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Abstract This article contains aWiener Lemma for the convolution algebra �1(H, C)

and group C∗-algebra C∗(H) of the discrete Heisenberg group H. At first, a short
review of Wiener’s Lemma in its classical form and general results about invertibility
in group algebras of nilpotent groups will be presented. The known literature on
this topic suggests that invertibility investigations in the group algebras of H rely on
the complete knowledge of ̂H—the dual of H, i.e., the space of unitary equivalence
classes of irreducible unitary representations.Wewill describe the dual ofH explicitly
and discuss its structure. Wiener’s Lemma provides a convenient condition to verify
invertibility in �1(H, C) andC∗(H)which bypasseŝH. The proof of Wiener’s Lemma
forH relies on local principles and can be generalised to countable nilpotent groups.As
our analysis shows, the main representation theoretical objects to study invertibility
in group algebras of nilpotent groups are the corresponding primitive ideal spaces.
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Wiener’s Lemma for H has interesting applications in algebraic dynamics and time-
frequency analysis which will be presented in this article as well.

Keywords Invertibility ·Wiener’s Lemma · Discrete Heisenberg group

Mathematics Subject Classification 54H20 · 37A45 · 22D10 · 37C85 · 47B38

1 Motivation

LetΓ be a countably infinite discrete group. The aim of this article is to find a verifiable
criterion—a Wiener Lemma—for invertibility in the group algebra

�1(Γ, C) :=
{

( fγ )γ∈Γ :
∑

γ∈Γ

| fγ | < ∞
}

,

in particular for the case where Γ is the discrete Heisenberg group H.
Our main motivation to study this problem is an application in the field of algebraic

dynamics which we introduce first. An algebraic Γ -action is a homomorphism α :
Γ −→ Aut (X) from Γ to the group of automorphisms of a compact metrisable
abelian group X [33].

We are especially interested in principal actions which are defined as follows. Let
f be an element in the integer group ring Z[Γ ], i.e., the ring of functions Γ −→ Z

with finite support. The Pontryagin dual of the discrete abelian group Z[Γ ]/ Z[Γ ] f
will be denoted by X f ⊆ T

Γ , where T = R/Z (which will be identified with the unit
interval (0, 1]). Pontryagin’s duality theory of locally compact abelian groups tells us
that X f can be identified with the annihilator of the principal left ideal Z[Γ ] f , i.e.,

X f = (Z[Γ ] f )⊥ =
{

x ∈ T
Γ :

∑

γ∈Γ

fγ xγ ′γ = 0 for every γ ′ ∈ Γ

}

. (1)

The left shift-action λ on T
Γ is defined by (λγ x)γ ′ = xγ−1γ ′ for every x ∈ T

Γ and

γ, γ ′ ∈ Γ . Denote by α f the restriction of λ onT
Γ to X f . The pair (X f , α f ) forms an

algebraic dynamical system which we call principal Γ -action—because it is defined
by a principal ideal [cf. (1)].

Since a principal Γ -action (X f , α f ) is completely determined by an element
f ∈ Z[Γ ], one should be able to express its dynamical properties in terms of proper-
ties of f . Expansiveness is such a dynamical property which allows a nice algebraic
interpretation. Let (X, α) be an algebraic dynamical system and d a translation invari-
ant metric on X . The Γ -action α is expansive if there exists a constant ε > 0 such
that

sup
γ∈Γ

d(αγ x, αγ y) > ε,

for all pairs of distinct elements x, y ∈ X . We know from [8, Theorem 3.2] that
(X f , α f ) is expansive if and only if f is invertible in �1(Γ, R). This result was proved
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already in the special casesΓ = Z
d and for groupsΓ which are nilpotent in [33] and in

[9], respectively. Although, this result is a complete characterisation of expansiveness,
it is in general hard to check whether f is invertible in �1(Γ, R) or not.

1.1 Outline of the article

In Sect. 2 we will recall known criteria for invertibility in symmetric unital Banach
algebras A. The most important result links invertibility investigations in A to the
representation theory of A. More precisely, the existence of an inverse a−1 of a ∈ A
is equivalent to the invertibility of the operators π(a) for every irreducible unitary
representation π of A. The representation theory of H is unmanageable as we will
demonstrate in Sect. 3.

Theorem 11—Wiener’s Lemma for the discrete Heisenberg group—is the main
result of this paper and allows one to restrict the attention to certain ‘nice’ and canonical
irreducible representations for questions concerning invertibility in the group algebra
of the discrete Heisenberg group H. The proof of Theorem 11 can be found in Sect. 4.
Moreover, aswill be shown in Sect. 4 aswell, invertibility of f ∈ Z[H] in �1(H, R) can
be verified with the help of the finite-dimensional irreducible unitary representations
of H.

In Sect. 5 we generalise Theorem 11 to countable discrete nilpotent groups Γ . This
result says that an element a in C∗(Γ ) is invertible if and only if for every primitive
ideal I ofC∗(Γ ) the projection of a onto the quotient spaceC∗(Γ )/I is invertible. As
we will see, the primitive ideal space is more accessible than the space of irreducible
representations and easy to determine. Moreover, this Wiener Lemma for nilpotent
groups can be converted to a statement about invertibility of evaluations of irreducible
monomial representations.

In Sect. 6 we will explore a connection to time-frequency analysis. Allan’s local
principle (cf. Sect. 4) directly links localisations of �1(H, C) to twisted convolution
algebras and hence, the representations of H and the relevant representation theory
in the field of time-frequency analysis coincide. In order to highlight this connection
even more, time-frequency analysis might be interpreted as the Fourier theory on the
discrete Heisenberg group H; due to the striking similarities to the Fourier analysis of
the additive group Z and its group algebras. Moreover, we give an alternative proof of
Wiener’s Lemma for twisted convolution algebras, which only uses the representation
theory of H. Theorem 22—which is based on a result of Linnell (cf. [25])—gives a
full description of the spectrum of the operators π( f ) acting on L2(R, C), where π

is a Stone-von Neumann representation [cf. (23] for a definition) and f ∈ Z[H].
Section 7 contains applications of Theorem 11 and Wiener’s Lemma for twisted

convolution algebras, in particular, conditions for non-invertibility for ‘linear’ ele-
ments in f ∈ Z[H].

2 Invertibility in group algebras and Wiener’s Lemma: a review

In this section we review known conditions for invertibility in group algebras of nilpo-
tent groups Γ . First of all we refer to the article [14] by Gröchenig for a modern survey
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of Wiener’s Lemma and its variations. Gröchenig’s survey focuses on two main top-
ics, namely on invertibility of convolution operators on �p-spaces (cf. Sect. 2.2 and
in particular Theorem 7) and inverse-closedness. Moreover, Gröchenig explains how
these topics are related to questions on invertibility in time-frequency analysis and
invertibility in group algebras. Although, Wiener’s Lemma for convolution operators
is stated here as well it will play an insignificant role in the rest of the paper. However,
we would like to bring the reader’s attention to Theorem 8 which is yet another result
which relates invertibility in �1(Γ, C) to invertibility of convolution operators. This
result is completely independent of Theorem 7 and holds in much greater generality.

In this review we will explain why a detailed understanding of the space of irre-
ducible representations of a nilpotent group Γ is of importance for invertibility
investigations in the group algebras of Γ . Furthermore, we will present Gelfand’s
results on invertibility in commutative Banach algebras in the form of local principles;
which will be discussed in greater detail in later sections of this article.

We start the discussion with Wiener’s Lemma in its classical form. Let us denote
by A(T) the Banach algebra of functions with absolutely convergent Fourier series
on T.

Theorem 1 (Wiener’s Lemma) An element F ∈ A(T) is invertible, i.e. 1/F ∈ A(T),
if and only if F(s) 	= 0 for all s ∈ T.

Before we start our review of more general results let us mention the concept of
inverse-closedness which originates from Wiener’s Lemma as well. The convolution
algebra �1(Z, C) is isomorphic to A(T) and hence �1(Z, C) can be embedded in the
larger Banach algebra of continuous functions C(T, C) in a natural way. The fact that
F ∈ A(T) is invertible in A(T) if and only if F is invertible in C(T, C) leads to the
question: for which pairs of nested unital Banach algebrasA,B withA ⊆ B and with
the same multiplicative identity element does the following implication hold:

a ∈ A and a−1 ∈ B 
⇒ a−1 ∈ A. (2)

In the literature a pair of Banach algebras which fulfils (2) is called a Wiener pair.
Wiener’s Lemma was the starting point of Gelfand’s study of invertibility in com-

mutative Banach algebras. Gelfand’s theory links the question of invertibility in a
commutative Banach algebra A to the study of its irreducible representations and the
compact space ofmaximal idealsMax(A).We collect in the following theorem several
criteria for invertibility in unital commutative Banach algebras.

Theorem 2 (cf. [11]) Suppose A is a unital commutative Banach algebra. The set of
irreducible representations ofA is isomorphic to the compact space of maximal ideals
Max(A). Furthermore, the following statements are equivalent

1. a ∈ A is invertible;
2. a /∈ m for all m ∈ Max (A);
3. Φm(a) is invertible in A/m for all m ∈ Max(A), where Φm : A −→ A/m ∼= C

is the canonical projection map;
4. Φm(a) 	= 0 for all m ∈ Max(A);
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A Wiener Lemma for the discrete Heisenberg group 489

5. π(a)v 	= 0 for every one-dimensional irreducible unitary representation π of A
and v ∈ C �{0} (definitions can be found in Sect. 2.1).

The main goal of this article is to prove that similar results hold for group algebras
of nilpotent groups and, in particular, for the discrete Heisenberg group.

In this article we concentrate on the harmonic analysis of rings associated with
a countably infinite group Γ furnished with the discrete topology. Beside Z[Γ ] and
�1(Γ, C) we are interested in C∗(Γ ), the group-C∗-algebra of Γ , i.e., the enveloping
C∗-algebra of �1(Γ, C).

Let �∞(Γ, C) be the space of bounded complex-valued maps. We write a typical
element f ∈ �∞(Γ, C) as a formal sum

∑

γ∈Γ fγ · γ , where fγ = f (γ ). The

involution f 
→ f ∗ is defined by f ∗ =∑γ∈Γ f̄γ−1 · γ . The product of f ∈ �1(Γ, C)

and g ∈ �∞(Γ, C) is given by convolution

f g =
∑

γ,γ ′∈Γ

fγ gγ ′ · γ γ ′ =
∑

γ,γ ′∈Γ

fγ gγ−1γ ′ · γ ′ . (3)

For 1 ≤ p < ∞ we set

�p(Γ, C) =

⎧

⎪

⎨

⎪

⎩

f = ( fγ ) ∈ �∞(Γ, C) : ‖ f ‖p =
⎛

⎝

∑

γ∈Γ

| fγ |p
⎞

⎠

1/p

< ∞

⎫

⎪

⎬

⎪

⎭

.

2.1 Representation theory

We recall at this point some relevant definitions and results from representation theory,
which will be used later. Moreover, we will state results for symmetric Banach-∗-
algebras which are in the spirit of Wiener’s Lemma.

Unitary representations

Let H be a complex Hilbert space with inner product 〈·, ·〉. We denote by B(H) the
algebra of bounded linear operators onH, furnished with the strong operator topology.
Further, denote by U(H) ⊂ B(H) the group of unitary operators on H. If Γ is a
countable group, a unitary representation π of Γ is a homomorphism γ 
→ π(γ )

from Γ into U(H) for some complex Hilbert spaceH. Every unitary representation π

ofΓ extends to a ∗-representation of �1(Γ, C), which is again denoted byπ , andwhich
is given by the formula π( f ) = ∑γ∈Γ fγ π(γ ) for f = ∑γ∈Γ fγ · γ ∈ �1(Γ, C).
Clearly, π( f ∗) = π( f )∗. The following theorem was probably first published in [12]
but we refer to [30, Theorem 12.4.1].

Theorem 3 Let Γ be a discrete group. Then there are bijections between

– the class of unitary representations of Γ ;
– the class of non-degenerate1 ∗-representations of �1(Γ, C);

1 A representation π of a Banach ∗-algebra A is called non-degenerate if there is no non-zero vector
v ∈ Hπ such that π(a)v = 0 for every a ∈ A.

123



490 M. Göll et al.

– the class of non-degenerate ∗-representations of C∗(Γ ).

Moreover, these bijections respect unitary equivalence and irreducibility.

Hence the representation theories ofΓ , �1(Γ, C) andC∗(Γ ) coincide. In consideration
of this result we will use the same symbol for a unitary representation of Γ and its
corresponding ∗-representations of the group algebras �1(Γ, C) and C∗(Γ ).

States and the GNS construction

Suppose that A is a unital C∗-algebra. A positive linear functional φ : A −→ C is a
state if φ(1A) = 1. We denote by S(A) the space of states of A, which is a weak∗-
compact convex subset of the dual space ofA. The extreme points of S(A) are called
pure states.

A representation π of A is cyclic if there exists a vector v ∈ Hπ such that the
set {π(a)v : a ∈ A} is dense in Hπ , in which case v is called a cyclic vector. The
Gelfand–Naimark–Segal (GNS) construction links the cyclic representations ofA and
the states of A in the following way. If π is a cyclic representation with a cyclic unit
vector v, then φπ,v , defined by

φπ,v(a) = 〈π(a)v, v〉

for every a ∈ A, is a state ofA. If π is irreducible, then φπ,v is a pure state. Moreover,
for every state φ of A there is a cyclic representation (πφ,Hφ) and a cyclic unit
vector vφ ∈ Hφ such that φ(a) = 〈πφ(a)vφ, vφ〉 for every a ∈ A. The pure states of
A correspond to irreducible representations of A (up to unitary equivalence) via the
GNS construction.

Type I groups

Let H be a Hilbert space. The commutant of a subset N of B(H) is the set

N
′ := {A ∈ B(H) : AS = SA for all S ∈ N } .

A von Neumann algebra N is a ∗-subalgebra of bounded operators on some Hilbert
space H which fulfils N = (N ′

)
′
. The von Neumann algebra Nπ generated by a

unitary representation π of a group Γ , is the smallest von Neumann algebra which
contains π(Γ ).

We call a representation π a factor ifNπ ∩N ′
π = C ·1B(Hπ ). A group is of Type I

if every factor representation is a direct sum of copies of an irreducible representation.

Induced and monomial representations

Let H be a subgroup of a countably infinite group Γ . Suppose σ is a unitary represen-
tation of H with representation spaceHσ . A natural way to extend the representation
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A Wiener Lemma for the discrete Heisenberg group 491

σ of H to a representation ofΓ is as follows: consider the Hilbert spaceHΓ
σ consisting

of all maps F ∈ L2(Γ,Hσ ) which satisfy

F(γ δ) = σ(δ)F(γ ) for every δ ∈ H and γ ∈ Γ.

The induced representation IndΓ
H (σ ) : Γ � γ 
→ IndΓ

H (σ )(γ ) ∈ B(HΓ
σ ) is then

defined by

IndΓ
H (σ )(γ )F(γ ′) = F(γ ′γ ) ∀γ ′ ∈ Γ.

Hence, IndΓ
H (σ ) can be viewed as the right regular representation of Γ acting on the

Hilbert space HΓ
σ .

This construction will becomemore transparent whenwe discuss specific examples
below.

A representation of Γ is called monomial if it is unitarily equivalent to a represen-
tation induced from a one-dimensional representation of a subgroup of Γ .

Theorem 4 ([16]) If Γ is a nilpotent group of Type I, then all its irreducible repre-
sentations are monomial.

2.2 Symmetric Banach-∗-algebras

Let A be a Banach algebra with multiplicative identity element 1A. The spectrum of
a ∈ A is the set of elements c ∈ C such that a − c1A is not invertible in A and will
be denoted by σ(a).

In order to study invertibility in �1(Γ, C) and C∗(Γ ) in the non-abelian setting we
will try to find criteria similar to those described in Theorem 2. For this purpose the
following definition will play a key role.

Definition 1 A unital Banach-∗-algebra A is symmetric if for every element a ∈ A
the spectrum of a∗a is non-negative, i.e., σ(a∗a) ⊆ [0,∞).

Typical examples of symmetric Banach-*-algebras are C∗-algebras.
We turn to the study of nilpotent groups and their associated group algebras.

Theorem 5 ([19]) Let Γ be a countably infinite discrete nilpotent group. Then the
Banach-∗-algebra �1(Γ, C) is symmetric.

The reason why it is convenient to restrict to the study of invertibility in symmet-
ric unital Banach-∗-algebra is demonstrated by the following theorems, which show
similarities to Wiener’s Lemma and Theorem 2, respectively.

For the class of symmetric group algebras one has the following important result
on inverse-closedness.

Theorem 6 ([26], see also [30, Theorem 11.4.1 and Corollary 12.4.5]) If �1(Γ, C) is
a symmetric Banach-∗-algebra, then
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1. �1(Γ, C) is semisimple, i.e., the intersection of the kernels of all the irreducible
representations of �1(Γ, C) is trivial.

2. �1(Γ, C) and its enveloping C∗-algebra C∗(Γ ) form a Wiener pair.

Next we are discussing spectral invariance of convolution operators. It is a well
known fact (cf. [14]) that invertibility of f ∈ �1(Z, C) can be validated by studying
invertibility of the convolution operator C f acting on the Hilbert space �2(Z, C).
Moreover, the spectrum of C f is independent of the domain, i.e., the spectrum of the
operator C f : �p(Z, C) −→ �p(Z, C) is the same for all p ∈ [1,∞]. As the following
theorem shows, this result is true for a large class of groups, in particular, for all finitely
generated nilpotent groups.

Theorem 7 ([3]) Let f ∈ �1(Γ, C) and C f the associated convolution operator on
�p(Γ, C). For all 1 ≤ p ≤ ∞ one has σB(�p(Γ,C))(C f ) = σB(�2(Γ,C))(C f ) if and only
if Γ is amenable and �1(Γ, C) is a symmetric Banach-∗-algebra.

In particular, for a nilpotent group Γ , f ∈ �1(Γ, C) is invertible in �1(Γ, C) if and
only if 0 /∈ σB(�p(Γ,C))(C f ) for any p ∈ [1,∞].

Let us now give a condition for invertibility of an element �1(Γ, C), where Γ is
an arbitrary discrete countably infinite group, in terms of the point spectrum of the
corresponding convolution operator.

Theorem 8 ([8, Theorem 3.2]) An element f ∈ �1(Γ, C) is invertible in �1(Γ, C) if
and only if

K∞( f ) := {g ∈ �∞(Γ, C) : C f g = 0} = {0}.
This theorem says that it is enough to check if 0 is an eigenvalue of the left con-

volution operator C f : �∞(Γ, C) −→ �∞(Γ, C) in order to determine whether f is
invertible or not [cf. (3)].

Finally, we present a condition for invertibility in a symmetric unital Banach-∗-
algebra A which links invertibility in A to its representation theory.

Theorem 9 ([28]) An element a in a symmetric unital Banach-∗-algebraA is not left
invertible inA if and only if there exists a pure state φ with φ(a∗a) = 0. Equivalently,
a is not left invertible if and only if there exists an irreducible representation π of A
and a unit vector u ∈ Hπ such that π(a)u = 0.

This result should be compared with Gelfand’s theory for commutative Banach
algebras.Wiener’s Lemma for �1(Z, C) says that an element f ∈ �1(Z, C) is invertible
if and only if the Fourier-transform of f does not vanish onT, i.e., (F f )(s) 	= 0 for all
s ∈ T.2 The Fourier-transform of f , evaluated at the point θ ∈ T, can be viewed as the
evaluation of the one-dimensional irreducible unitary representation πθ : n 
→ e2π inθ

of Z at f , i.e.,

(F f )(θ) =
(
∑

n∈Z
fnπθ (n)

)

1 = πθ ( f )1.

2 To fix notation: for F ∈ L2(T, λT) (where λT is the Lebesgue measure on T), the Fourier transform
F̂ : Z −→ C is defined by F̂n = ∫

T
F(s)e−2π ins dλT(s). The Fourier transform (Fg) : T −→ C of

g ∈ �2(Z, C) is defined by (Fg)(s) =∑n∈Z gne2π ins .
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A Wiener Lemma for the discrete Heisenberg group 493

We will explain in the next section that it is not feasible to describe explicitly the
space of unitary equivalence classes of irreducible representations of a non-Type I
group. Hence, Theorem 9 seems to be of limited use for investigating invertibility of
an element f ∈ �1(Γ, C) for a non-Type I nilpotent group Γ . However, as we will see
later, it is one of the key results for obtaining a Wiener Lemma for �1(Γ, C).

3 The dual of the discrete Heisenberg group and a Wiener Lemma

In this section we explain how results from ergodic theory give insight into the space
of irreducible representations of the discrete Heisenberg group, but that this space has
no reasonable parametrisation and is therefore not useful for determining invertibility
in the corresponding group algebras (cf. Theorem 9). At the end of this section, wewill
state our main result—a Wiener Lemma for the discrete Heisenberg group H—which
allows one to restrict the attention to certain canonical representations of H which can
be parametrised effectively and used for solving the invertibility problem.

3.1 The dual of a discrete group

Let Γ be a countable discrete group. Denote by ̂Γ the dual of Γ , i.e., the set of all
unitary equivalence classes of irreducible unitary representations of Γ .

Definition 2 Let A be a C∗-algebra. A closed two-sided ideal I of A is primitive if
there exists an irreducible representation π of A such that ker(π) = I. The set of
primitive ideals of A is denoted by Prim(A).

Suppose that the group Γ is not of Type I. Then certain pathologies arise:

– The map ̂Γ −→ Prim(C∗(Γ )) given by π 
→ ker(π) is not injective. In other
words, if π1, π2 ∈ ̂Γ , then ker(π1) = ker(π2) does not necessarily imply that π1
and π2 are unitarily equivalent.

– ̂Γ is not behaving nicely neither as a topological space nor as a measurable space
in its natural topology or Borel structure, respectively (cf. [11, Chapter 7] for an
overview).

Furthermore, there are examples where the direct integral decomposition of a rep-
resentation is not unique, in the sense that there are disjoint measures μ, ν on ̂Γ such
that
∫⊕
̂Γ

πdμ and
∫⊕
̂Γ

πdν are unitarily equivalent. Moreover, we cannot assume that
all irreducible representations are induced from one-dimensional representations of
finite-index subgroups, as is the case for nilpotent groups of Type I by Theorem 4.

3.2 The discrete Heisenberg group and its dual

The discrete Heisenberg group H is generated by S = {x, x−1, y, y−1}, where

x =
⎛

⎝

1 1 0
0 1 0
0 0 1

⎞

⎠ , y =
⎛

⎝

1 0 0
0 1 1
0 0 1

⎞

⎠ .
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The centre of H is generated by

z = xyx−1y−1 =
⎛

⎝

1 0 1
0 1 0
0 0 1

⎞

⎠ .

The elements x, y, z satisfy the following commutation relations

xz = zx, yz = zy, xk yl = yl xk zkl , k, l ∈ Z. (4)

The discrete Heisenberg group is nilpotent and hence amenable.
Since H does not possess an abelian normal subgroup of finite index it is not a

group of Type I (cf. [34]), and hence the space of irreducible representations does not
have any nice structure as discussed above. As we will show below, one can construct
uncountably many unitarily inequivalent irreducible representations of H for every
irrational θ ∈ T. These representations arise from certain singular measures onT. This
fact is well-known to specialists, but details are not easily accessible in the literature.
Since these results are important for our understanding of invertibility, we present this
construction in some detail for the convenience of the reader.Wewould like tomention
first that Moran announced in [27] a construction of unitary representations ofH using
the same approach as presented here. These results were not published as far as we
know. Moreover, Brown [6] gave examples of unitary irreducible representations of
the discrete Heisenberg group which are not monomial.

Let (X,B, μ) be a measure space, where X is a compact metric space,B is a Borel
σ -algebra, and μ a finite measure.

Definition 3 A probability measure μ is quasi-invariant with respect to a homeo-
morphism φ : X −→ X if μ(B) = 0 if and only if μ(φB) = 0, for B ∈ B. A
quasi-invariant measure μ is ergodic if

B ∈ B and φB = B 
⇒ μ(B) ∈ {0, 1}.

In [23] uncountably many inequivalent ergodic quasi-invariant measures for every
irrational rotation of the circle were constructed. Later it was shown in [22] that a
homeomorphism φ on a compact metric space X has uncountably many inequivalent
non-atomic ergodic quasi-invariant measures if and only if φ has a recurrent point x ,
i.e., φn(x) returns infinitely often to any punctured neighbourhood of x .

Let Z act on T via rotation

Rθ : t 
→ t + θ mod 1 (5)

by an irrational angle θ ∈ T.

Theorem 10 For each irrational θ ∈ T there is a bijection between the set of ergodic
Rθ -quasi-invariant probability measures on T and the set of irreducible representa-
tions π of H with π(z) = e2π iθ .
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A Wiener Lemma for the discrete Heisenberg group 495

We use the measures found in [23] to construct unitary irreducible representations
ofH. Supposeμ is an ergodic Rθ -quasi-invariant probability measure onT. Let Tθ,μ :
L2(T, μ) −→ L2(T, μ) be the unitary operator defined by

(Tθ,μF)(t) =
√

dμ(t + θ)

dμ(t)
F(t + θ) =

√

dμ(Rθ t)

dμ(t)
F(Rθ t), (6)

for every F ∈ L2(T, μ) and t ∈ T. The operator Tθ,μ is well-defined because of the
quasi-invariance of μ. Consider also the unitary operator Mμ defined by

(MμF)(t) = e2π i t F(t) , (7)

for every F ∈ L2(T, μ) and t ∈ T.
We will show that the representation πθ,μ of H defined by

πθ,μ(x) := Tθ,μ, πθ,μ(y) := Mμ and πθ,μ(z) := e2π iθ (8)

is irreducible. Obviously, Tθ,μMμ = e2π iθMμTθ,μ = πθ,μ(z)MμTθ,μ.

Lemma 1 The unitary representation πθ,μ of H given by (8) is irreducible.

Proof Every element in L2(T, μ) can be approximated by linear combinations of
elements in the set

{Mn
μ1 : n ∈ Z} = {t 
→ e2π int : n ∈ Z} .

A bounded linear operator O on L2(T, μ), which commutes with all operators of the
form Mn

μ, n ∈ Z, and hence with multiplication with any L∞-function, must be a
multiplication operator, i.e., OF(t) = G(t) · F(t) for some G ∈ L∞(T, μ). Indeed,
if O commutes with multiplication by H ∈ L∞(T, μ), then

OH = H · O1 = HG,

say. Denote by ‖ · ‖op the operator norm, then

‖HG‖L2(T,μ) = ‖OH‖L2(T,μ) ≤ ‖O‖op‖H‖L2(T μ), (9)

which implies that G ∈ L∞(T, μ) [otherwise one would be able to find a measurable
set B with positive measure on which G is strictly larger than ‖O‖op, and the indicator
function 1B would lead to a contradiction with (9)].

The ergodicity of μ with respect to Rθ implies that only constant functions in
L∞(T, μ) are Rθ -invariant μ-a.e.. Hence, if O commutes with Tθ,μ as well, then we
can conclude that O is multiplication by a constant c ∈ C. By Schur’s Lemma, the
operators Tθ,μ,Mμ ∈ B(L2(T, μ)) define an irreducible representation πθ,μ ofH. ��
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Suppose that θ ∈ T is irrational, and that μ and ν are two ergodic Rθ -quasi-
invariant measures on T. Let πθ,μ and πθ,ν be the corresponding irreducible unitary
representations constructed above.

Lemma 2 The representations πθ,μ and πθ,ν are unitarily equivalent if and only if μ
and ν are equivalent.

Proof Assume πθ,μ and πθ,ν are unitarily equivalent. Then there exists a unitary
operator U : L2(T, μ) −→ L2(T, ν) such that

Uπθ,μ(γ ) = πθ,ν(γ )U (10)

for every γ ∈ H.
Denote multiplication by a function H ∈ C(T, C) by OH . The set of trigonometric

polynomials, which is spanned by {Mn
μ1 : n ∈ Z}, is dense in C(T, C). This implies

that (10) holds for all H ∈ C(T, C), i.e., that UOH = OHU for any H ∈ C(T, C).
Since U is an isometry we get that

∫

|H |212dμ = 〈OH1,OH1〉μ (11)

= 〈OHU(1),OHU(1)〉ν (12)

=
∫

|H |2|U(1)|2dν , (13)

where 〈·, ·〉σ is the standard inner product on the Hilbert space L2(T, σ ). Using the
same argument for U−1 we get, for every H ∈ C(T, C),

∫

|H |212dν =
∫

|H |2|U−1(1)|2dμ . (14)

Define, for every positive finite measure σ on T, a linear functional

Iσ : C(T, C) −→ C by Iσ (H) =
∫

H dσ .

Since Iμ(H) = I|U(1)|2ν(H) and Iν(H) = I|U−1(1)|2μ(H) for all positive continuous
functions H by (11)–(14), we conclude from the Riesz representation theorem that μ
and ν are equivalent.

Conversely, if μ and ν are equivalent, then the linear operator

U : L2(T, μ) −→ L2(T, ν) given by UF =
√

dμ

dν
F

for every F ∈ L2(T, μ), is unitary and satisfies that Uπθ,μ(γ ) = πθ,ν(γ )U for every
γ ∈ H. ��
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In this way one obtains uncountably many inequivalent irreducible unitary repre-
sentation of H for a given irrational rotation number θ ∈ T.

In fact, every irreducible unitary representation π of H with π(z) = e2π iθ , θ

irrational, is unitarily equivalent to πθ,μ for some probability measureμ onTwhich is
quasi-invariant and ergodicwith respect to an irrational circle rotation. For convenience
of the reader we sketch a proof of this fact based on elementary spectral theory of
unitary operators.

Let π be an irreducible unitary representation of H with representation space Hπ

such that π(x)π(y) = e2π iθπ(y)π(x). Let v ∈ Hπ be a normalised cyclic vector, put
U = π(y) and denote byHv the closure of the subspace generated by {Unv : n ∈ Z}.
The GNS-construction tells us that an = 〈Unv, v〉Hπ

, n ∈ Z, forms a positive-definite
sequence. Due to Herglotz’ (or, more generally, Bochner’s) representation theorem
there exists a probability measure μv on̂Z � T whose Fourier-Stieltjes transform μ̂v

fulfils

μ̂v(n) =
∫

T

e−2π int dμv(t) = an for every n ∈ Z .

One easily verifies that there exists an isometric isomorphism φ : Hv −→ L2(T, μv)

which intertwines the restriction Uv of U to Hv with the modulation operator Mv on
L2(T, μv) consisting of multiplication by e2π i t . In other words, the unitary operators
Uv and Mv are unitarily equivalent.

Put S = π(x) and consider the cyclic normalised vector w = Sv of the representa-
tionπ . By replacing v byw in the construction above one can define the corresponding
objects Hw,Uw,μw, L2(T, μw),Mw.

Lemma 3 The measures μv and μw are equivalent.

Proof First note that Uv and Uw are unitarily equivalent. From this fact and the dis-
cussion preceding the lemma one concludes that Mv and Mw are unitarily equivalent
as well, i.e., that there exists a unitary operator O : L2(T, μv) −→ L2(T, μw) such
that OMv = MwO. By arguing as in the first part of the proof of Lemma 2 one gets
that O is a multiplication operator. Put G = O1L2(T,μv). Since O is an isometry one
gets for all μv-measurable sets B

μv(B) =
∫

T

|1B |2dμv =
∫

T

|G|2|1B |2dμw .

By repeating these arguments with v and w interchanged one concludes that μv and
μw are equivalent. ��
Lemma 4 The measure μv is Rθ -quasi-invariant.

Proof Note that μ̂w(n) = 〈S−1UnSv, v〉Hπ
= e−2π iθnμ̂v(n) for every n ∈ Z. As one

can easily verify, for every probability measureμ onT, multiplying μ̂with a character
e−2π iθn is the same as the Fourier-Stieltjes transform of μ◦Rθ . Hence, we obtain that
μw = μv ◦ Rθ . As μv and μw are equivalent, μv is a Rθ -quasi-invariant probability
measure on T. ��
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Proof (Completion of the proof of Theorem 10) The preceding discussion allows us
to define an irreducible representation πv of H acting on L2(T, μv) which is unitarily
equivalent to π . The evaluation of πv at y is given by Mv and Tv = πv(x) acts
as composition of a translation operator by an angle θ and multiplication by some
function Dv ∈ L∞(T, μv). Due to the fact that Tv has to be a unitary (and hence, an
isometric) operator on L2(T, μv) the form of Dv is fully determined (cf. the definition
of Tθ,μ in (6) for a Rθ -quasi-invariant measure μ). Since πv is irreducible only those
multiplication operators in B(L2(T, μv)) which act via multiplication by a constant
function c ∈ C will commute with multiples of the modified translation operator Tv .
This implies the ergodicity of μv and completes the proof of the theorem. ��

3.3 Wiener’s Lemma for the discrete Heisenberg group

Theorem 9 states that in order to decide on invertibility of f ∈ �1(H, C), one has to
check invertibility of π( f ) for every irreducible representations π of H, and hence
for every πθ,μ as above, where μ is a probability measure on T on T which is quasi-
invariant and ergodic with respect to a circle rotation Rθ .

The problem of deciding on invertibility of f ∈ �1(H, C) via Theorem 9 becomes
much more straightforward if one is able to restrict oneself to unitary representations
arising from rotation invariant probability measures. This is exactly our main result.

Before formulating this result wewrite down the relevant representations explicitly.
Take θ ∈ T, and consider the corresponding rotation Rθ : T −→ T given by (5). If θ

is irrational, the Lebesgue measure λ = λT onT is the unique Rθ -invariant probability
measure, and the representation πθ,λ on L2(T, λ) defined in (8) is irreducible. One
can modify this representation by setting, for every s, t ∈ T,

π
(s,t)
θ (x) = e2π isπθ,λ(x), π

(s,t)
θ (y) = e2π i tπθ,λ(y), π

(s,t)
θ (z) = e2π iθ . (15)

Then π
(s,t)
θ is obviously again an irreducible unitary representation of H onH

π
(s,t)
θ

=
L2(T, λ).

If θ is rational we write it as θ = p/q where p, q are integers with the properties
0 ≤ p < q and gcd(p, q) = 1 and consider the unitary representation π

(s,t)
θ of H on

H
π

(s,t)
θ

= C
q given by

π
(s,t)
θ (x) = e2π is

(

0 Iq−1
1 0

)

, (16)

π
(s,t)
θ (y) = e2π i t

⎛

⎜

⎜

⎝

1 0 ... 0 0
0 e2π iθ ... 0 0
...

...
. . .

...
...

0 0 ... e2π i(q−2)θ 0
0 0 ... 0 e2π i(q−1)θ

⎞

⎟

⎟

⎠

and π
(s,t)
θ (z) = e2π iθ Iq ,

(17)

with s, t ∈ T, where Iq−1 is the (q − 1)× (q − 1) identity matrix. Every Rθ -invariant
and ergodic probability measure μ on T is uniformly distributed on the set {t, 1/q +
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t, . . . , t + (q − 1)/q} ⊂ T for some t ∈ T; if we denote this measure by μt then
μt = μt+k/q for every k = 0, . . . , q − 1.

With this notation at hand we can state our main result, the proof of which will be
given in Sect. 4.

Theorem 11 An element f ∈ �1(H, C) is invertible if and only if the linear operators
π

(s,t)
θ ( f ) are invertible on the corresponding Hilbert spaces H

π
(s,t)
θ

for every θ, s, t

∈ T.

The main advantage of Theorem 11 over Theorem 9 is that it is not necessary to
check invertibility of π( f ) for every irreducible representation of H, but that one can
restrict oneself for this purpose to the ‘nice’ part of the dual of the non-Type I group
H. As we shall see later, one can make a further reduction if θ is irrational: in this case
one only has to check invertibility of πθ ( f ) = π

(1,1)
θ ( f ) on L2(T, λ).

4 Wiener’s Lemma for the discrete Heisenberg group: a proof and a first
application

In this section we will present one possible proof of Wiener’s Lemma for �1(H, C)

and C∗(H). This proof has two main ingredients, namely:

– Allan’s local principle, which reduces the problem of verifying invertibility in
�1(H, C) and C∗(H) to the study of invertibility in rotation algebras.

– The fact that irrational rotation algebras are simple will eliminate the ‘non-Type I
problem’ for questions about invertibility in �1(H, C) and C∗(H) discussed in the
previous section.

These results will be generalised in Sect. 5 to group algebras of nilpotent groups.

4.1 Local principles

LetA be a unital Banach algebra and a ∈ A. Local principles are based on the follow-
ing idea: one checks invertibility of projections of a onto certain quotient algebras of
A in order to conclude from this information whether a is invertible or not. Therefore,
the main task is to find a sufficient family J of ideals of A such that one can deduce
the invertibility of a from the invertibility of the projections of a onA/I for all I ∈ J.

Allan’s local principle provides us with such a sufficient family of ideals in case
the centre of A is large enough. We have used Allan’s local principle already in [13]
to study invertibility in �1(H, C). However, in that paper we were not able to prove
Theorem 11 with this approach.

Suppose A is a unital Banach algebra with non-trivial centre

C(A) := {c ∈ A : cb = bc for all b ∈ A} .

The commutative Banach subalgebra C(A) is closed and contains the identity 1A. For
every m ∈ Max(C(A)) (the space of maximal ideals of C(A)) we denote by Jm the
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smallest closed two-sided ideal ofAwhich containsm anddenote byΦm : a 
→ Φm(a)

the canonical projection of an element a ∈ A to the quotient algebra A/Jm . The
algebra A/Jm , furnished with the quotient norm

‖Φm(a)‖ := inf
b∈Jm

‖a + b‖A (18)

becomes then a unital Banach algebra.

Theorem 12 ([1] Allan’s local principle) An element a ∈ A is invertible in A if and
only if Φm(a) is invertible in A/Jm for every m ∈ Max(C(A)).

We would like to mention already here that in Sect. 7 Allan’s local principle will
appear a second time and will link invertibility of f ∈ �1(H, C) to the invertibility of
the evaluations of Stone-von Neumann representations at f .

Let us now prove our main theorem.

4.2 Proof of Wiener’s Lemma

We apply the general observations made in the previous subsection to explore invert-
ibility in �1(H, C) and C∗(H). Since �1(H, C) is inverse-closed in C∗(H) we can
focus on the study of invertibility in C∗(H).

Due to Allan’s local principle we have to check invertibility only in Qθ =
C∗(H)/Jθ for all θ ∈ T, where Jθ = (z − e2π iθ )C∗(H). Indeed, C(C∗(H)) �
C(T, C), and the maximal ideals of C(T, C) are given by the sets

mθ := {F ∈ C(T, C) : F(θ) = 0}

and Jmθ = Jθ .

SinceJθ = (z − e2π iθ )C∗(H) is a two-sided closed ideal we know that the quotient
Qθ is a C∗-algebra and hence symmetric for each θ ∈ T.

By Schur’s Lemma, if π is an irreducible unitary representation of H, then π(z) =
e2π iθ1B(Hπ ) for some θ ∈ T. Hence, Jθ is a subset of ker(π) for every irreducible
unitary representation π of H with π(z) = e2π iθ1B(Hπ ).

If θ is rational the irreducible unitary representations of H vanishing on Jθ are
given by (16)–(17) and were determined in [5]. Due to the fact that Qθ is symmetric
we can apply Theorem 9 in order to study invertibility in Qθ via the representations
(16)–(17).

Now suppose θ is irrational. In order to study the representation theory of the C∗-
algebraQθ we have to understand the link to one of the most studied non-commutative
C∗-algebras—the irrational rotation algebras.

We call aC∗-algebra an irrational rotation algebra if it is generated by two unitaries
U,V which fulfil the commutation relation

UV = e2π iθVU , (19)
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for some irrational θ ∈ T. We already saw examples of irrational rotation algebras
above, namely, the C∗-subalgebras of B(L2(T, μ)) which are generated by Mμ and
Tθ,μ, where μ is a Rθ -quasi-invariant and ergodic measure. The reason why we call
all C∗-algebras which fulfil (19) irrational rotation algebras with parameter θ is the
following striking result which can be found in [7, Theorem VI.1.4] (and which was
already proved in the 1960s, cf. [32] for a list of references).

Theorem 13 If θ ∈ T is irrational, then all C∗-algebras which are generated by two
unitaries U,V satisfying (19), are ∗-isomorphic.

We will denote the irrational rotation algebra with parameter θ byRθ and will not
distinguish between the different realisations ofRθ because of the universal property
described in Theorem 13. Let us further note that the proof of Theorem 13 is deduced
from the simplicity of the universal irrational rotation algebra.

The C∗-algebra Qθ is clearly a rotation algebra with parameter θ . The simplicity
of Rθ implies that Jθ is a maximal two-sided ideal of C∗(H). Hence, there exists
an irreducible representation π of H such that ker(π) = Jθ , since every two-sided
maximal ideal is primitive (cf. [29, Theorem 4.1.9]). Moreover, all the irreducible
representations π vanishing on Jθ have the same kernel: otherwise we would get a
violation of the maximality of Jθ . These representations are not all in the same unitary
equivalence class (as we saw in Sect. 3), which is an indication of the fact that H is
not of Type I.

Proof (Proof of Theorem 11) First of all recall that �1(H, C) is inverse-closed in
C∗(H). By applying Allan’s local principle forC∗(H) the problem of verifying invert-
ibility in �1(H, C) and C∗(H) reduces to the study of invertibility in the C∗-algebras
Qθ , with θ ∈ T.

The rational case is trivial andwas already treated at the beginning of the discussion.
If θ is irrational, any irreducible representation π of H which vanishes on Jθ can

be used to check invertibility in Qθ . Indeed, since for an arbitrary unital C∗-algebra
A and an irreducible representation π ofA, the C∗-algebras π(A) andA/ ker(π) are
isomorphic one gets

π(C∗(H)) � C∗(H)/ ker(π) = C∗(H)/Jθ = Qθ

due to Theorem 13. In particular we may use the representations π
(1,1)
θ as in (15). ��

Remark 1 We should note here that for all realisations of the irrational rotation algebra
the spectrum of a ∈ Rθ is the same as a set. But this does not imply that an eigenvalue
(or an element of the continuous spectrum) of a in one realisation is an eigenvalue (or
an element of the continuous spectrum) of a in all the other realisations.

4.3 Finite-dimensional approximation

The following proposition follows from Theorem 11 and might be useful for checking
invertibility of f ∈ Z[H] via numerical simulations.
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Proposition 1 Let f ∈ Z[H]. Thenα f is expansive if and only if there exists a constant
c > 0 such that π( f ) is invertible and ‖π( f )−1‖ ≤ c for every finite-dimensional
irreducible representation π of H.

For the proof of the Proposition we work with the representations π
(1,1)
θ in (15).

For irrational θ ,

(π
(1,1)
θ (x)H)(t) = H(t + θ), (π

(1,1)
θ (y)H)(t) = e2π i t H(t), (20)

for every H ∈ L2(T, λT) and t ∈ T. For rational θ of the form θ = p/q with
(p, q) = 1we replace theLebesguemeasureλ = λT in (20) by the uniformprobability
measure νq concentrated on the cyclic group {1/q, . . . , (q − 1)/q, 1} ⊂ T.

Proof One direction is obvious. For the converse, assume that α f is non-expansive,
but that there exists a constant c > 0 such that π( f ) is invertible and ‖π( f )−1‖ ≤ c
for every finite-dimensional irreducible representation π of H.

Since α f is non-expansive, there exists an irrational θ (by our assumption) such

that the operator π
(1,1)
θ ( f ) has no bounded inverse due to Theorem 11 and its proof.

Therefore, π(1,1)
θ ( f ) is either not bounded from below or its range is not dense in the

representation space or both.
We consider first the case where π

(1,1)
θ ( f ) is not bounded from below. Then

there exists, for every ε > 0, an element Hε ∈ L2(T, λT) with ‖Hε‖2 = 1 and
‖π(1,1)

θ ( f )Hε‖2 < ε. By approximating the Hε by continuous functions we may
obviously assume that each Hε is continuous.

Let q be a rational prime, and let p satisfy |θ − p/q| < 1/q. Then

∫

|Hε|2dνq and
∫

|π(1,1)
θ ( f )Hε|2dνq

are Riemann approximations to the corresponding integrals with respect to λ. Hence,

lim
q→∞

∫

|Hε|2dνq = 1 and lim
q→∞

∫

|π(1,1)
θ ( f )Hε|2dνq ≤ ε2 .

Furthermore, as q →∞, π(1,1)
p/q ( f )Hε converges uniformly to π

(1,1)
θ ( f )Hε. From this

we deduce that

lim sup
q→∞

∫

|π(1,1)
p/q ( f )Hε|2dνq ≤ ε2.

This clearly violates the hypothesis that π(1,1)
p/q ( f ), q prime, have uniformly bounded

inverses.
Finally, assume that π

(1,1)
θ ( f ) has no dense image in L2(T, λ). In that case the

adjoint operator (π
(1,1)
θ ( f ))∗ = π

(1,1)
θ ( f ∗) is not injective.3 Furthermore, by our

assumptions, ‖π( f ∗)−1‖ ≤ c for every finite-dimensional irreducible representation
π of H. The same arguments as in the first part of the proof lead to a contradiction. ��

3 For an operator A acting on a Hilbert space H one has (ker A)⊥ = im A∗.
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5 Invertibility in group algebras of discrete nilpotent groups

In this sectionwe aim to findmore evident conditions for invertibility in group algebras
for discrete countable nilpotent groups than the one given in Theorem 9. The main
objects of our investigations are the primitive ideal space and the class of irreducible
monomial representations of the group.

5.1 Wiener’s Lemma for nilpotent groups

Let Γ be a countable discrete nilpotent group. As we have seen earlier, �1(Γ, C) is
inverse-closed in C∗(Γ ). Hence we concentrate on the group C∗-algebra C∗(Γ ).

In order to establish a Wiener Lemma in this more general setting we are first
going to reinterpret Wiener’s Lemma for the discrete Heisenberg group. From the
discussion in Sect. 4.2 one can easily see that the irreducible unitary representations
π

(s,t)
θ , θ, s, t ∈ T, those representations which correspond to ergodic Rθ -invariant

measures on T, generate the primitive ideal space Prim(C∗(H)). Moreover, since
π(C∗(H)) � C∗(H)/ ker(π) for every π ∈ ̂H the study of invertibility is directly
linked to invertibility of projections onto the primitive ideals. We may interpret this
as a localisation principle.

Before formulating a Wiener Lemma for an arbitrary discrete nilpotent group let
us fix some notation. Let A be a unital C∗-algebra. For every two-sided closed ideal
J of A, denote by ΦJ the canonical projection from A onto the C∗-algebra A/J.

Theorem 14 (Wiener’s Lemma for nilpotent groups) If Γ is a discrete nilpotent
group, then a ∈ C∗(Γ ) is invertible if and only if ΦI(a) is invertible for every
I ∈ Prim(C∗(Γ )).

This theorem links questions about invertibility in �1(Γ, C) andC∗(Γ ) to their rep-
resentation theory and, to be more specific, to the primitive ideal space Prim(C∗(Γ )).
At the same time this result provides us with a sufficient family of ideals in order to
study invertibility and hence, Wiener’s Lemma for nilpotent groups describes a locali-
sationprinciple.Wewill learn in the next subsection that for discrete nilpotent groupsΓ
the class of irreducible representationwhich are induced by one-dimensional represen-
tations of subgroups of Γ provide us with an effective tool to generate Prim(C∗(Γ )).
In other words, it is a feasible task to determine the primitive ideal space Prim(C∗(Γ )).

Theorem 14 can be generalised to all unital C∗-algebras. Moreover, we provide a
sufficient condition for a family of ideals in order to check invertibility via localisations.

Suppose I is a collection of ideals of a C∗-algebra A, such that

(i) every I ∈ I is closed and two-sided,
(ii) for any primitive ideal J ∈ Prim(A) there exists I ∈ I such that I ⊆ J.

Theorem 15 LetA be a unital C∗-algebra. Suppose I satisfies conditions (i) and (ii)
above. Then an element a inA is invertible if and only if for every I ∈ I the projection
of a on A/I is invertible.

By setting I = Prim(C∗(Γ )), Theorem 14 just becomes a particular case of The-
orem 15.
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Proof If a ∈ A is not invertible, then by Theorem 9 there exists an irreducible unitary
representation π of A such that π(a)v = 0 for some non-zero vector v ∈ Hπ .
Moreover, for every two-sided closed ideal I ⊆ ker(π) of A the representation π

induces a well-defined irreducible representation πI of the C∗-algebra A/I, i.e.,

πI(ΦI(a)) = π(a) .

Hence, for every two-sided closed ideal I ⊆ ker(π) of C∗(H), the element ΦI(a) is
not invertible in A/I, since the operator πI(ΦI(a)) has a non-trivial kernel inHπ .

Let us assume now that ΦI(a) is not invertible in the C∗-algebra A/I for some
I ∈ I. Hence, there exists an irreducible representation ρ of A/I such that

ρ(ΦI(a))v = 0

for some vector v ∈ Hρ . The irreducible representation ρ can be extended to an
irreducible representation ρ̃ of A which vanishes on I and which is given by ρ̃ =
ρ ◦ ΦI. Therefore, a is not invertible in A. ��

From the proof of Theorem 15 we get the following corollary.

Corollary 1 Ifπ(a) is not invertible for an irreducible representationπ , then for every
two-sided closed ideal I ⊆ ker(π) of C∗(H), the element ΦI(a) is non-invertible in
A/I.

Example 1 Denote by Jθ , with θ ∈ T, the localisation ideals of C∗(H) as defined in
Sect. 4 and set

JH := {Jθ : θ ∈ T}.
Obviously, the restriction r : Prim(C∗(H)) −→ JH given by I 
→ r(I) = I ∩
C(C∗(H)) for every primitive ideal I of C∗(H), defines a surjective map. Hence,
Theorem 15 provides a proof of Allan’s local principle for C∗(H). Moreover, Allan’s
local principle can be viewed as the most effective way to apply Theorem 15 in order
to check invertibility.

5.2 Monomial representations

The Heisenberg group

Denote by IndH
N (σθ,s) the representation of H induced from the normal subgroup

N :=
⎧

⎨

⎩

⎛

⎝

1 a b
0 1 0
0 0 1

⎞

⎠ : a, b ∈ Z

⎫

⎬

⎭

and the character σθ,s which is defined by

σθ,s(z) = e2π iθ and σθ,s(x) = e−2π is .
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For the convenience of the reader we will write down IndH
N (σθ,s) for every θ, s ∈ T

explicitly
(

IndH
N (σθ,s)(x

k yl zm)F
)

(n) = e2π i(mθ−k(nθ+s))F(n + l) (21)

for all k, l,m, n ∈ Z and F ∈ �2(Z, C).
The representations IndH

N (σθ,s) play a special role since they can be extended to the
Stone-von Neumann representations of the realHeisenberg groupHR consisting of all
unipotent upper triangular matrices in SL(3, R). The Stone-von Neumann representa-
tions of HR are obtained from Mackey’s induction procedure from the real analogue
of N , i.e.,

NR :=
⎧

⎨

⎩

⎛

⎝

1 a b
0 1 0
0 0 1

⎞

⎠ : a, b ∈ R

⎫

⎬

⎭

and its characters. The Stone-von Neumann representations are defined bymodulation
and translation operators on L2(R, C).

It is easy to see that for irrational θ the representation π
(1,1)
θ in (15) is unitarily

equivalent (via Fourier transformation) to the representation IndH
N (σθ,1). Moreover,

every irreducible finite dimensional representation of a nilpotent group Γ is induced
from a one dimensional representation of a subgroup of Γ (cf. [6, Lemma 1]).

Therefore, the monomial representations contain all representations involved in
validating invertibility via Theorem 11.

The natural question arises, whether one can always restrict oneself to the class
of monomial representations of Γ when analysing invertibility in the corresponding
group algebras, in case Γ is a countable discrete nilpotent group. We will show that
the answer is positive.

The general case

Let Γ be a countable discrete nilpotent group. Define an equivalence relation on ̂Γ as
follows:

π1 ∼ π2 ⇐⇒ ker(π1) = ker(π2) ,

where π1, π2 are irreducible unitary representations of Γ . This equivalence relation
is the same as the notion of weak equivalence according to [10].

The next theorem was established by Howe in [17, Proposition 5].

Theorem 16 Suppose that Γ is a countable discrete nilpotent group. Then every
irreducible unitary representation is weakly equivalent to an irreducible monomial
representation of Γ .

In other words the map from the subclass of irreducible monomial representations
to the primitive ideal space is surjective and as a conclusion the monomial represen-
tations generate the primitive ideal space. It is therefore not surprising that the class
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of irreducible monomial representations contains all the information which is neces-
sary in order to study invertibility in the group algebras. As we will show, combining
Theorem 16 with Theorem 9 leads to another Wiener Lemma:

Theorem 17 An element a ∈ C∗(Γ ) is non-invertible if and only if there exists an
irreducible monomial representation π such that π(a) has no bounded inverse.

For convenience of the reader we explain the ideas once more.

Proof If a is not invertible, then there exists an irreducible unitary representation π

and a non-zero vector v ∈ Hπ such that π(a)v = 0. This implies that Φker(π)(a)

is not invertible in C∗(Γ )/ ker(π). Moreover, there exists an irreducible monomial
representation ρ with ker(ρ) = ker(π) (cf. Theorem 16) and hence

π(C∗(Γ )) � C∗(Γ )/ ker(π) = C∗(Γ )/ ker(ρ) � ρ(C∗(Γ )) .

Therefore, Φker(ρ)(a) and ρ(a) are not invertible.
On the other hand, if π(a) is not invertible for an irreducible monomial represen-

tation π , then Φker(π)(a) is not invertible in the C∗-algebra C∗(Γ )/ ker(π). Hence
there exists an irreducible representation ρ of C∗(Γ )/ ker(π) such that ρ(Φker(π)(a))

has a non-trivial kernel. Moreover, ρ can be extended to a representation ρ̃ of C∗(Γ )

vanishing on ker(π). Therefore, a is not invertible. ��

5.3 Maximality of primitive ideals

In the previous subsection we saw that we can restrict our attention to irreducible
monomial representations for questions about invertibility.Unfortunately, this subclass
of irreducible representationsmight still be quite big.Wewill use another general result
about the structure of Prim(C∗(Γ )) to make the analysis of invertibility in C∗(Γ )

easier.

Theorem 18 ([31]) Let Γ be a discrete nilpotent group. Then

Prim(C∗(Γ )) = Max(C∗(Γ )),

i.e., every primitive ideal of C∗(Γ ) is maximal.

The simplification in the study of invertibility in C∗(H) was due to the simplicity
of the irrational rotation algebras Rθ , which is equivalent to the maximality of the
two-sided closed ideal Jθ . We should note here that Theorem 13 is usually proved by
the construction of a unique trace on Rθ , which is rather complicated. Alternatively,
let θ ∈ T be irrational. Then it easily follows from Theorem 18 and the fact that
π

(s,t)
θ is an irreducible representation (cf. Lemma 1) with ker(π(s,t)

θ ) = Jθ that Jθ is
maximal. This is exactly the statement of Theorem 13. In the next subsection we will
see applications of Theorem 18. It turns out that this representation theoretical result
will eliminate the ‘non-Type I issues’ exactly as the simplicity of irrational rotation
algebras did for the group algebras of the discrete Heisenberg group.
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5.4 Examples

The first example shows how to establish a Wiener Lemma for H from the general
observation made in this section.

Example 2 Consider the monomial representations IndH
N (σθ,s) of H as defined in

(21) for irrational θ and arbitrary s ∈ T. Obviously, one has for every s ∈ T that
ker(IndH

N (σθ,s)) = Jθ .
We will show that there is no bounded operator on �2(Z, C) which commutes

with the operators IndH
N (σθ,s)(x) and IndH

N (σθ,s)(y) except multiples of the identity
operator. Let {δk : k ∈ Z} be the standard basis of �2(Z, C) and C = (cn,k)n,k∈Z an
operator which commutes with IndH

N (σθ,s)(x) and IndH
N (σθ,s)(y). From the equations

e−2π is
∑

n∈Z

cn,ke
−2π iθnδn = C

(

IndH
N (σθ,s)(x)δk

)

= IndH
N (σθ,s)(x)(Cδk)

= e−2π ise−2π iθk
∑

n∈Z

cn,kδn

and the fact that θ is irrational we can conclude that cn,k = 0 for all n, k ∈ Z with
n 	= k. On the other hand, for k ∈ Z

ck,kδk+1 = IndH
N (σθ,s)(y)(Cδk)

= C
(

IndH
N (σθ,s)(y)δk

)

= ck+1,k+1δk+1 .

Therefore, the only operators in the commutant of IndH
N (σθ,s)(H) are scalar multiples

of the identity, which is equivalent to the irreducibility of the representation IndH
N (σθ,s)

by Schur’s Lemma. Hence, the kernel of the irreducible monomial representation
IndH

N (σθ,s) is a maximal two-sided ideal (cf. Theorem 18) given by Jθ .
For every irreducible representation π ofHwith Jθ ⊆ ker(π) one has ker(π) = Jθ

due to the maximality of Jθ which we deduce from the irreducibility of IndH
N (σθ,s).

Consider θ = n
d with relatively prime n, d ∈ N. We note that analysing invertibility

in Qθ reduces to the study of monomial representations as well. Set

H /Z(d) :=
⎧

⎨

⎩

⎛

⎝

1 a b̄
0 1 c
0 0 1

⎞

⎠ , a, c ∈ Z and b̄ ∈ Z /d Z

⎫

⎬

⎭

, d ∈ N,

and note the isomorphism Qθ
∼= C∗(H /Z(d)). The nilpotent group H /Z(d) is of

Type I since H /Z(d) has normal abelian subgroups of finite index, e.g.,
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⎧

⎨

⎩

⎛

⎝

1 ad b̄
0 1 c
0 0 1

⎞

⎠ , a, c ∈ Z and b̄ ∈ Z /d Z

⎫

⎬

⎭

.

Hence, all irreducible representations are monomial by Theorem 4.
A Wiener Lemma can now be deduced from Theorem 18.
Note that in the general study of invertibility in this example we have not used

Allan’s local principle or any results from Sect. 4 explicitly.

We give another example of a group where Theorem 18 simplifies the analysis.

Example 3 Let us denote by G the multiplicative group given by

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⎛

⎜

⎜

⎝

1 a c f
0 1 b e
0 0 1 d
0 0 0 1

⎞

⎟

⎟

⎠

: a, b, c, d, e, f ∈ Z

⎫

⎪

⎪

⎬

⎪

⎪

⎭

.

One can easily verify that the centre of this group is given by

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⎛

⎜

⎜

⎝

1 0 0 f
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟

⎟

⎠

: f ∈ Z

⎫

⎪

⎪

⎬

⎪

⎪

⎭

� Z,

and hence the corresponding central sub-algebra �1(Z) is exactly the same as it was
in the case of the discrete Heisenberg group. It is therefore not surprising that the
invertibility problem can be addressed in a similar fashion.

Let us construct monomial representations, which will be sufficient to check global
invertibility (cf. Theorem 17).

First note that G can be identified with the semi-direct product G1 � G2 of the
normal abelian subgroup

G1 :=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⎛

⎜

⎜

⎝

1 0 c f
0 1 b e
0 0 1 0
0 0 0 1

⎞

⎟

⎟

⎠

: b, c, e, f ∈ Z

⎫

⎪

⎪

⎬

⎪

⎪

⎭

� Z
4

and the abelian subgroup

G2 :=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⎛

⎜

⎜

⎝

1 a 0 0
0 1 0 0
0 0 1 d
0 0 0 1

⎞

⎟

⎟

⎠

: a, d ∈ Z

⎫

⎪

⎪

⎬

⎪

⎪

⎭

� Z
2 .

In such a situation the construction of induced representations becomes very easy. We
refer to [21, Section 2.4] for all the details. Now let σθb,θc,θe,θ f be the one-dimensional
representation of G1 given by
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σθb,θc,θe,θ f

⎛

⎜

⎜

⎝

⎛

⎜

⎜

⎝

1 0 c f
0 1 b e
0 0 1 0
0 0 0 1

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠

= e2π iθbbe2π iθcce2π iθeee2π iθ f f .

The inclusion map from G2 to G will serve as a cross-section. The induced represen-
tation IndG

G1
(σθb,θc,θe,θ f ) (is unitarily equivalent to a representation which) acts on the

Hilbert space �2(Z2, C) and is given by

⎛

⎜

⎜

⎝

IndG
G1

(σθb,θc,θe,θ f )

⎛

⎜

⎜

⎝

⎛

⎜

⎜

⎝

1 0 c f
0 1 b e
0 0 1 0
0 0 0 1

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

1 a 0 0
0 1 0 0
0 0 1 d
0 0 0 1

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠

F

⎞

⎟

⎟

⎠

(k, l) (22)

= e2π iθbbe2π iθc(c−kb)e2π iθe(e+lb)e2π iθ f ( f+lc−ke−klb)F(k − a, l − d),

for every a, b, c, d, e, f, k, l ∈ Z and F ∈ �2(Z2, C).
The localisation fibres are indexed by θ f . It is clear that for every irrational θ f and

arbitrary θb, θc, θe,

ker
(

IndG
G1

(σθb,θc,θe,θ f )
)

= Jθ f .

In the case of irrational θ f , the commutant of IndG
G1

(σθb,θc,θe,θ f )(G) inB(�2(Z2, C))

is trivial which is equivalent to irreducibility by Schur’s Lemma. Hence, for irrational
θ f the two-sided closed ideal Jθ f is maximal by Theorem 18 and one has to consider
only a single representation, e.g., the one given in (22) for fixed parameters θb, θc, θe,
to study invertibility on these fibres.

5.5 A kernel condition and finite-dimensional representations

The proof of Proposition 1 provides an approximation argument which allows
restricting oneself to finite-dimensional representations for the purpose of proving
invertibility. This result can be reinterpreted as a density argument. The finite-
dimensional irreducible representations of H correspond to ‘rational’ points in the
dual of H. We know that the intersection of all irreducible representations π with
π(z) = e2π iθ coincides with Jθ . In the same way as one shows that no non-zero
element in C(T) (which is isomorphic to C∗(Z)) vanishes at all rational points, one
can prove that

⋂

rational θ∈T

Jθ = {0} .

Wewill show that this empty-intersection condition actually implies that for checking
invertibility of a ∈ C∗(H) it is enough to check the invertibility of the evaluations
π(a) for all finite-dimensional irreducible representations of C∗(H) provided that the
inverses π(a)−1 of these elements are uniformly bounded in norm.
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Let A and Bt , for all t ∈ I for some index set I , be C∗-algebras. Let us denote by
F a family of ∗-morphisms φt : A −→ Bt , t ∈ I , which fulfils

– for all t ∈ I one has Jt = ker(φt ) is a two-sided closed ideal of A, hence
At = A/Jt is a C∗-algebra with quotient norm ‖ · ‖t ;

–
⋂

t∈I Jt = {0}.
Furthermore, let us denote by AI the set of elements a = (at )t∈I ∈ ∏t∈I At with
‖a‖I := supt∈I ‖at‖t < ∞;AI together with the norm ‖ · ‖I forms a C∗-algebra. Let
Φ : A −→ AI be defined by a 
→ (φt (a))t∈I . Since

⋂

t∈I
Jt = {0},

one has that Φ is a bijective map from A to Φ(A). The C∗-algebras Φ(A) and AI

form a Wiener pair. Hence, a ∈ A is invertible if and only if φt (a) is invertible for all
t ∈ I and ‖φt (a)−1‖t is uniformly bounded in t .

Example 4 We apply these ideas to C∗(H) and set

FH = {π ∈ ̂H : πa finite dimensional representation}

in order to get an algebraic interpretation of Proposition 1.

Example 5 Definitions and results that are used in this example can be found in [18]
by Howe. Consider a finitely-generated nilpotent torsion-free group Γ . The set of
kernels of finite-dimensional representations forms a dense subset of Prim(C∗(Γ ))

with respect to the hull-kernel topology. Since all C∗-algebras are semi-simple one
gets that for every dense subset J ⊆ Prim(C∗(Γ )) the following holds

⋂

J∈J
J =

⋂

J∈J
J =

⋂

J∈Prim(C∗(Γ ))

J = {0} .

Hence, for verifying invertibility in C∗(Γ ), the study of the evaluations of the finite-
dimensional representations—combined with a boundedness condition—is sufficient.

Suppose that Γ is also elementarily-exponentiable—Howe labels such groups to
have a well-defined ‘Lie-algebra’, say L. Then the finite dimensional representations
correspond to finite quasi-orbits of a canonical action ofΓ onL and the representation
theory of Γ is closely related to the one of its Mal’cev completion.

A systematic treatment of group-C∗-algebrasC∗(Γ )whose finite-dimensional rep-
resentations separate points of C∗(Γ ) can be found in Section 4 of [4].

6 A connection to time-frequency-analysis via localisations

In this section we formulate yet another Wiener Lemma for �1(H, C) which involves
Stone-von Neumann representations. These unitary representations of the discrete
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Heisenberggroup are highly reducible and therefore, not thefirst choice for invertibility
investigations (cf. Theorem 9). However, by exploring a connection from localisations
of �1(H, C) to twisted convolution algebras we establish a link to Time-Frequency-
Analysis. In this discipline of mathematics Stone-von Neumann representations are
of great importance.

6.1 Localisations and twisted convolution algebras

In [13] we determined the explicit form of the localisation ideals Jm in order to formu-
late Allan’s local principle for the group algebra �1(H, C) of the discrete Heisenberg
group. Let us recall this result.

We write a typical element f ∈ �1(H, C) in the form:

f =
∑

(k,l,m)∈Z
3

f(k,l,m)x
k yl zm,

with f(k,l,m) ∈ C and
∑

(k,l,m)∈Z
3 | f(k,l,m)| < ∞. We identify the centre of �1(H, C)

with �1(Z, C) since the centre of the groupH is generated by powers of z. Themaximal
ideal space Max(�1(Z, C)) is canonically homeomorphic to ̂Z ∼= T. The smallest
closed two-sided ideal in �1(H, C) containing mθ ∈ Max(�1(Z, C)), θ ∈ T, is given
by the subset Jθ ⊂ �1(H, C) which consists of all elements f ∈ �1(H, C) such that

f θ :=
∑

(k,l,m)∈Z
3

f(k,l,m)x
k yle2π imθ = 0�1(H,C).

The next definition plays an important role in the field of time-frequency-analysis.
Fix θ ∈ T. The twisted convolution �θ on �1(Z2, C) is defined as follows. Let f, g ∈
�1(Z2, C), then

( f �θg)m,n =
∑

k,l∈Z

fk,l gm−k,n−l e2π i(m−k)lθ .

Moreover, define the involution f ∗k,l = f−k,−l e2π iklθ for every f ∈ �1(Z2, C). The

triple (�1(Z2, C), �θ ,
∗ ) forms a Banach-∗-algebra—the so called twisted convolution

algebra.
The Banach-algebras Qθ := �1(H, C)/Jθ and (�1(Z2, C), �θ ,

∗ ) are connected by
the ∗-isomorphism κ : Qθ −→ (�1(Z2, C), �θ ,

∗ ) defined by

κ(Φθ( f )) = f θ .

6.2 Wiener’s Lemma for twisted convolution algebras

Principal results were obtained by Janssen [20] and Gröchenig and Leinert [15]. Let
α, β be strictly positive real parameters and let θ = αβ. On the Hilbert space L2(R, C)

define the translation operator Tα and the modulation operator Mβ as follows:
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(TαF)(t) = F(t + α) and (MβF)(t) = e2π iβt F(t) (23)

where F ∈ L2(R, C) and t ∈ R. The representation πα,β of (�1(Z2, C), �θ ,
∗ ) on

L2(R, C) is defined as follows: for each f ∈ �1(Z2, C), let

πα,β( f ) =
∑

k,l∈Z

fk,lT
k
αM

l
β.

Gröchenig and Leinert established the following Wiener Lemma for twisted con-
volution algebras.

Theorem 19 ([15, Lemma 3.3]) Suppose that θ ∈ T, αβ = θ mod 1, and that
f ∈ �1(Z2, C) and πα,β( f ) is invertible on L2(R, C). Then f is invertible in
(�1(Z2, C), �θ ,

∗ ).

The representation πα,β of (�1(Z2, C), �θ ,
∗ ) induces a representation of H,

�1(H, C) and Qθ on L2(R, C) in a canonical way:

πα,β(x) = Tα, πα,β(y) = Mβ, and πα,β(z) = e2π iθ .

The representations πα,β appear in the literature under various names: Stone-von
Neumann, Weyl-Heisenberg or Schrödinger representations.

As an immediate corollary of Theorem 19 one obtains the followingWiener Lemma
for the discrete Heisenberg group.

Theorem 20 Let f ∈ �1(H, C), then f is invertible if and only if πα,β( f ) is invertible
for each non-zero pair α, β ∈ R.

Proof The result follows by combining Allan’s local principle with Wiener’s Lemma
for twisted convolution algebras. ��

Finally, we give an alternative proof ofWiener’s Lemma for the twisted convolution
algebra which relies on the representation theory ofH only.We start with the following
lemmas.

Lemma 5 The twisted convolution algebra (�1(Z2, C), �θ ,
∗ ) is symmetric.

Proof First, recall that the Banach algebras (�1(Z2, C), �θ ,
∗ ) and Qθ are ∗-

isomorphic. For every f ∈ �1(H, C) the following holds: if Φθ( f ) ∈ Qθ is not
invertible, then f is not invertible in �1(H, C) by Allan’s local principle. Hence,
σQθ

(Φθ ( f )) ⊆ σ�1(H,C)( f ) for every f ∈ �1(H, C). In particular, for every
f ∈ �1(H, C),

σQθ
(Φθ ( f

∗ f )) ⊆ σ�1(H,C)( f
∗ f ) ⊆ [0,∞)

by the symmetry of �1(H, C). ��
Lemma 6 Consider an irrational θ ∈ T. Then f ∈ (�1(Z2, C), �θ ,

∗ ) is invertible if
and only if πα,β( f ) has a bounded inverse, where αβ = θ mod 1.
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Proof Let θ be irrational and suppose a ∈ Qθ � (�1(Z2, C), �θ ,
∗ ) is not invertible.

We just have to show that the non-invertibility of the element a implies that a is not
invertible in the irrational rotation algebra Rθ and, in particular, not in its realisation
πα,β(C∗(H)) with αβ = θ mod 1. Since Qθ is symmetric (cf. Lemma 5), there
exists an irreducible unitary representation π of H such that π vanishes on Jθ and
π(Φθ(a))v = 0 for some non-zero vector v ∈ Hπ . This implies that a is not invertible
inRθ . ��

The proof of Lemma 6 basically says that for irrational θ the Banach algebraQθ is
inverse-closed in Rθ .

We will show that Lemma 6 holds for rational θ as well. The representation πα,β

of H can be decomposed in the following way (cf. [2]). Let ν be the Haar measure on
(0, θ ], where θ ∈ T with θ = αβ mod 1. There exists a unitary operator

U : L2(R) −→
∫ ⊕

(0,θ]
[�2(Z, C)]t dν(t)

and a family of representations {IndH
N (σθ,s) : s ∈ (0, θ ]} such that πα,β is unitarily

equivalent via U to the direct integral

∫ ⊕

(0,θ]
IndH

N (σθ,t ) dν(t) . (24)

Since unitary equivalence of two representations implies weak equivalence one gets
that

ker(πα,β) = ker

(∫ ⊕

(0,θ]
IndH

N (σθ,t ) dν(t)

)

=
⋂

t∈(0,θ]
ker
(

IndH
N (σθ,t )

)

= Jθ

and hence that πα,β(�1(H, C)) � �1(H, C)/Jθ = Qθ . From this observation we get
the following lemma.

Lemma 7 Let θ ∈ T be rational. Then a ∈ Qθ is invertible if and only if πα,β(a) is
invertible in B(L2(R, C)).

Proof (Proof of Theorem 19) Combine Lemmas 6 and 7. ��
Remark 2 The decomposition (24) of πα,β depends only on the product αβ = θ

mod 1 and is thus independent of the particular choice of α and β. Hence, in Theorems
19 and 20 one has to consider, e.g., α = θ and β = 1 only.

6.3 An application to algebraic dynamical systems

As already mentioned in the first section of this article the problem of deciding on
the invertibility in �1(H, C) has an application in algebraic dynamics. The following
result is important to check invertibility for f ∈ Z[H] in the group algebra �1(H, C)

because it tells us that πα,β( f ) has a trivial kernel in L2(R, C) for α, β 	= 0.
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Theorem 21 ([25]) Let G be a non-zero element in L2(R, C), then for every finite set
A ⊆ Z

2 the set {TkαMl
βG : (k, l) ∈ A} is linear independent over C.

The following result is a reformulation of Theorem21 and gives an exact description
of the spectrum of an operator πα,β( f ), for α, β ∈ R �{0} and f ∈ C[H], whereC[H]
is the ring of functions H −→ C with finite support.

Theorem 22 Let f ∈ C[H] with f θ 	= 0 for θ = αβ 	= 0, α, β ∈ R, then for all
c ∈ σ(πα,β( f )) the operators πα,β(c − f ) are injective and have dense range in
L2(R, C) but are not bounded from below.

Proof Suppose f ∈ C[H] is such that πα,β( f ) 	= 0 and c ∈ σ(πα,β( f )). By Theorem
21, for every non-zero G ∈ L2(R, C) the finite linear combination

(c − πα,β( f ))G =
⎛

⎝c −
∑

(k,l,m)∈Z
3

f(k,l,m)T
k
αM

l
βe

2π iθm

⎞

⎠G 	= 0 .

This is equivalent to the injectivity of c − (πα,β( f )).
Suppose that the range of c − πα,β( f ) is not dense in L2(R, C). Then

(πα,β(c − f ))∗ = πα,β((c − f )∗)

is not injective (cf. the footnote on page 19) which is a contradiction to Theorem 21
because (c − f )∗ ∈ C[H]. Hence, c − πα,β( f ) not being invertible on L2(R, C) is
equivalent to c − πα,β( f ) not being bounded from below. ��

Therefore, non-expansiveness of α f can be checked via two different approaches:

– The dual of H: there is an irreducible representation π of H such that 0 is an
eigenvalue of π( f ).

– Stone-von Neumann representations: For all Stone-von Neumann representations
πα,β , 0 is an eigenvalue of πα,β( f ) if and only if πα,β( f ) = 0; and πα,β( f ) is not
invertible if and only if πα,β( f ) is not bounded from below.

Remark 3 The authors are not aware whether the approach based on Theorem 9 and
the construction of the dual of H via ergodic quasi-invariant measures are well-known
results in the field of Time-Frequency Analysis. It would be interesting to investi-
gate whether this eigenvalue approach would simplify the problem of deciding on
invertibility—at least—for some examples f ∈ �1(H, C)� C[H].

7 Examples

We now demonstrate how to apply Wiener’s Lemma to obtain easily verifiable suffi-
cient conditions for non-expansivity of a principal algebraic action.

Let f ∈ Z[H] be of the form
f = g1(y, z)x − g0(y, z) (25)

with g1(y, z), g0(y, z) ∈ Z[y, z] � Z[Z2].
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We set
U(gi ) = {(ζ, χ) ∈ S

2 : gi (ζ, χ) = 0}, i = 0, 1.

Moreover, for a polynomial h ∈ C[Zd ] define the logarithmic Mahler measure
m(h) by the integral

m(h) =
∫

T
d
log |h(e2π iθ1 , . . . , e2π iθd )| dθ1 . . . dθd .

In [24] (cf. [13, Theorem 2.6] for a proof) the following result was established:
for linear f ∈ Z[H] of the form (25) with U(gi ) = ∅ for i = 0, 1, the action α f is
expansive if and only if

m(g0) 	= m(g1) .

In this sectionwe use results on invertibility to derive criteria for non-expansiveness
of principal actions of elements f in Z[H] of the form f = g1(y, z)x − g0(y, z) in
cases when the unitary varieties U(g0) and U(g1) are not necessarily empty.

For every χ ∈ S, consider the rational function ψχ on S:

ψχ(ζ ) = g0(ζ, χ)

g1(ζχ−1, χ)

and consider the map ψ : N×S −→ C given by

ψχ(n, ζ ) =
{

1 if n = 0
∏n−1

j=0 ψχ(ζχ− j ) if n ≥ 1.

7.1 Either U(g0) or U(g1) is a non-empty set

We fix the following notation. For every χ ∈ S and i = 0, 1, put

Uχ (gi ) = {ζ ∈ S : gi (ζ, χ) = 0} ,

and
gi,χ (y) = gi (y, χ) ,

which we will view as a Laurent polynomial in y with complex coefficients, i.e.,
gi,χ ∈ C[Z] for every χ and i = 0, 1. Note also that the set Uχ (gi ) is infinite if and
only if gi,χ is the zero polynomial.

For notational convenience we put

φχ(ζ ) = log |ψχ(ζ )| and φχ(n, ζ ) = log |ψχ(n, ζ )| ,

for every ζ ∈ S and n ≥ 0.

Theorem 23 Let f ∈ Z[H] be of the form f = g1(y, z)x − g0(y, z). Suppose there
exists an element χ ∈ S of infinite order which satisfies either of the following condi-
tions.
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(i) Uχ (g0) = ∅, Uχ (g1) 	= ∅ and
∫

φχdλS < 0.
(ii) Uχ (g0) 	= ∅, Uχ (g1) = ∅ and

∫

φχdλS > 0.

Then α f is non-expansive.

Proof We will prove only the first case, the second case can be proved similarly.
Suppose f is such that (X f , α f ) is expansive and the conditions in (i) are satisfied.

We will now show that certain consequences of expansivity of α f are inconsistent
with the conditions in (i). Hence, by arriving to a contradiction, we will prove that
under (i) α f is not expansive.

We know that (X f , α f ) is expansive if and only if f is invertible in �1(H, C).
Hence (X f , α f ) is expansive if and only if there exists a w ∈ �1(H, C),

w =
∑

k,l,m

wk,l,m y
l xk zm,

such that
f · w = w · f = 1�1(H,C).

Suppose θ ∈ (0, 1] is irrational and that χ = e2π iθ ∈ S satisfies condition (i).
Consider the following representation π1,θ of �1(H, C) on L2(R, C), defined by

(π1,θ (x)F)(t) = T1F(t) = F(t + 1), (π1,θ (y)F)(t) = Mθ F(t) = e2π iθ t F(t),

and (π1,θ (z)F)(t) = e2π iθ F(t) .

If
f = g1(y, z)x − g0(y, z) and w = f −1 =

∑

k,l,m

wk,l,m y
kxl zm ,

then
π1,θ ( f ) = g1(e

2π iθ t , e2π iθ )T1 − g0(e
2π iθ t , e2π iθ )

and

π1,θ (w) =
∑

(k,l,m)∈Z
3

wk,l,mM
k
θT

l
1χ

m

=
∑

l∈Z

[
∑

(k,m)∈Z
2

w(k,l,m)e
2π iθ tke2π iθm

]

Tl1.

Set
Pl,θ (t) :=

∑

(k,m)∈Z
2

w(k,l,m)e
2π iθ tke2π iθm ,

then π1,θ (w) =∑l∈Z Pl,θ (t)Tl1.
The functions Pl,θ (·) : R −→ C, l ∈ Z, are bounded and continuous. Indeed, for

any l ∈ Z

Pl,θ (t) =
∑

(k,m)∈Z
2

w(k,l,m)e
2π iθ tke2π iθm
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is a Fourier series with absolutely convergent coefficients:

∑

k∈Z

∣

∣

∣

∑

m∈Z

w(k,l,m)e
2π iθm

∣

∣

∣ ≤
∑

k∈Z

∑

m∈Z

|w(k,l,m)|

≤ ‖w‖�1(H,C) < ∞ .

For similar reasons,

∑

l∈Z

sup
t∈R

|Pl,θ (t)| ≤
∑

l∈Z

[
∑

k,m

|wk,l,m |
]

(26)

= ‖w‖�1(H,C) < ∞ . (27)

Since w · f = 1�1(H,C) and π1,θ (1�1(H,C)) = 1B(L2(R,C)) – the identity operator
on L2(R, C), one has

1B(L2(R,C)) = π1,θ (w)π1,θ ( f )

=
[
∑

l∈Z

Pl,θ (t)T
l
1

]

·
[

g1(e
2π iθ t , e2π iθ )T1 − g0(e

2π iθ t , e2π iθ )
]

=
[
∑

l∈Z

Pl,θ (t)T
l
1

]

·
[

g1,χ (e2π iθ t )T1 − g0,χ (e2π iθ t )
]

=
∑

l∈Z

[

Pl−1,θ (t)g1,χ (e2π iθ(t+l−1)) − Pl,θ (t)g0,χ (e2π iθ(t+l))
]

Tl1.

Set
Ql,θ (t) = Pl−1,θ (t)g1,χ (e2π iθ(t+l−1)) − Pl,θ (t)g0,χ (e2π iθ(t+l)) . (28)

Since {Ql,θ (·)| l ∈ Z} are again bounded continuous functions, one concludes that

Q0,θ (t) ≡ 1 and Ql,θ (t) ≡ 0, for every l 	= 0.

Hence, for every t ∈ R, one has

Q0,θ (t) = P−1,θ (t)g1,χ (e2π iθ(t−1)) − P0,θ (t)g0,χ (e2π iθ t ) = 1 , (29)

and for every l ≥ 1

Ql,θ (t) = Pl−1,θ (t)g1,χ (e2π iθ(t+l−1)) − Pl,θ (t)g0,χ (e2π iθ(t+l)) = 0 . (30)

Since Uχ (g0) = ∅, Eq. (30) imply that

Pl,θ (t) = Pl−1,θ (t) · g1,χ (e2π iθ(t+l−1))

g0,χ (e2π iθ(t+l))
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for every t , and hence for each l ≥ 1 and every t ∈ R, one has

Pl,θ (t) = P0,θ (t) · g1,χ (e2π iθ t )

g0,χ (e2π iθ(t+1))
. . .

g1,χ (e2π iθ(t+l−1))

g0,χ (e2π iθ(t+l))
,

or

Pl,θ (t) = P0,θ (t)
1

ψχ−1(l, ζtχ)

where ζt = e2π iθ t .
Then since Uχ (g0) = ∅, the logarithmic Mahler measure m(g0,χ ) is finite, and

hencem(g1,χ ) > −∞. Therefore, g1,χ (η) is not identically 0 on S
1, and since g1,χ is

a polynomial, we can conclude that Uχ (g1) is finite. Therefore, the set of points

B1 =
{

ζ ∈ S
1 : ζe2π iθk ∈ Uχ (g1) for some k ∈ Z

}

=
⋃

k∈Z

Rk
θ (Uχ (g1))

is at most countable, and hence has Lebesgue measure 0.
Both functions log |g0,χ (·)| and log |g1,χ (·)| are integrable.Moreover, the irrational

rotation Rθ : T −→ T is an ergodic transformation. By Birkhoff’s ergodic theorem
there exists a set B2 ⊂ S

1 of full Lebesgue measure such that for any ζ ∈ B2

1

n

n
∑

k=1

log |g0,χ (ζe2π iθk)| → m(g0,χ ) ,

1

n

n−1
∑

k=0

log |g1,χ (ζe2π iθk)| → m(g1,χ ) .

Therefore, since m(g1,χ ) > m(g0,χ ), on the set of full measure Bc
1 ∩ B2

Ψn(ζ ) = 1

ψχ−1(n, ζχ)
	= 0 ∀n ≥ 1, (31)

and
lim
n→∞Ψn(ζ ) = +∞. (32)

Since θ 	= 0, the set of points

C =
{

t ∈ R : e2π i tθ /∈ Bc
1 ∩ B2

}

has full measure, and for every t ∈ C , one has that the sum

∑

l≥0
|Pl,θ (t)| = |P0,θ (t)| + |P0,θ (t)|Ψ1(e

2π i tθ ) + · · · + |P0,θ (t)|Ψl(e
2π i tθ ) + · · ·

(33)
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is finite if and only if |P0,θ (t)| = 0. Combining this fact with the uniform bound (26),
(27), we are able to conclude that

P0,θ (t) = 0 (34)

on a set of full measure in R. The function P0,θ (t) is continuous and therefore, P0,θ
must be the identically zero function on R.

Finally, consider the remaining Eq. (29) for Q0,θ (t). Since P0,θ (t) ≡ 0, one has
that there exists a continuous bounded function P−1,θ such that

P−1,θ (t)g1,χ (e2π iθ(t−1)) = 1 , (35)

for every t ∈ R. However, since the unitary variety Uχ (g1) is not empty, one can find
t ∈ R such that

g1,χ (e2π iθ(t−1)) = 0,

and hence, (35) cannot be satisfied. Therefore, we arrived to a contradiction with the
earlier assumption that α f is expansive. ��

The assumption that
∫

φχdλS < 0 cannot be dropped in (i) of Theorem 23 as the
following simple minded example shows.

Example 6 Suppose χ is not a root of unity and Uχ (g1) 	= ∅. Set g0(y, z) ≡ K ,
where we pick K ∈ N such that

1. K > ‖g1(y, z)‖�1(H,C);
2.
∫

φχdλS > 0.

Then f = g1(y, z)x − K is invertible since

f = K

(

g1(y, z)x

K
− 1

)

and

∥

∥

∥

∥

g1(y, z)x

K

∥

∥

∥

∥

�1(H,C)

< 1.

7.2 The sets U(g0) and U(g1) are both non-empty

Let us denote by
Orbχ (ζ ) = {ζχn : n ∈ Z}

the orbit of ζ under the circle rotation Rχ : S −→ S with ζ 
→ ζχ , for every ζ ∈ S.
We consider first linear elements f = g1(y, z)x − g0(y, z) for which

1. U(g0) 	= ∅ and U(g1) 	= ∅;
2. and there exists an element (ζ, χ) ∈ U(g0) with

{(η, χ) ∈ S
2 : η ∈ Orbχ (ζ )} ∩ U(g1) 	= ∅.

Theorem 24 If f is of the form (25) and for some m ∈ Z

U(g1) ∩
{

(ξχm, χ) ∈ S
2 : (ξ, χ) ∈ U(g0)

}

	= ∅,
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then α f is non-expansive.

Although this result could be provedwith the help of Stone-vonNeumann represen-
tations as well, it is more suitable to use monomial representations. For the following
discussion it is convenient to work with slightly modified versions of the monomial
representations defined in (21). For every ζ, χ ∈ S let π(ζ,χ) be the representation of
H acting on �2(Z, C) which fulfils

(π(ζ,χ)(x)F)(n) = F(n + 1), (π(ζ,χ)(y)F)(n) = ζχn F(n) and (36)

(π(ζ,χ)(z)F)(n) = χF(n) (37)

for each F ∈ �2(Z, C) and n ∈ Z.

Proof Consider the casem ≥ 0 first. Suppose f is invertible and hence π( f ) is invert-
ible for every unitary representations of H and in particular, π(ζ,χ)( f ) is invertible
for every pair (ζ, χ) ∈ S

2. By the assumptions of the theorem there exists a pair
(ξ, χ) ∈ S

2 such that

g1(ξχm, χ) = 0 and g0(ξ, χ) = 0 . (38)

Without loss of generality we may assume that m is the minimal power such that (38)
is satisfied, i.e., g1(ξχ l , χ) 	= 0 for each l ∈ Z with 0 ≤ l ≤ m − 1.

Suppose G ∈ �2(Z, C) is in the image of π(ξ,χ)( f ), then there exists an F ∈
�2(Z, C) such that

G(n) = g1(ξχn, χ)F(n + 1) − g0(ξχn, χ)F(n) (39)

holds for every n ∈ Z. Given the choice of (ξ, χ) [cf. (38)], one immediately concludes
that

G(0) = g1(ξ, χ)F(1).

If m = 0, then G(0) = 0, and we arrive to a contradiction with the assumption that
π(ξ,χ)( f ) is invertible, and hence has a dense range in �2(Z, C): Indeed, for every
F ∈ �2(Z, C) one has that

(π(ξ,χ)( f )F)(0) = 0

and hence, the range of π(ξ,χ)( f ) is not dense.
If m > 0, then F must satisfy the following system of linear equations

G(0) = g1(ξ, χ)F(1) (40)

G(l) = g1(ξχ l , χ)F(l + 1) − g0(ξχ l , χ)F(l), 1 ≤ l ≤ m − 1 (41)

G(m) = −g0(ξχm, χ)F(m) . (42)

We can eliminate F(1), F(2), . . . , F(m) in (40)–(42) to obtain an expression for
G(m) in terms of G(0),G(1), . . . ,G(m − 1). Indeed, one can easily verify that, for
each 0 ≤ l ≤ m − 1, F(l + 1) can be written as

123



A Wiener Lemma for the discrete Heisenberg group 521

F(l + 1) = G(l)

g1(ξχ l , χ)
+ g0(ξχ l , χ)

g1(ξχ l , χ)
F(l) = · · · (43)

=
l
∑

i=0

G(l − i)

g1(ξχ l , χ)

i−1
∏

n=0

g0(ξχ l−n, χ)

g1(ξχ l−n−1, χ)
(44)

=
l
∑

i=0

G(l − i)

g1(ξχ l , χ)
ψχ(i, ξχ l) (45)

(we use the convention that the empty product
∏

∅ is equal to 1). Due to our choice
of m, F(l + 1) in (43) is well-defined. Moreover, since G(m) = g0(ξχm, χ)F(m),
one gets

G(m) = −g0(ξχm, χ)F(m)

= −
m−1
∑

i=0

G(m − 1− i)ψχ(i + 1, ξχm−1) .

Hence, G(m) depends continuously on the values G(0),G(1), . . . ,G(m − 1).
Again, this is a contradiction with our hypothesis that π(ξ,χ)( f ) has dense range
in �2(Z, C).

If m < 0, then we choose π such that

(π(x)F)(n) = F(n − 1) and (π(y)F)(n) = ξχ−n F(n)

for each F ∈ �2(Z, C) and n ∈ Z. Exactly the same arguments as in the case m ≥ 0
can be used to get a contradiction to the invertibility of π( f ). ��
Corollary 2 Let f be of the form (25) which satisfies the conditions of Theorem 24.
Then α f  defined by f  = g0(y, z)x − g1(y, z) is non-expansive.

Proof Since

U(g1) ∩
{

(ξχm, χ) ∈ S
2 : (ξ, χ) ∈ U(g0)

}

	= ∅ ,

there exists a k ∈ Z such that

U(g0) ∩
{

(ξχk, χ) ∈ S
2 : (ξ, χ) ∈ U(g1)

}

is non-empty as well. Hence, Theorem 24 guarantees the non-expansiveness of α f  .
��

Example 7 Consider

g1(y, z) = 1− y − y−1 − z − z−1 and g0(y, z) = 3− y − y−1 − z − z−1 .

We will show that the dynamical systems (X f , α f ) and (X f  , α f  ), with f =
g1(y, z)x − g0(y, z) and f  = g0(y, z)x − g1(y, z), are non-expansive.
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For this purpose we introduce, form ∈ Z, the ‘m-sheared version’ of g0(y, z) given
by

g(m)
0 (y, z) = g0(yz

m, z) = 3− yzm − y−1z−m − z − z−1 ;
and note that

U(g1) ∩
{

(ξχm, χ) ∈ S
2 : (ξ, χ) ∈ U(g0)

}

	= ∅ ⇐⇒ U(g1) ∩ U(g(m)
0 ) 	= ∅ .

The Fourier transforms of g1(y, z) and g(m)
0 (y, z) are given by the functions

(Fg1)(s, t) = 1− 2 cos(2πs) − 2 cos(2π t) and
(

Fg(m)
0

)

(s, t) = 3− 2 cos(2π(s + mt))− 2 cos(2π t),

respectively.
Let

K =
{

(s, t) ∈ T
2 : (Fg1)(s, t) = 0

}

and

K [m] =
{

(s, t) ∈ T
2 :
(

Fg(m)
0

)

(s, t) = 0
}

.

Fix m ∈ Z. By solving the equations

(Fg1)(s, t) = 0 and
(

Fg(m)
0

)

(s′, t ′) = 0

for s and s′ we get curves s(t) and s′(t ′) corresponding to the solution sets K and
K [m]. If these curves intersect, then K and K [m] have a non-empty intersection. It is
clear that (s, t) ∈ K if and only if (e2π is, e2π i t ) ∈ U(g1). For every m ∈ Z the sets
K [m] andU(g(m)

0 ) are related in the same way. The sets K and K [2] have a non-empty
intersection as Fig. 1 shows; while K ∩ K [0] = ∅ and K ∩ K [1] = ∅.

Since the conditions of Theorem 24 and Corollary 2 are satisfied, f and f  are not
invertible.

The next result can be easily deduced from the proof of Theorem 23.

Theorem 25 Let f ∈ Z[H] be of the form (25). Suppose there exists an element χ ∈ S

of infinite order such that the following conditions are satisfied

Uχ (g0) 	= ∅ and Uχ (g1) 	= ∅ , (46)

and
m(g0,χ ) 	= m(g1,χ ) .

Then α f is non-expansive.

123



A Wiener Lemma for the discrete Heisenberg group 523

Fig. 1 In this figure the curves corresponding to the solution sets K (thick line) and K [2] (thin line) are
plotted

Proof Suppose (46) holds. Let us first treat the trivial cases.
If g0,χ (y) is the zero-element in C[Z], then for every ζ ∈ S

π(ζ,χ)( f ) = π(ζ,χ)(g1(y, z)x).

Fix ξ ∈ Uχ (g1), which is a non-empty set by the assumptions of the theorem. Since
one has (π(ξ,χ)( f )F)(0) is equal to 0 for every F ∈ �2(Z, C), 0 is an element of
σ(π(ξ,χ)( f )) and hence f is not invertible. The same conclusions can be drawn for
the cases g1,χ = 0C[Z] and g0,χ = g1,χ = 0C[Z].

123



524 M. Göll et al.

Next consider the case where g0,χ and g1,χ are not the zero elements in C[Z],
which implies that m(g0,χ ) and m(g1,χ ) are finite and moreover Uχ (g0) and Uχ (g1)
are finite sets. Suppose that m(g0,χ ) < m(g1,χ ). We follow the line of arguments in
the proof of Theorem 23. The only adaption one has to make is to take the countable
set

B =
{

t ∈ R : e2π i tχk ∈ Uχ (g0) for some k ∈ Z

}

into consideration, i.e., to exclude points in B in the Eqs. (31)–(34).
The case m(g0,χ ) > m(g1,χ ) can be proved analogously. ��

Acknowledgments The authors would like to thank Karlheinz Gröchenig, A.J.E.M. Janssen, Hanfeng Li
and Doug Lind for helpful discussions and insights. Moreover, we thank Mike Keane for making us aware
of the article [6] by Ian Brown. MG gratefully acknowledges support by a Huygens Fellowship from Leiden
University. MG and EV would like to thank the Erwin Schrödinger Institute, Vienna, and KS the University
of Leiden, for hospitality and support while some of this work was done.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Allan, G.R.: Ideals of vector-valued functions. Proc. Lond. Math. Soc. 18(2), 193–216 (1968)
2. Baggett, L.W.: Processing a radar signal and representations of the discrete Heisenberg group. Colloq.

Math. 60/61(1), 195–203 (1990)
3. Barnes, B.A.: When is the spectrum of a convolution operator on L p independent of p? Proc. Edinb.

Math. Soc. 2 33(2), 327–332 (1990)
4. Bekka, M.B., Louvet, N.: Some properties of C*-algebras associated to discrete linear groups. In:

C*-Algebras, pp. 1–22. Springer, Berlin, Heidelberg (2000)
5. Bratteli, O., Elliott, G.A., Evans, D.E., Kishimoto, A.: Non-commutative spheres. II: rational rotations.

J. Oper. Theory 27, 53–85 (1992)
6. Brown, I.D.: Representation of finitely generated nilpotent groups. Pac. J. Math. 45, 13–26 (1973)
7. Davidson, K.R.: C∗-Algebras by example, Fields institutemonographs, vol. 6. AmericanMathematical

Society, Providence (1996)
8. Deninger, C., Schmidt, K.: Expansive algebraic actions of discrete residually finite amenable groups

and their entropy. Ergod. Theory Dyn. Syst. 27, 769–786 (2007)
9. Einsiedler, M., Rindler, H.: Algebraic actions of the discrete Heisenberg group and other non-abelian

groups. Aequationes Math. 62, 117–135 (2001)
10. Fell, J.M.G.: The dual spaces of C∗-algebras. Trans. Am. Math. Soc. 94, 365–403 (1960)
11. Folland, G.B.: A course in abstract harmonic analysis, Studies in advanced mathematics. CRC Press,

Boca Raton (1995)
12. Gelfand, I.M., Naı̆mark, M.A.: Normed rings with involutions and their representations. (Russian).

Izvestiya Akad. Nauk SSSR. Ser. Mat. 12, 445–480 (1948)
13. Göll,M., Schmidt,K.,Verbitskiy, E.:Algebraic actions of the discreteHeisenberg group: expansiveness

and homoclinic points. Indag. Math. 25, 713–744 (2014)
14. Gröchenig, K.: Wiener’s lemma: theme and variations. an introduction to spectral invariance. In: Four

short courses on harmonic analysis. applied and numerical harmonic analysis. Birkhäuser, Boston
(2010)

15. Gröchenig, K., Leinert, M.: Wiener’s lemma for twisted convolution and Gabor frames. J. Am. Math.
Soc. 17, 1–18 (2004)

16. Hannabuss, K.: Representations of nilpotent locally compact groups. J. Funct. Anal. 34, 146–165
(1979)

123

http://creativecommons.org/licenses/by/4.0/


A Wiener Lemma for the discrete Heisenberg group 525

17. Howe,R.E.: The Fourier transform for nilpotent locally compact groups: I. Pac. J.Math. 73(2), 307–327
(1977)

18. Howe, R.E.: On representations of discrete, finitely generated, torsion-free, nilpotent groups. Pac. J.
Math. 73(2), 281–305 (1977)

19. Hulanicki, A.:On the symmetry of group algebras of discrete nilpotent groups. Stud.Math. 35, 207–219
(1970)

20. Janssen, A.J.E.M.: On rationally oversampled Weyl-Heisenberg frames. Signal Process. 47, 239–245
(1995)

21. Kaniuth, E., Taylor, K.: Induced representations of locally compact groups. Cambridge tracts in math-
ematics, vol. 197. Cambridge University Press, Cambridge (2013)

22. Katznelson, Y., Weiss, B.: The construction of quasi-invariant measures. Isr. J. Math. 12, 1–4 (1972)
23. Keane, M.: Sur les mesures quasi-ergodiques des translations irrationnelles. C. R. Acad. Sci. Paris Sér.

A-B 272, A54–A55 (1971)
24. Lind, D., Schmidt, K.: A survey of algebraic actions of the discrete Heisenberg group. Uspekhi Mat.

Nauk 70(4), 77–142 (2015)
25. Linnell, P.A.: von Neumann algebras and linear independence of translates. Proc. Am. Math. Soc. 127,

3269–3277 (1999)
26. Ludwig, J.: A class of symmetric and a class of Wiener group algebras. J. Funct. Anal. 31(2), 187–194

(1979)
27. Moran, W.: Ergodic measures for the irrational rotation on the circle. J. Aust. Math. Soc. Ser. A 45(1),

133–141 (1988)
28. Naı̆mark, M. A.: Normed algebras. Translated from the second Russian edition by Leo F. Boron. 3rd

edition. Wolters-Noordhoff Series of Monographs and Textbooks on Pure and Applied Mathematics.
Wolters-Noordhoff Publishing, Groningen (1972)

29. Palmer, T.W.: Banach algebras and the general theory of ∗ -algebras. Vol. I. In: Encyclopedia of
mathematics and its applications, Algebras and Banach algebras, vol. 49. Cambridge University Press,
Cambridge (1994)

30. Palmer, T.W.: Banach algebras and the general theory of ∗ -algebras. Vol. 2. In: Encyclopedia of
mathematics and its applications, ∗-algebras, vol. 79. Cambridge University Press, Cambridge (2001)

31. Poguntke, D.: Discrete nilpotent groups have a T1 primitive ideal space. Stud. Math. 71(3), 271–275
(1981/82)

32. Rieffel, M.A.: C∗-Algebras associated with irrational rotations. Pac. J. Math. 93(2), 415–429 (1981)
33. Schmidt, K.: Dynamical systems of algebraic origin. Birkhäuser, Basel-Boston-Berlin (1995)
34. Thoma, E.: Über unitäre Darstellungen abzählbarer, diskreter Gruppen. Math. Ann. 153, 111–138

(1964)

123


	A Wiener Lemma for the discrete Heisenberg group
	Invertibility criteria and applications to algebraic dynamics
	Abstract
	1 Motivation
	1.1 Outline of the article

	2 Invertibility in group algebras and Wiener's Lemma: a review
	2.1 Representation theory
	Unitary representations
	States and the GNS construction
	Type I groups
	Induced and monomial representations

	2.2 Symmetric Banach-ast-algebras

	3 The dual of the discrete Heisenberg group and a Wiener Lemma
	3.1 The dual of a discrete group
	3.2 The discrete Heisenberg group and its dual
	3.3 Wiener's Lemma for the discrete Heisenberg group

	4 Wiener's Lemma for the discrete Heisenberg group: a proof and a first application
	4.1 Local principles
	4.2 Proof of Wiener's Lemma
	4.3 Finite-dimensional approximation

	5 Invertibility in group algebras of discrete nilpotent groups
	5.1 Wiener's Lemma for nilpotent groups
	5.2 Monomial representations
	The Heisenberg group
	The general case

	5.3 Maximality of primitive ideals
	5.4 Examples
	5.5 A kernel condition and finite-dimensional representations

	6 A connection to time-frequency-analysis via localisations
	6.1 Localisations and twisted convolution algebras
	6.2 Wiener's Lemma for twisted convolution algebras
	6.3 An application to algebraic dynamical systems

	7 Examples
	7.1 Either U(g0) or U(g1) is a non-empty set
	7.2 The sets U(g0) and U(g1) are both non-empty

	Acknowledgments
	References





