
Monatsh Math (2013) 170:27–48
DOI 10.1007/s00605-012-0417-6

On a generalization of the Euler totient function

Jerzy Kaczorowski

Received: 21 November 2011 / Accepted: 24 April 2012 / Published online: 24 May 2012
© The Author(s) 2012. This article is published with open access at Springerlink.com

Abstract For a general polynomial Euler product F(s) we define the associated
Euler totient function ϕ(n, F) and study its asymptotic properties. We prove that for
F(s) belonging to certain subclass of the Selberg class of L-functions, the error term
in the asymptotic formula for the sum of ϕ(n, F) over positive integers n ≤ x behaves
typically as a linear function of x . We show also that for the Riemann zeta function
the square mean value of the error term in question is minimal among all polynomial
Euler products from the Selberg class, and that this property uniquely characterizes
ζ(s).

Keywords Euler totient function · Square mean value · Selberg class ·
Polynomial Euler products · Converse theorems · Riemann zeta function
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1 Introduction and statement of results

By a polynomial Euler product we mean a function F(s) of a complex variable
s = σ + i t which for σ > 1 is defined by an absolutely convergent product of
the form

Communicated by J. Schoißengeier.

Supported in part by the grant no. N N201 605940 from the National Science Centre (Poland).

J. Kaczorowski (B)
Faculty of Mathematics and Computer Science, Adam Mickiewicz University, 61-614 Poznan, Poland
e-mail: kjerzy@amu.edu.pl

J. Kaczorowski
Institute of Mathematics of the Polish Academy of Sciences, 00-956 Warsaw, Poland

123



28 J. Kaczorowski

F(s) =
∏

p

Fp(s) =
∏

p

d∏

j=1

(
1 − α j (p)

ps

)−1

, (1.1)

where p runs over primes and |α j (p)| ≤ 1 for all p and 1 ≤ j ≤ d. We assume that d is
chosen as small as possible, i.e. that there exists at least one prime number p0 such that

d∏

j=1

α j (p0) �= 0.

Then d is called the Euler degree of F . Note that the L-functions from number theory
including the Riemann zeta function, Dirichlet L-functions, Dedekind zeta and Hecke
L-functions of the algebraic number fields, as well as the (normalized) L-functions of
the holomorphic modular form and, conjecturally, all general automorphic L-functions
are polynomial Euler products.

For F in (1.1) we define the associated Euler totient function as follows (n ∈ N)

ϕ(n, F) = n
∏

p|n
Fp(1)−1.

We see that the classical Euler ϕ-function corresponds to the Riemann zeta function
i.e. ϕ(n) = ϕ(n, ζ ). Euler totient function twisted by a primitive Dirichlet character
ϕ(n, χ) as considered in a recent paper [1] corresponds to the case where F(s) is the
Dirichlet L-function L(s, χ).

Let

γ (p) = p

(
1 − 1

Fp(1)

)
(1.2)

and

C(F) = 1

2

∏

p

(
1 − γ (p)

p2

)
. (1.3)

Theorem 1.1 For a polynomial Euler product F of degree d and x ≥ 1 we have
∑

n≤x

ϕ(n, F) = C(F)x2 + O(x(log(2x))d).

Let us put

E(x, F) =
∑

n≤x

ϕ(n, F) − C(F)x2.

A deeper analysis of E(x, F) can be performed assuming more on the analytic
nature of F(s). A convenient framework for such an analysis is provided by the the-
ory of the Selberg class S. We refer to [2–5] for the basic definitions and mention only
that S consists of the Dirichlet series
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On a generalization of the Euler totient function 29

F(s) =
∞∑

n=1

aF (n)

ns

which are absolutely convergent for σ > 1, have meromorphic continuation to the
whole complex plane C with the only possible pole at s = 1, satisfy a general func-
tional equation of the Riemann type, and have a very general Euler product expansion.

Let S0 denote the set of all L-functions F(s) from S which are polynomial Euler
products and such that F(s) �= 0 for

σ > 1 − c0(F)

log(|t | + 10)
(s = σ + i t, −∞ < t < ∞), (1.4)

where c0(F) denotes a positive constant depending on F . Note that it is expected that
every F ∈ S has an Euler product of this type and satisfies the General Riemann
Hypothesis (GRH) i.e. F(s) �= 0 for σ > 1/2. In particular, we expect that S0 = S.

Theorem 1.2 For F ∈ S0 and x ≥ 1 we have

x∫

1

|E(ξ, F)|2 dξ = β(F)x3 + O(x3 exp(−c
√

log x)), (1.5)

where

β(F) = 1

6π2

∏

p

(
1 + |γ (p) − 1|2

p2 − 1

)
(1.6)

and c denotes a positive constant depending on F.

Let us remark that in the case of the classical Euler ϕ-function Chowla [6] proved
that for x ≥ 2

x∫

1

∣∣∣∣∣∣

∑

n≤ξ

ϕ(n) − 3

π2 ξ2

∣∣∣∣∣∣

2

dξ = 1

6π2 x3 + O

(
x3

log4 x

)
.

This immediately follows from (1.5) since C(ζ ) = 3/π2 and β(ζ ) = 1/(6π2).
Assuming larger zero-free regions one can obtain sharper estimates of the remainder

term in (1.5). In the extremal case we have the following result.

Theorem 1.3 Under the GRH, the remainder term in (1.5) can be replaced by
O(x14/5+ε) with an arbitrary ε > 0.

Theorems 1.2 and 1.3 show that typically |E(x, F)| behave like a linear function
of x . More explicitly, most of the time |E(x, F)| is close to

√
3β(F)x . In particular,

we have the following omega estimate.

Corollary 1.4 For x → ∞ we have E(x, F) = �(x).
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30 J. Kaczorowski

Recalling (1.6) we can formulate the following extremal property of the Riemann
zeta function.

Corollary 1.5 For every polynomial Euler product F we have

β(F) ≥ β(ζ ) = 1/(6π2),

where ζ is the Riemann zeta function.

This leads to the following converse theorem characterizing ζ(s) as the only polyno-
mial Euler product from the Selberg class with the minimal square mean of |E(x, F)|.

In general, by a “converse theorem” we mean a statement identifying a known
L-function by its analytic properties. The most classical example of such result is the
well known Hamburger theorem saying roughly that the Riemann zeta function is up
to a multiplicative constant the only ordinary Dirichlet series satisfying the functional
equation of ζ(s). The theory of the Selberg class is a natural place for discussing
general converse theorems. Some of them refer directly to the Riemann zeta function.
We have the following results.

1. Riemann zeta function is the only L-function from the Selberg class of degree
and conductor equal to 1 [7].

2. Riemann zeta function is the only L-function from the Selberg class of degree 1
which is not entire [7].

3. Riemann zeta function is the only L-function F from the Selberg class with “easy”
Dirichlet coefficients meaning that aF (n) = φ(log n) for certain entire function
φ(z) of order 1 and a finite type i.e., satisfying φ(z) 	 eα|z| for certain positive
α and every complex z [8].

4. Riemann zeta function is the only L-function from the Selberg class for which
the series

∞∑

n=1

aF (n) − 1

ns

converges for σ > 1/4 − δ for certain positive δ ([9], see also [10]).

We add to this list the following result.

Theorem 1.6 Let F ∈ S be a polynomial Euler product and β(F) = 1/(6π2). Then
F(s) = ζ(s).

The main tool used in the proof of this theorem is the following strong multiplicity
one result which is a generalization of the main theorem from [11]. Note that the
first multiplicity one theorem for Selberg’s class was proved by M. Ram Murty and
V. Kumar Murty, see [12].

Theorem 1.7 Suppose F, G ∈ S are two polynomial Euler products such that

aF (p) = aG(p) + O

(
1

pθ

)

for certain θ > 1/2 and all primes p. Then F = G.

As an immediate consequence we have the following result.
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On a generalization of the Euler totient function 31

Corollary 1.8 Suppose F, G ∈ S are two polynomial Euler products such that
Fp(1) = G p(1) for almost all primes p. Then F = G.

General notation. By c, possibly with a subscript, we denote a generic positive
constant which may depend on F and other parameters but is independent of x and y.
Its numerical value is not the same in each occurrence, so that we may write for instance
xc log x 	 xc as x → ∞. The same convention applies to ε which denotes a generic
positive (small) real number. We denote by pn the n-th prime number, and by ω(n)

the number of distinct prime divisors of n. We shall use the following well-known
estimate

ω(n) 	 log n

log log n
for all n ≥ 3. (1.7)

Moreover, by τd(n) we denote the familiar divisor function of order d, so that ζ d(s) =∑∞
n=1 τd(n)n−s for σ > 1. In particular τ1(n) = 1 for all n. We shall use the following

well-known facts about τd(n). For x ≥ 1 we have

∑

n≤x

τd(n) 	 x(log(2x))d−1, (1.8)

∑

n≤x

τd(n)

n
	 (log(2x))d , (1.9)

and for x
d−1
d+1 ≤ h ≤ x

∑

x≤n≤x+h

τd(n) 	 h(log(2x))d−1. (1.10)

Moreover,

∑

n≤x

τ 2
d (n) 	 x(log(2x))d2−1. (1.11)

Estimates (1.8)–(1.10) follow from [13], Theorem 12.2. whereas (1.11) can be easily
proved using (1.9), (1.8) and the submultiplicativity of τd(n).

We denote by {x} and [x] the fractional and the integer part of a real number x
respectively so that x = [x] + {x}, [x] ∈ Z and 0 ≤ {x} < 1. Moreover, ||x || denotes
the distance from x to the nearest integer. Finally, we use the following common
notation for the complex exponential function e(x) = exp(2π i x).

2 Lemmas related to general polynomial Euler products

In this section F will always denote a polynomial Euler product of degree d.
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32 J. Kaczorowski

Lemma 2.1 We have

ϕ(n, F) 	 n(log log n)d .

Proof We have

|ϕ(n, F)| ≤ n
∏

p|n

d∏

j=1

(
1 + |α j (p)|

p

)
= n exp

⎛

⎝d
∑

p|n
log

(
1 + 1

p

)⎞

⎠

≤ n exp

⎛

⎝d
∑

p|n

1

p

⎞

⎠ 	 n exp(d log log pω(n)) 	 n(log log n)d ,

and the lemma follows.
Let

α(n) = μ(n)
∏

p|n
γ (p), (2.1)

where γ (p) is defined by (1.2).

Lemma 2.2 The series

∞∑

n=1

ϕ(n, F)

ns

converges absolutely for σ > 2 and in this half-plane we have

∞∑

n=1

ϕ(n, F)

ns
= ζ(s − 1)

∞∑

n=1

α(n)

ns
, (2.2)

where ζ(s) denotes the Riemann zeta function and coefficients α(n) are defined by
(2.1). In particular,

ϕ(n, F) = n
∑

m|n

α(m)

m
.

Proof Absolute convergence of the series immediately follows from Lemma 2.1. In
order to show (2.2) observe that Dirichlet series of the both sides of this identity have
multiplicative coefficients. It suffices therefore to check equality of the local factors.
We have

∞∑

k=0

ϕ(pk, F)

pks
= 1 + 1

Fp(1)

∞∑

k=1

1

pk(s−1)
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On a generalization of the Euler totient function 33

= 1 + 1

Fp(1)

1

ps−1 − 1

= ζp(s − 1)

(
1 − γ (p)

ps

)

and the lemma follows.
Let us observe that α(n) 	 nε for every positive ε. Hence the series

∞∑

n=1

α(n)

ns

absolutely converges for σ > 1.

Lemma 2.3 For σ > 1 we have

∞∑

n=1

α(n)

ns
= H(s)

F(s)
, (2.3)

where H(s) = ∑∞
n=1

h(n)
ns converges absolutely for σ > 1/2. Moreover, as n runs

over square-free positive integers we have

h(n) 	 1

n
exp

(
c

log n

log log(n + 2)

)
. (2.4)

In particular for such n, h(n) is bounded.

Proof For σ > 1 we have

F(s)
∞∑

n=1

α(n)

ns
=

∏

p

(
1 + a(p)

ps
+ a(p2)

p2s
+ · · ·

) (
1 − γ (p)

ps

)

=
∏

p

(
1 + a(p) − γ (p)

ps
+

∞∑

k=2

a(pk) − a(pk−1)γ (p)

pks

)

=
∏

p

(
1 +

∞∑

k=1

h(pk)pks

)
. (2.5)

Since

h(p) = a(p) − γ (p) = a(p) − p

⎛

⎝1 −
d∏

j=1

(
1 − α j (p)

p

)⎞

⎠ =
d−1∑

j=1

A j (p)

p j
,

where

|A j (p)| ≤
(

d

j + 1

)
(1 ≤ j ≤ d − 1)
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34 J. Kaczorowski

we see that h(p) 	 1/p. Hence for a square-free n we have

|h(n)| =
∏

p|n
|h(p)| ≤ 1

n
cω(n),

and (2.4) follows form (1.7). Moreover, for k ≥ 2

a(pk) − a(pk−1)γ (p) 	 pkε

for every positive ε. Hence the product in (2.5) absolutely converges for σ > 1/2 and
the lemma follows.

Lemma 2.4 Let α(n) be defined by (2.1). Then

|α(n)| ≤ τd+1(n). (2.6)

Moreover, for x ≥ 1

∑

n≤x

|α(n)| 	 x(log(2x))d (2.7)

and

∑

n≤x

|α(n)|
n

	 (log(2x))d . (2.8)

Proof For σ > 1 we have

1

F(s)
=

∞∑

n=1

μF (n)

ns
=

∏

p

d∏

j=1

(
1 − α j (p)

ps

)

and hence |μF (n)| ≤ τd(n). Moreover, observing that α(n) = 0 unless n is squarefree,
and using (2.3) we obtain

|α(n)| ≤ |μ(n)|
∑

m|n
|μF (m)||h

( n

m

)
| 	

∑

m|n
τd(m) = τd+1(n)

since, according to (2.4), h(n) is bounded when n runs over squarefree integers. This
shows (2.6). Moreover, we have

∑

n≤x

|α(n)| ≤
∑

n≤x

|μ(n)|
∑

m|n
τd(m)

∣∣∣h
( n

m

)∣∣∣ ≤
∑

m≤x

τd(m)
∑

n≤x/m

|μ(n)||h(n)|

	 x
∑

m≤x

τd(m)

m
	 x(log(2x))d .
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On a generalization of the Euler totient function 35

Similarly,

∑

n≤x

|α(n)|
n

≤
∑

n≤x

1

n

∑

m|n
τd(m)

∣∣∣h
( n

m

)∣∣∣ ≤
∑

m≤x

τd(m)

m

∑

n≤x/m

|h(n)|
n

	
∑

m≤x

τd(m)

m
	 (log(2x))d

since, according to Lemma 2.3, we have

∑

n≤x

|h(n)|
n

	 1

for every x ≥ 1. The proof is complete.
For F ∈ S0 and real x ≥ 1 we put

f (x, α) =
∑

n≤x

α(n)

n
s
( x

n

)
, (2.9)

where

s(x) =
{

1
2 − {x} if x �∈ Z,

0 otherwise.

Lemma 2.5 For x ≥ 1, x �∈ Z, we have

∑

n≤x

ϕ(n, F) = x2

2

∑

n≤x

α(n)

n2 + x f (x, α) − R(x, α),

where

R(x, α) = 1

2

∑

n≤x

α(n)
{ x

n

} (
1 −

{ x

n

})
. (2.10)

Proof By Lemma 2.2 we have

∑

n≤x

ϕ(n, F) =
∑

n≤x

∑

m|n

n

m
α(m) = 1

2

∑

m≤x

α(m)
[ x

m

] ([ x

m

]
+ 1

)

= 1

2

∑

m≤x

α(m)
( x

m
−

{ x

m

}) ( x

m
+ 1 −

{ x

m

})
.

The lemma now follows after multiplying expressions in brackets and suitably rear-
ranging terms.
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36 J. Kaczorowski

3 Proof of Theorem 1.1

Using (2.7) and partial summation we see that

∑

n>x

α(n)

n2 	 (log(2x))d

x
.

Hence using multiplicativity of α(n) and recalling (1.3) we have

∑

n≤x

α(n)

n2 = 2C(F) + O

(
(log(2x))d

x

)
.

Consequently, by Lemma 2.5 we have

E(x, F) 	 x
∑

n≤x

|α(n)|
n

+
∑

n≤x

|α(n)| + x(log(2x))d 	 x(log(2x))d

by (2.8) and (2.7).

4 Lemmas on sums involving divisor function

Recall that for a real number x we denote by ||x || the distance from x to the nearest
integer.

Lemma 4.1 For any integers a, q ≥ 1 and any real number V ≥ 1 we have

∑

V ≤n≤2V
q � |an

1∣∣∣
∣∣∣ an

q

∣∣∣
∣∣∣

	 (V + q) log q. (4.1)

Proof This lemma is known, and in fact implicitly contained in [14] (see the proof
of Hilfsatz 6). Nevertheless, we give a short proof for sake of completeness. Let us
observe that we can assume without the loss of generality that (a, q) = 1, and put
N = [V/q], M = [2V/q]. Then the sum on the right-hand side of (4.1) is at most
equal to

M∑

k=N

∑

kq<n<(k+1)q

1∣∣∣
∣∣∣ an

q

∣∣∣
∣∣∣

≤ (M − N + 1)

q−1∑

k=1

q

k
	

(
V

q
+ 1

)
q log q,

as required.
For real x, y such that 1 ≤ y ≤ x and a positive integer d let

S−
d (x, y) =

∑

l≥1

1

l

∑

m≤y

∑

n≤y

τd(m)τd(n)

mn

∑

k≥1
km �=ln

1

k
min

(
x,

mn

|km − ln|
)

. (4.2)
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On a generalization of the Euler totient function 37

Moreover, for real U, V ≥ 1 such that 1 ≤ U ≤ V ≤ y let

S−
d (x, y, U, V )=

∑

l≥1

1

l

∑

U≤m≤2U

∑

V ≤n≤2V

τd(m)τd(n)

mn

∑

k≥1
km �=ln

1

k
min

(
x,

mn

|km − ln|
)

.

Sums lake these but without coefficients τd(n) where considered in [14]. As we
shall see the presence of coefficients invites new difficulties and requires additional
reasonings.

Lemma 4.2 Suppose that y ≥ x1−ε for certain 0 < ε < 2
5(d+1)

. Then there exists a
positive constant A = A(d) such that

S−
d (x, y) 	 (xy)1/2 (log(2x))A,

with an implied constant depending on ε.

Proof We split the range of summation over n and m into 	 log(2x) localized sub-
ranges of the form U ≤ m ≤ 2U and V ≤ n ≤ 2V . Hence if S−

d (x, y, U, V ) 	
(xy)1/2 (log(2x))B then S−

d (x, y) 	 (xy)1/2 (log(2x))A with A = B + 2. Using
τd(n) 	 nε and Lemma 4.1 we see that the part of S−

d (x, y, U, V ) with l ≥ xε

contributes at most

xε

U

∑

l≥xε

1

l

∑

U≤m≤2U

∑

V ≤n≤2V

∑

k≥1
k �= ln

m

1

k
(
k − ln

m

)

	 xε

V

∑

l≥xε

1

l2

∑

U≤m≤2U

∑

V ≤n≤2V
m � |ln

1∣∣∣∣ ln
m

∣∣∣∣

	 xεU (log(2x))
∑

l≥xε

1

l2 	 U log(2x) 	 y log(2x).

Similarly, contribution of terms with k ≥ xε is 	 y log(2x). Moreover, if U ≤ x1−2ε

then

S−
d (x, y, U, V ) 	 xε

V

∑

l≥1

1

l2

∑

U≤m≤2U

∑

V ≤n≤2V
m � |ln

1∣∣∣∣ ln
m

∣∣∣∣ 	 xεU log(2x) 	 y log(2x)
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38 J. Kaczorowski

since xεU ≤ x1−ε ≤ y. Hence we can assume that U ≥ x1−2ε. We have

S−
d (x, y, U, V ) 	

∑

l≤xε

1

l

∑

U≤m≤2U

∑

V ≤n≤2V∣∣∣
∣∣∣ ln

m

∣∣∣
∣∣∣≤ V

x

τd(m)τd(n)

mn
x log(2x)

+ 1

V

∑

l≤xε

1

l2

∑

U≤m≤2U

∑

V ≤n≤2V∣∣∣
∣∣∣ ln

m

∣∣∣
∣∣∣> V

x

τd(m)τd(n)∣∣∣∣ ln
m

∣∣∣∣ + y log(2x)

= S1 + S2 + y log(2x), (4.3)

say.
We have

S1 	 x log(2x)

U V

∑

l≤xε

1

l

∑

U≤m≤2U

∑

V ≤n≤2V∣∣∣
∣∣∣ ln

m

∣∣∣
∣∣∣≤ V

x

τd(m)τd(n)

and we split the sum over n into 	 lV/U subranges of lengths 	 U V/(lx) consisting
of consecutive integers. Since U V/(lx) ≥ U 2x−1−ε ≥ x1−5ε > x (d−1)/(d+1) we see
that according to (1.9) the sum of τd(n) over every such subrange is

	 U V

lx
(log(2x))d−1.

Consequently,

S1 	 x log(2x)

U V

∑

l≤xε

1

l

∑

U≤m≤2U

τd(m)
lV

U

U V

lx
(log(2x))d−1

	 V (log(2x))2d ≤ y(log(2x))2d . (4.4)

We have

S2 	 x1/2

V 3/2

∑

l≤xε

1

l2

∑

U≤m≤2U

∑

V ≤n≤2V
m � |ln

τd(m)τd(n)
∣∣∣∣ ln

m

∣∣∣∣1/2

and hence applying Cauchy-Schwarz inequality and then Lemma 4.1 and (1.11) we
have

S2 	 x1/2

V 3/2

∑

l≤xε

1

l2

∑

V ≤n≤2V

τ 2
d (n)

⎛

⎜⎜⎝
∑

U≤m≤2U

∑

V ≤n≤2V
m � |ln

1∣∣∣∣ ln
m

∣∣∣∣

⎞

⎟⎟⎠

1/2
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On a generalization of the Euler totient function 39

	 x1/2

V 3/2 V (log(2x))d2−1(U V log(2x))1/2

	 (xy)1/2(log(2x))d2− 1
2 . (4.5)

Gathering (4.3), (4.4) and (4.5) we obtain the assertion of the lemma with A(d) =
max(2d, d2 − 1

2 ) + 2.

Lemma 4.3 For every ε > 0 we have

S−
d (x, y) 	 y1+ε.

Proof We proceed as in the proof of Lemma 4.2. Using τd(n) 	 nε and Lemma 4.1
we see that

S−
d (x, y) 	 yε

∑

l≥1

1

l2

∑

1≤m≤y

1

m

∑

m≤n≤y
m � |ln

1∣∣∣∣ ln
m

∣∣∣∣ 	 y1+ε.

The proof is complete.
For real y ≥ 1 and a positive integer d let

S+
d (y) =

∑ ∑

1≤m≤n≤y

τd(m)τd(n)
∑

l≥1

∑

k≥1

1

kl(km + ln)
. (4.6)

Lemma 4.4 For y ≥ 1 we have

S+
d (y) 	 y(log(2y))2d .

Proof We have

∑

k≥1

∑

l≥1

1

kl(km + ln)
= 1

m

∑

l≥1

1

l

∑

k≥1

1

k
(
k + ln

m

)

	 1

m

∑

l≥1

1

l

1
ln
m

log
ln

m
	 1

n
log(2y).

Consequently, using (1.9) and (1.10) we obtain

S+
d (y) 	

∑ ∑

1≤m≤n≤y

τd(m)
τd(n)

n
log(2y) 	 y(log(2y))2d

and the lemma follows.
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5 Lemmas on sums involving α(n)

In this section we assume that F ∈ S0, and α(n), f (x, α) and R(x, α) are the associ-
ated functions defined by (2.1), (2.9) and (2.10) respectively.

Lemma 5.1 There exists a positive constant c0 = c0(F) such that for x ≥ 1 we have

∑

n≤x

α(n) 	 x exp(−c0
√

log x), (5.1)

and for every σ ≥ 1

∑

n≥x

α(n)

ns
	 x1−σ exp(−c0

√
log x). (5.2)

Under the GRH we have

∑

n≤x

α(n) 	 x
1
2 +ε,

and

∑

n≥x

α(n)

ns
	 x

1
2 −σ+ε (5.3)

for every σ > 1/2 and ε > 0.

This lemma can be proved using Lemma 2.3 and the standard complex integra-
tion method. In the proof of (5.1) and (5.2) zero-free region (1.4) is used. Details are
skipped.

Lemma 5.2 For 1 ≤ y ≤ x we have

f (x, α) =
∑

n≤y

α(n)

n
s
( x

n

)
+ ρ(x, y),

where

ρ(x, y) 	 x

y
exp(−c0

√
log y).

Under the GRH we have

ρ(x, y) 	 xy− 3
2 +ε

for every positive ε.
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Proof We split interval [y, x] into 	 x/y subintervals I = [a, b) where s
( x

n

)
is

monotonic as a function of n. For every such interval I we have by partial summation
and Lemma 5.1

∑

n∈I

α(n)

n
s
( x

n

)
	 max

a≤t≤b

∣∣∣∣∣
∑

a≤n≤t

α(n)

n

∣∣∣∣∣ 	
{

exp(−c0
√

log y) unconditionally,

y− 1
2 +ε under the GRH,

and the lemma follows.

Lemma 5.3 There exists a positive constant c1 = c1(F) such that for x ≥ 1 we have

R(x, α) 	 x exp(−c1
√

log x).

Under the GRH we have

R(x, α) 	 x
3
4 +ε.

Proof We split the sum on the right hand side of (2.10) into two parts, one over n ≤ y
and the second over y < n ≤ x , where 1 ≤ y ≤ x is a free parameter to be chosen
later on. The second part is estimated similarly as in the proof of Lemma 5.2 using
partial summation by

x

y
max

y≤a<b≤x

∣∣∣∣∣∣

∑

a≤n≤b

α(n)

∣∣∣∣∣∣
	

⎧
⎨

⎩

x2

y exp(−c0
√

log y) unconditionally,

x
3
2 +ε

y under the GRH.

The first part is estimated trivially using Lemma 2.4 and (1.10) by

∑

n≤y

τd+1(n) 	 y(log(2y))d .

Now we put

y =
{

x exp(− c0
2

√
log x) unconditionally,

x
3
4 under the GRH,

and the lemma follows.

Remark The exponent in the conditional part of Lemma 5.3 can be improved. We
decide to prove a weaker result because of it’s simplicity and since it suffices for our
purposes.

Lemma 5.4 We have

∑ ∑

k,l≥1
km=ln

1

kl
= π2

6

(m, n)2

mn
. (5.4)
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This is Hilfsatz 3 in [14].

Lemma 5.5 We have

∑ ∑

m,n≥1

α(m)α(n)

(mn)2 (m, n)2 = 36β(F).

Proof By Lemma 5 in [6] we have

∑ ∑

m,n≥1

α(m)α(n)

(mn)2 (m, n)2 = 6

π2

∞∑

n=1

1

n2

∣∣∣∣∣∣

∑

d|n
α(d)

∣∣∣∣∣∣

2

. (5.5)

Note that in [6], the above formula was proved for a general arithmetic function α(n)

such that α(n) = O(1), but from the provided proof it is evident that the last condition
can be relaxed to α(n) 	 nθ with any fixed θ < 1/2. In particular it applies for our
α(n) since α(n) 	 nε for every positive ε. Since on the right hand side of (5.5) we
sum values of a multiplicative function, and the series converges absolutely, we can
replace it by the corresponding Euler product. More explicitly, the right hand side of
(5.5) equals

6

π2

∏

p

⎛

⎜⎝1 +
∞∑

k=1

1

p2k

∣∣∣∣∣∣

∑

d|pk

α(d)

∣∣∣∣∣∣

2
⎞

⎟⎠ = 6

π2

∏

p

(
1 + |γ (p) − 1|2

p2 − 1

)

and the lemma follows.

6 Proof of Theorem 1.2

Let us put y = x exp(−c
√

log x). Using Lemmas 2.5, 5.2, 5.3 and (5.2) with s = 2
we can write for x/2 ≤ ξ ≤ x , ξ �∈ Z, x ≥ 2

E(ξ, F) = ξ�y(ξ) + O(x exp(−c
√

log x))

where

�y(ξ) =
∑

n≤y

α(n)

n
s
(

ξ

n

)
. (6.1)

Hence using the Cauchy–Schwarz inequality we obtain

x∫

x/2

|E(ξ, F)|2 dξ = I (x) + O((I (x)1/2x3/2 + x3) exp(−c
√

log x)),
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where

I (x) =
x∫

x/2

ξ2
∣∣�y(ξ)

∣∣2
dξ. (6.2)

Integrating by parts we get

I (x) = x2 J (x) − 2

x∫

x/2

ξ J (ξ) dξ, (6.3)

where

J (ξ) =
ξ∫

x/2

∣∣�y(u)
∣∣2

du. (6.4)

Squaring out and using the following Fourier expansion

s(u) = 1

2π i

∑

k �=0

1

k
e(ku),

we obtain

J (ξ) = 1

4π2

∑

m≤y

∑

n≤y

α(m)α(n)

mn

∑

k �=0

∑

l �=0

1

kl

ξ∫

x/2

e

((
k

n
− l

m

)
u

)
du

The part of the sum with km = ln equals

1

2π2

(
ξ − x

2

) ∑

m≤y

∑

n≤y

α(m)α(n)

mn

∑ ∑

k,l≥1
km=ln

1

kl

= 1

12

(
ξ − x

2

) ∑

m≤y

∑

n≤y

α(m)α(n)

m2n2 (m, n)2,

according to Lemma 5.4. Recalling (2.6), (4.2) and (4.6) we find that the remaining
terms contribute at most

∑

m≤y

∑

n≤y

τd+1(m)τd+1(n)

mn

∑ ∑

k,l �=0
km �=ln

1

|kl| min

(
x,

mn

|km − ln|
)

.
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The part of the last sum with kl < 0 equals 2S+
d+1(x, y), whereas the part with kl > 0

equals 2S−
d+1(x, y). Consequently, we have

J (ξ)= 1

12

(
ξ − x

2

) ∑

m≤y

∑

n≤y

α(m)α(n)

m2n2 (m, n)2+O(S−
d+1(x, y)+S+

d+1(y)). (6.5)

Now we drop restrictions m ≤ y and n ≤ y in the main term. This induces an error of
size

	 x

(
∑

m≤y

∑

n>y

+
∑

m>y

∑

n>y

)
τd+1(m)τd+1(n)

m2n2 (m, n)2

	 x
∑

d≥1

d2

⎛

⎜⎜⎝
∑ ∑

m≤y,n>y
(m,n)=d

+
∑ ∑

m>y,n>y
(m,n)=d

⎞

⎟⎟⎠
1

(mn)2−ε

	 x
∑

d≥1

1

d2−ε

⎛

⎜⎜⎝
∑ ∑

m≤y/d,n>y/d
(m,n)=1

+
∑ ∑

m>y/d,n>y/d
(m,n)=1

⎞

⎟⎟⎠
1

(mn)2−ε

	 xy−1+ε
∑

d≤y

1

d
+ x

∑

d>y

1

d2−ε
	 xy−1+ε 	 xε.

Hence applying Lemmas 5.5, 4.2 and 4.4 we obtain

J (ξ) = 3β(F)(ξ − x

2
) + O(x exp(−c

√
log x)).

We insert this into (6.3) and after some elementary manipulations we obtain

I (x) = 7

8
β(F)x3 + O(x3 exp(−c

√
log x)).

Let now N = [log x/ log 2]. Then

x∫

1

|E(ξ, F)|2 dξ =
N∑

j=0

I
( x

2 j

)
+ O(1) = β(F)x3 + O(x3 exp(−c

√
log x))

and the result follows.

7 Proof of Theorem 1.3

Using Lemmas 2.5, 5.2, 5.3 and (5.3) with s = 2 we can write for x/2 ≤ ξ ≤ x ,
ξ �∈ Z, x ≥ 2, 1 ≤ y ≤ x5/6

E(ξ, F) = ξ�y(ξ) + O(x2 y− 3
2 +ε),
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where �y(ξ) is defined in (6.1). Consequently,

x∫

x/2

|E(ξ, F)|2 dξ = I (x) + O(I (x)1/2x5/2 y−(3/2)+ε + x5 y−3+ε), (7.1)

where I (x) is defined in (6.2). As before we have I (x) = x2 J (x) − 2
∫ x

x/2 ξ J (ξ) dξ,

where J (ξ) is defined in (6.4). Inserting Fourier expansion of s(u) and integrating term
by term we see that (6.5) still holds, but under the GRH we have sharper estimates of
the remainder term. In fact, according to Lemmas 4.3 and 4.4 we have

S−
d+1(x, y) + S+

d+1 	 y1+ε.

Moreover, as in the proof of Theorem 1.2 we have

x

(
∑

m≤y

∑

n>y

+
∑

m>y

∑

n>y

)
τd+1(m)τd+1(n)

m2n2 (m, n)2 	 xy−1+ε.

Hence

J (ξ) = 3β(F)
(
ξ − x

2

)
+ O(xy−1+ε + y1+ε),

and consequently

I (x) = 7

8
β(F)x3 + O(x3 y−1+ε + x2 y1+ε).

In particular I (x) 	 x3. Recalling (7.1) we obtain

x∫

x/2

|E(ξ, F)|2 dξ = I (x) + O(x4 y
3
2 +ε + x5 y−3+ε)

= 7

8
β(F)x3 + O(x3 y−1+ε + x2 y1+ε + x4 y

3
2 +ε + x5 y−3+ε).

Choosing y = x4/5 we get

x∫

x/2

|E(ξ, F)|2 dξ = 7

8
β(F)x3 + O(x

14
5 +ε),

and the result follows as in the proof of Theorem 1.2 by summing integrals over
intervals of the form [x2− j−1, x2− j ]. The proof is complete.
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8 Proof of Theorem 1.7

We modify the proof of Theorem 1 from [11]. Since required modifications are rather
small we shall be very brief. We consider the quotient H(s) = F(s)/G(s). With
obvious notation for σ > 1 we have

H(s) =
∏

p

∞∑

m=0

aF � a−1
G (pm)

pms
.

Since

aF � a−1
G (p) = O(

1

pθ
),

aF � a−1
G (p2) = aF (p2) − aG(p2) + O

(
1

pθ

)

and

aF � a−1
G (pm) 	 pmε

for every ε > 0, we can write

H(s) = P(s) f (2s),

where P(s) is holomorphic and non-vanishing for σ > max( 1
3 , 1 − θ), and

f (s) =
∏

p

(
1 − c(p)

ps

)−1

,

c(p) = aF (p2) − aG(p2).

Now we can practically copy the proof of Theorem 1 from [11]. Since c(p) 	 1 we
can apply Lemma 1 from [11]. We conclude that H(s) has at most a finite number of
poles and zeros on the critical line σ = 1/2. Hence denoting by γF (s) and γG(s) the
gamma-factors of the functional equations of F(s) and G(s) respectively, we see that
there exists a rational function R(s) satisfying

R(s) = ηR(1 − s)

for certain η = ±1 and all s ∈ C and such that the function

K (s) = R(s)H(s)
γF (s)

γG(s)

is holomorphic, non-vanishing for σ ≥ 1/2, and satisfies K (s) = ϑ K (1 − s) for
certain |ϑ | = 1. Thus K (s) is a non-vanishing entire function of order 1, and hence
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by Hadamard’s theorem we have

K (s) = eas+b, a, b ∈ C.

Hence

F(s)

G(s)
= eas+b

R(s)

γF (s)

γG(s)

and by Stirling’s formula we get

F(2 + i t)

G(2 + i t)
= ceαt tβeiγ t log t eiδt

(
1 + O

(
1

t

))
, t → ∞, (8.1)

with c ∈ C and α, β, γ, δ ∈ R. But the left-hand side is almost periodic, thus α =
β = γ = 0. Therefore (8.1) becomes

e−δt F(2 + i t)

G(2 + i t)
= c + o(1), t → ∞.

The left-hand side of the last equality is almost periodic and tends to a limit as t → ∞,
and hence it must be constant. Hence

eδ(2−s)F(s) = cG(s) (s = 2 + i t),

and by the uniqueness principle for generalized Dirichlet series we have δ = 0. More-
over, since aF (1) = aG(1) = 1 we have also c = 1, and the result follows by analytic
continuation.

9 Proof of Corollary 1.8 and Theorem 1.6

Observe that for a polynomial Euler product F we have

F(1) = 1 + aF (p)

p
+ O

(
1

p2

)
.

Hence Fp(1) = G p(1) for almost all primes p implies

aF (p) = aG(p) + O

(
1

p

)
.

So Corollary 1.8 immediately follows from Theorem 1.7.
Let us now prove Theorem 1.6. It readily follows from (1.6) that equality β(F) =

β(ζ ) implies γ (p) = 1 for all primes p. Recalling (1.2) we see therefore that

1 − 1

Fp(1)
= 1

p
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for all p, and consequently

Fp(1) =
(

1 − 1

p

)−1

= ζp(1).

Hence the result follows from Corollary 1.8.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.
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