Nσr (k)
| f j |r )k∈N is non-decreasing, the conclusion follows

from the elementary theory of number series. ��
Lemma 6.4 Let (ak)k∈N ⊂ [1,∞) be a non-decreasing sequence such that ak ≥ 2k
for k big enough. Then there exist a strictly increasing sequence (bk)k∈N of natural
numbers and C > 0 such that

1

C
ak ≤ bk ≤ Ca2

k

for every k ∈ N.

Proof Let k0 ∈ N be such that ak ≥ 2k for k > k0 and choose C ∈ N so that

1

C
ak ≤ k ≤ Ca2

k

for k ∈ N0 := {1, . . . , k0}. Denote also N1 := {k ∈ N : ak = ak0+1} and, recur-
sively, N j+1 := {k ∈ N : ak = amaxN j +1}. Clearly, N j are finite, pairwise disjoint,⋃

j∈N0
N j = N and k < l for k ∈ N j , l ∈ N j+1.

Let bk := k for k ∈ N0 and let

bm j +l−1 := C�max{a2
m j −1, am j }� + l

for j ∈ N and 1 ≤ l ≤ |N j |, where m j := minN j and �x� := min{n ∈ Z : n ≥ x}
stands for the ceiling of x ∈ R. We will show inductively that (bk)k∈N is a strictly
increasing sequence of natural numbers such that

1

C
ak ≤ bk ≤ Ca2

k (3)

for every k ∈ N.
Clearly, the condition (3) holds for k ∈ N0. Assume that (bk)k∈N0∪···∪N j is a

strictly increasing sequence of natural numbers for which the condition (3) holds. For
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simplicity, denote m := minN j+1. By the inductive assumption, we obtain bm−1 ≤
Ca2

m−1, hence

bm − bm−1 ≥ C�max{a2
m−1, am}� + 1 − Ca2

m−1 ≥ Ca2
m−1 + 1 − Ca2

m−1 ≥ 1

so bm−1 < bm , and, clearly, bm < bm+1 < · · · < bmaxN j+1 .
Fix 1 ≤ l ≤ |N j+1|. We have

bm+l−1 ≥ Cam = Cam+l−1 ≥ 1

C
am+l−1

so the first inequality in (3) holds for k ∈ N j+1. Next, by assumption, we get

am+l−1 ≥ 2(m + l − 1), (4)

whence
l ≤ am−l+1 − m + 1. (5)

Consider two cases. If am ≥ a2
m−1, then, from (5)

bm−l+1 = C�am� + l = C�am+l−1� + l ≤ 2Cam+l−1 + am+l−1 − m + 1

≤ (2C + 1)am+l−1 ≤ Ca2
m+l−1,

where the last inequality holds because C ≥ 1 and, from (4), we have

am−l+1 ≥ 2(m + l − 1) ≥ 2m ≥ 2(k0 + 1) ≥ 4.

Finally, if a2
m−1 > am , then, from (4), we obtain (note that, by the definition of N j

and N j+1, we have am−1 < am)

bm−l+1 = C�a2
m−1� + l

≤ C�(am − 1)2� + l

= C�a2
m − 2am + 1� + l

≤ C(a2
m − 2am + 2) + l

≤ Ca2
m − 2Cam + 2C + Cl

= Ca2
m+l−1 − C(2am+l−1 − 2 − l)

≤ Ca2
m+l−1 − C(4(m + l − 1) − 2 − l)

= Ca2
m+l−1 − C(4m + 3l − 6) ≤ Ca2

m+l−1.

Hence we have shown that the second inequality in (3) holds for k ∈ N j+1, and the
proof is complete. ��
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Proposition 6.5 Let E be an infinite-dimensional closed commutative ∗-subalgebra
of L(s′, s) and let (

∑
j∈Nk

〈·, f j 〉 f j )k∈N be its canonical Schauder basis. Moreover,
let (nk)k∈N be a strictly increasing sequence of natural numbers and let F be the
closed ∗-subalgebra of s generated by {enk }k∈N. Then the following assertions are
equivalent:

(i) E is isomorphic to F as a Fréchet ∗-algebra;
(ii) λ∞(max j∈Nk | f j |q) ∼= λ∞(nq

k ) as Fréchet ∗-algebras;
(iii) there is a bijection σ : N → N such that λ∞(max j∈Nσ(k)

| f j |q) = λ∞(nq
k ) as

Fréchet ∗-algebras;
(iv) there is a bijection σ : N → N such that λ∞(max j∈Nσ(k)

| f j |q) = λ∞(nq
k ) as

sets;
(v) there is a bijection σ : N → N such that

(α) ∀q ∈ N0 ∃r ∈ N0 ∃C > 0 ∀k ∈ N max j∈Nσ(k)
| f j |q ≤ Cnr

k,

(β) ∀r ′ ∈ N0 ∃q ′ ∈ N0 ∃C ′ > 0 ∀k ∈ N nr ′
k ≤ C ′ max j∈Nσ(k)

| f j |q ′ .

Proof This is an immediate consequence of Proposition 4.2 and Corollary 5.4. ��
In view of Corollary 4.4, every closed ∗-subalgebra of s is isomorphic as a Fréchet

∗-algebra to λ∞(nq
k ) (i.e. the closed ∗-subalgebra of s generated by {enk }k∈N) for some

strictly increasing sequence (nk)k∈N ⊂ N, hence Proposition 6.5 characterizes closed
commutative ∗-subalgebras of L(s′, s) which are isomorphic as Fréchet ∗-algebras to
some ∗-subalgebra of s.

The property (DN) for the space s gives us the following inequality.

Proposition 6.6 For every p, r ∈ N0 there is q ∈ N0 such that for all ξ ∈ s with
||ξ ||�2 = 1 the following inequality holds

|ξ |rp ≤ |ξ |q .

Proof Take p, r ∈ N0 and let j ∈ N0 be such that r ≤ 2 j . Applying iteratively
( j-times) the inequality from Proposition 3.2 to ξ ∈ s with ||ξ ||�2 = 1 we get

|ξ |rp ≤ |ξ |2 j

p ≤ |ξ |2 j p,

and thus the required inequality holds for q = 2 j p. ��
Now we are ready to prove Theorem 6.2.

Proof of Theorem 6.2. (i)⇒(ii): By Corollary 4.4, each closed ∗-subalgebra of s is a
complemented subspace of s.

(ii)⇔(iii): See e.g. [13, Proposition31.7].
(iii)⇒(iv): By Corollary 5.4 and nuclearity (see e.g. [13, Proposition28.16]),

E ∼= λ∞
(
max
j∈Nk

| f j |q
)

= λ1
(
max
j∈Nk

| f j |q
)
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as Fréchet ∗-algebras. Hence, by [21,22, Proposition 5.3], the property (�) yields

∀l ∃m ∀n ∃t ∃C > 0 ∀k max
j∈Nk

| f j |tl max
j∈Nk

| f j |n ≤ C max
j∈Nk

| f j |t+1
m .

In particular, taking l = 0, we get (iv).
(iv)⇒(i): Take p from the condition (iv). By Lemma 6.3(ii), there is p1 ≥ p

and a bijection σ : N → N such that (max j∈Nσ(k)
| f j |p1)k∈N is non-decreasing and

limk→∞ k
max j∈Nσ(k)

| f j |p1
= 0. Consequently, for k big enough

max
j∈Nσ(k)

| f j |p1 ≥ 2k,

and therefore, by Lemma 6.4, there is a strictly increasing sequence (nk)k∈N ⊂ N and
C1 > 0 such that

1

C1
max

j∈Nσ(k)

| f j |p1 ≤ nk ≤ C1 max
j∈Nσ(k)

| f j |2p1 (6)

for every k ∈ N. Now, by the conditions (iv) and (6), we get that for all q there is r
and C2 := CCr

1 such that

max
j∈Nσ(k)

| f j |q ≤ C max
j∈Nσ(k)

| f j |rp1 ≤ C2nr
k

for all k ∈ N, so the condition (α) from Proposition 6.5(v) holds. Finally, by (6) and
Proposition 6.6 we obtain that for all r ′ there is q ′ and C3 := Cr ′

1 such that

nr ′
k ≤ C3 max

j∈Nσ(k)

| f j |2r ′
p1 ≤ C3 max

j∈Nσ(k)

| f j |q ′

for every k ∈ N. Hence the condition (β) from Proposition 6.5(v) is satisfied, and
therefore, by Proposition 6.5, E is isomorphic as a Fréchet ∗-algebra to the closed
∗-subalgebra of s generated by {enk }k∈N. ��

Now we shall give an example of some class of closed commutative ∗-subalgebras
of L(s′, s) which are isomorphic to closed ∗-subalgebras of s.

Example 6.7 Let H1 := [1]. We define recursively Hadamard matrices

H2n :=
[
H2n−1 H2n−1

H2n−1 −H2n−1

]

for n ∈ N. Then the matrices Ĥ2n := 2− n
2H2n are unitary, and thus their rows form an

orthonormal system of 2n vectors. Now fix an arbitrary sequence (dn)n∈N ⊂ N0 and
define
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U :=

⎡
⎢⎢⎢⎣
Ĥ2d1 0 0 . . .

0 Ĥ2d2 0 . . .

0 0 Ĥ2d3

...
...

. . .

⎤
⎥⎥⎥⎦ .

Let fk denote the k-th row of the matrix U . Then ( fk)k∈N is an orthonormal basis
of �2 and clearly each fk belongs to s. We will show that the closed (maximal) com-
mutative ∗-subalgebra alg({〈, ·, fk〉 fk}k∈N) of L(s′, s) is isomorphic to some closed
∗-subalgebra of s. By Theorem 6.2, it is enough to prove that

∃p ∀q ∃r ∃C > 0 ∀k | fk |∞,q ≤ C | fk |r∞,p. (7)

Fix q ∈ N0, k ∈ N and find n ∈ N such that 2d1 + · · · + 2dn−1 < k ≤ 2d1 + · · · + 2dn .
Then

| fk |∞,q

| fk |2q
∞,1

= 2− dn
2 (2d1 + · · · + 2dn )q

2−dnq(2d1 + · · · + 2dn )2q
= 2dn(q−1/2)(2d1 + · · · + 2dn )−q ≤ 1

and thus the condition (7) holds with p = C = 1 and r = 2q.

The next theorem solves in negative [3, Open Problem 4.13]. In contrast to the alge-
bra s, all of whose closed ∗-subalgebras are complemented subspaces of s (Corollary
4.4), Theorems 6.2 and 6.9 imply that there is a closed commutative ∗-subalgebra of
L(s′, s) which is not complemented in L(s′, s) (otherwise it would have the property
(�), see [13, Proposition 31.7]). In the proof we will use the following identity.

Lemma 6.8 For every increasing sequence (α j ) j∈N ⊂ (0,∞) and every p ∈ N we
have

sup
j∈N

⎛
⎝α

p− j+1
j ·

j−1∏
i=1

αi

⎞
⎠ =

p∏
i=1

αi .

Proof For j ≥ p + 1 we get

α
p− j+1
j · ∏ j−1

i=1 αi∏p
i=1 αi

= α
p− j+1
j ·

j−1∏
i=p+1

αi =
∏ j−1

i=p+1 αi

α
j−p−1
j

≤ 1

and, similarly, for j ≤ p − 1 we obtain

α
p− j+1
j · ∏ j−1

i=1 αi∏p
i=1 αi

= α
p− j+1
j∏p
i= j αi

≤ 1.

Since α
p−p+1
p ·∏p−1

i=1 αi = ∏p
i=1 αi , the supremum is attained for j = p, and we are

done. ��

123



320 T. Ciaś

Theorem 6.9 There is a closed commutative ∗-subalgebra of L(s′, s) which is not
isomorphic to any closed ∗-subalgebra of s.

Proof Let mk be the k-th prime number, Nk,1 := mk , Nk, j+1 := m
Nk, j
k for j, k ∈ N.

Define ak,1 := ck and

ak, j := ck

∏ j−1
i=1 Nk,i

N j−1
k, j

for j ≥ 2, where the sequence (ck)k∈N is choosen so that ||(ak, j ) j∈N||�2 = 1, i.e.

ck :=
⎛
⎜⎝ ∞∑

j=1

⎛
⎝∏ j−1

i=1 Nk,i

N j−1
k, j

⎞
⎠

2
⎞
⎟⎠

−1/2

.

The numbers ck make sense, because, by Lemma 6.8,

∞∑
j=1

⎛
⎝∏ j−1

i=1 Nk,i

N j−1
k, j

⎞
⎠

2

=
∞∑
j=1

⎛
⎝N− j+1

k, j ·
j−1∏
i=1

Nk,i

⎞
⎠

2

=
∞∑
j=1

1

N 2
k, j

⎛
⎝N 1− j+1

k, j ·
j−1∏
i=1

Nk,i

⎞
⎠

2

≤ sup
j∈N

⎛
⎝N 1− j+1

k, j ·
j−1∏
i=1

Nk,i

⎞
⎠

2 ∞∑
j=1

1

N 2
k, j

= N 2
k,1

∞∑
j=1

1

N 2
k, j

< N 2
k,1

∞∑
j=1

1

j2
< ∞.

Finally, define an orthonormal sequence ( fk)k∈N by

fk :=
∞∑
j=1

ak, j eNk, j .

We will show that alg({〈·, fk〉 fk}k∈N) is a closed ∗-subalgebra of L(s′, s) which is
not isomorphic as an algebra to any closed ∗-subalgebra of s. By Theorem 6.2 and
nuclearity, it is enough to show that each fk belongs to s and for every p, r ∈ N the
following condition holds

lim
k→∞

| fk |∞,p+1

| fk |r∞,p
= ∞,

where |ξ |∞,q := sup j∈N |ξ j | jq .
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Note first that | fk |∞,p = ak,p N p
k,p. In fact, by Lemma 6.8, we get

| fk |∞,p = sup
j∈N

ak, j N p
k, j = ck sup

j∈N

⎛
⎝N p

k, j ·
∏ j−1

i=1 Nk,i

N j−1
k, j

⎞
⎠

= ck sup
j∈N

⎛
⎝N p− j+1

k, j ·
j−1∏
i=1

Nk,i

⎞
⎠

= ck

p∏
i=1

Nk,i = ck N p
k,p ·

∏p−1
i=1 Nk,i

N p−1
k,p

= ak,p N p
k,p.

In particular, fk ∈ s for k ∈ N. Next, for j, k ∈ N, we have

ak, j+1N j
k, j+1

ak, j
=

ck N j
k, j+1 ·

∏ j
i=1 Nk,i

N j
k, j+1

ck

∏ j−1
i=1 Nk,i

N j−1
k, j

=
∏ j

i=1 Nk,i∏ j−1
i=1 Nk,i

N j−1
k, j

= N j
k, j .

Moreover, for every j, r ∈ N we get

Nk, j+1

Nr
k, j

= m
Nk, j
k

Nr
k, j

≥ 2Nk, j

Nr
k, j

−−−→
k→∞ ∞,

and clearly ak, j ≤ 1 for j, k ∈ N. Hence, for p, r ∈ N we obtain

| fk |∞,p+1

| fk |r∞,p
= ak,p+1N p+1

k,p+1

ar
k,p N pr

k,p

= ak,p+1N p
k,p+1

ak,p
· 1

ar−1
k,p

· Nk,p+1

N pr
k,p

= N p
k,p · 1

ar−1
k,p

· Nk,p+1

N pr
k,p

≥ Nk,p+1

N pr
k,p

−−−→
k→∞ ∞,

which is the desired conclusion. ��
We end this section with two consequences of Theorem 6.2.
For a monotonically increasing sequence α = (αk)k∈N in [0,∞) such that

lim j→∞ α j = ∞ we define the power series space of infinite type

�∞(α) := {(ξ j ) j∈N ⊂ C
N :

∞∑
k=1

|ξk |2e2qαk < ∞ for all q ∈ N0}.

Corollary 6.10 Let E be a closed commutative ∗-subalgebra of L(s′, s) isomorphic
as Fréchet space to �∞(α). Then E is isomorphic to �∞(α) as a Fréchet ∗-algebra.
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Proof Let (Pk)k∈N be the canonical Schauder basis of E . In view of Proposition 4.2,
we should show that there is a bijection σ : N → N such that

(α) ∀q ∈ N0 ∃r ∈ N0 ∃C > 0 ∀k ∈ N ||Pσ(k)||q ≤ Cerαk ,
(β) ∀r ′ ∈ N0 ∃q ′ ∈ N0 ∃C ′ > 0 ∀k ∈ N er ′αk ≤ C ′||Pσ(k)||q ′ .

By Theorem 6.2, E is isomorphic as a Fréchet ∗-algebra to some infinite-dimensional
closed ∗-subalgebra of s, and thus by Corollary 4.4, E is isomorphic as a Fréchet
∗-algebra to λ∞(nq

k ) for some strictly increasing sequence (nk)k∈N in N. Hence, by
Proposition 4.2, there is a bijection σ : N → N such that

∀q ∈ N0 ∃r ∈ N0 ∃C > 0 ∀k ∈ N ||Pσ(k)||q ≤ Cnr
k, (8)

∀r ′ ∈ N0 ∃q ′ ∈ N0 ∃C ′ > 0 ∀k ∈ N nr ′
k ≤ C ′||Pσ(k)||q ′ . (9)

Since λ∞(nq
k ) = �∞(log nk), it follows from [13, Theorem 29.1] that there is q ∈ N

and k0 such that for k ≥ k0

1

q
αk ≤ log nk ≤ qαk .

Consequently, there is q ∈ N and D > 0 such that

eαk ≤ Dnq
k and nk ≤ Deqαk

for all k ∈ N. Now (8) and (9) yield the desired conclusion. ��
By the theorem of Crone and Robinson [5] it follows that all bases of the space

s are quasi-equivalent, i.e. given any two bases ( fk)k∈N and (gk)k∈N of s, there is a
bijection σ : N → N and a sequence (ck)k∈N of non-zero scalars such that the operator
T : s → s defined by T ek = ck fσ(k) is a Fréchet space isomorphism. Our last result
shows that in the case of bases of s which form an orthonormal sequence of �2, the
sequence (ck)k∈N can always be taken constant and equal to 1.

Corollary 6.11 For every Schauder basis ( fk)k∈N of the space s which is at the same
time an orthonormal sequence of �2 there is a bijection σ : N → N such that T : s → s
defined by T ek := fσ(k), k ∈ N, is a Fréchet space isomorphism.

Proof Clearly, the closed ∗-subalgebra E ofL(s′, s) generated by the sequence of one-
dimensional projections (〈·, fk〉 fk)k∈N is isomorphic as a Fréchet space to s. Hence,
by Corollaries 5.5 and 6.10, λ∞(| fk |q) ∼= E ∼= s as Fréchet ∗-algebras. Now, by
Proposition 4.2, there is a bijection σ : N → N such that

∀q ∈ N0 ∃r ∈ N0 ∃C > 0 ∀k ∈ N | fσ(k)|r ≤ Ckr ,

∀r ′ ∈ N0 ∃q ′ ∈ N0 ∃C ′ > 0 ∀k ∈ N kr ′ ≤ C ′| fσ(k)|q ′ .

This shows that the map T : s → s which sends ek to fσ(k), k ∈ N, defines an
automorphism of the Fréchet space s. ��
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