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Abstract. This paper has two parts. In the first part, we study shift coordinates on a sphere S
equipped with three distinguished points and a triangulation whose vertices are the distinguished points.
These coordinates parametrize a space fTTðSÞ that we call an unfolded Teichm€uuller space. This space
contains Teichm€uuller spaces of the sphere with b boundary components and p cusps (which we call
generalized pairs of pants), for all possible values of b and p satisfying bþ p ¼ 3. The parametrization

of fTTðSÞ by shift coordinates equips this space with a natural polyhedral structure, which we describe
more precisely as a cone over an octahedron in R3. Each cone over a simplex of this octahedron is
interpreted as a Teichm€uuller space of the sphere with b boundary components and p cusps, for fixed b
and p, the sphere being furthermore equipped with an orientation on each boundary component. There is
a natural linear action of a finite group on fTTðSÞ whose quotient is an augmented Teichm€uuller space in
the usual sense. We describe several aspects of the geometry of the space fTTðSÞ. Stretch lines and
earthquakes can be defined on this space. In the second part of the paper, we use the shift coordinates to
obtain estimates on the behaviour of stretch lines in the Teichm€uuller space of a surface obtained by
gluing hyperbolic pairs of pants. We also use the shift coordinates to give formulae that express stretch
lines in terms of Fenchel-Nielsen coordinates. We deduce the disjointness of some stretch lines in
Teichm€uuller space. We study in more detail the case of a closed surface of genus 2.
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1. Introduction

We first establish some notations. Let g, b and p be nonnegative integers and let
Sg;b;p be an oriented connected surface of genus g with b boundary components
and p punctures. We shall always assume that Sg;b;p has negative Euler charac-
teristic. A hyperbolic structure (or hyperbolic metric) on Sg;b;p is a complete
Riemannian metric of constant curvature �1 which has finite area and such that
each boundary component of Sg;b;p is a closed geodesic. The Teichm€uuller space
Tg;b;p ¼ TðSg;b;pÞ of Sg;b;p is the space of isotopy classes of hyperbolic metrics on
Sg;b;p. It is equipped with a natural topology which makes it homeomorphic to
R6g�6þ3bþ2p, see e.g. [6] and [12].

We shall usually denote the closed surface of genus g by Sg instead of Sg;0;0.



Let P ¼ fp1; . . . ; png � Sg be a finite collection of points, which we call the
distinguished points. We assume that the Euler characteristic of the punctured
surface SgnP is negative. By a hyperbolic structure on the pair ðSg;PÞ, we mean
a complete finite area hyperbolic structure on a surface Sg;b;p obtained from Sg by
deleting p points among the distinguished points (04p4 n) and making them
punctures for the hyperbolic structure, and deleting an open disk around each of
the remaining b ¼ n� p distinguished points, and making the surface around each
of these b points a surface with boundary.

Finally, a signed hyperbolic structure on the pair ðSg;PÞ is a hyperbolic struc-
ture together with an orientation on each boundary component of the resulting
hyperbolic surface. The collection of isotopy classes of signed hyperbolic struc-
tures on ðSg;PÞ forms a space which we call the unfolded Teichm€uuller space of
ðSg;PÞ, and which we denote by fTTðSg;PÞ (and sometimes fTTðSgÞ, if the set of
distinguished points is understood). The unfolded Teichm€uuller space fTTðSg;PÞ is
the union of a finite collection of Teichm€uuller spaces TðSg;b;pÞ of surfaces Sg;b;p
obtained from Sg by making each of the distinguished points either a puncture or a
boundary component. We shall give a parametrization of the unfolded Teichm€uuller
space of ðSg;PÞ by using shift coordinates on the edges of an ideal triangulation of
the pair ðSg;PÞ, that is, a triangulation of S whose vertex set is P.

The parameterization of hyperbolic structures on surfaces using shift coordi-
nates on edges of ideal triangulations was introduced by Thurston, who used these
parameters in relation to stretch maps between hyperbolic surfaces and in his study
of the asymmetric metric he defined on Teichm€uuller space, see [11]. Shift coordi-
nates can also be used in the description of earthquakes, see [11]. Shift coordinates
were used in [9], together with the analogously defined shift parameters for
measured foliations, in the study of the extension of the earthquake flow to
Thurston’s boundary of Teichm€uuller space. Shift coordinates were also used in
[10] as coordinates for homeomorphisms of the circle. Finally, shift coordinates
were used by several authors in the quantization theory of Teichm€uuller space (see
[1]–[5]).

The parametrization of fTTðSg;PÞ by shift coordinates on the edges of an ideal
triangulation can be regarded as a unifying way of parametrizing the various
copies of the Teichm€uuller spaces of the surfaces Sg;b;p with bþ p ¼ n. We shall
see that this parametrization endows this union with a natural structure of a poly-
hedron. In particular, there is a natural topology on the unfolded Teichm€uuller
space, which makes it a connected space, more precisely, a space homeomorphic
to R6g�6þ3n. For the general values of b and p, each Teichm€uuller space TðSg;b;pÞ is
represented by several copies inside the space fTTðSg;PÞ, the elements of these
individual Teichm€uuller spaces being obtained from elements of fTTðSg;PÞ by for-
getting signs.

We shall study in detail the case where Sg is a sphere S ¼ S2, with
CardðPÞ ¼ 3. In this case, we shall describe in detail the polyhedral structure
for fTTðSg;PÞ (which at the same time defines the topology on that space). The
polyhedron parametrizing fTTðSg;PÞ is the space R3 seen as the cone from the
origin over an octahedron that contains the origin in its interior. In this description,
the various Teichm€uuller spaces TðSg;b;pÞ (with g ¼ 0 and bþ p ¼ 3) referred to
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above are the cones over the open faces of this polyhedron. We shall discuss the
dependence of this polyhedral structure on the ideal triangulation.

We note that Feng Luo also studied a parametrization of Teichm€uuller space by
a convex polytope in the recent paper [8].

It is a recurrent theme in low-dimensional topology that geometric structures
on (generalized) pairs of pants are building blocks for geometric structures on
general surfaces. This theme will appear in the second part of this paper.

We recall that if � is a complete geodesic lamination on a surface S, if h is a
hyperbolic structure on S and if t is a real number, then an et-stretch map directed
by � is a map from S to itself which is isotopic to the identity on S, for which � is a
maximally stretched lamination and which transforms h into another hyperbolic
structure ht whose distance from h (with respect to Thurston’s asymmetric metric)
is equal to t, if t is positive. (We note by the way that if t is negative, the distance in
general is not equal to �t.) In the shift coordinates associated to �, the transfor-
mation consists in multiplying each coordinate by the factor et. The map t 7! ht is
called the stretch line starting at h ¼ h0 and directed by �. This line is a geodesic
for Thurston’s asymmetric metric.

Stretch lines and earthquake lines have a nice description in the polyhedral
structure of the unfolded Teichm€uuller space fTTðSg;PÞ. These lines follow linear
segments with respect to this polyhedral structure.

In this paper, we study the particular case where the lamination � is an ideal
triangulation on a surface obtained by gluing pairs of pants. We establish explicit
formulae that give relations between the Fenchel-Nielsen coordinates of the
Teichm€uuller spaces of Sg;b;p and the shift coordinates. In particular, we give an
expression of stretch lines in terms of Fenchel-Nielsen coordinates. We use these
formulae for the study of the behaviour of stretch lines. In particular, we can see
the disjointness of certain stretch lines in Teichm€uuller space.

We would like to thank an anonymous referee for his (or her) careful reading of
the original manuscript.

2. A review of ideal triangulations and shift coordinates

2.1. Triangulation. Consider a closed surface with distinguished points ðSg;PÞ.
A triangulation of this pair is a cell decomposition of Sg into triangles whose set of
vertices is the set P. Note that we do not require that the triangulation be a
realization of a simplicial complex (that is, the two endpoints of an edge may
be equal, and so on).

Given a triangulation � of ðSg;PÞ and a vertex of this triangulation, we shall
sometimes talk about a half-edge of � (instead of an edge of �) abutting on that
vertex, in order to record one (or possibly both) of the ends of a given edge that
abut on that vertex.

2.2. Ideal triangulation. We recall that a hyperbolic ideal triangle is a surface
with boundary which is isometric to the convex hull in the hyperbolic plane H2 of
three distinct points in the boundary of that space. The center of an ideal triangle is
the intersection point of the three perpendiculars drawn from each ideal vertex to the
edge opposite to it.
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Consider a surface Sg;b;p equipped with a hyperbolic metric. An ideal triangu-
lation � of Sg;b;p is a decomposition of Sg;b;p by disjoint geodesic lines, called the
edges of �, satisfying the following:

� each end of an edge either converges to a cusp or spirals around a closed
geodesic which could be either an interior geodesic or a boundary geodesic;

� the completion of each component of the surface Sg;b;p cut along the edges of
� is isometric to a hyperbolic ideal triangle.

It will often be useful to consider the hyperbolic surface Sg;b;p equipped with its
ideal triangulation as a surface obtained by assembling a collection of hyperbolic
ideal triangles using isometries between their boundary edges. In this case, the
decomposition of Sg;b;p by the ideal triangulation is a record of the edges of the
ideal triangles that we started with, together with the gluing maps between them.

Let ðSg;PÞ be a closed surface with distinguished points, let h denote a signed
hyperbolic structure on the pair ðSg;PÞ and let � be a triangulation of the pair
ðSg;PÞ. Let Sg;b;p be the type of the corresponding hyperbolic surface. Then, there
is a canonical ideal triangulation of Sg;b;p associated to � (and we shall also denote
by � the ideal triangulation), which is characterized by the following properties:

� if a distinguished point in P, after equipping the surface ðSg;PÞ with the
signed hyperbolic structure h, becomes a cusp for this hyperbolic structure, then
the half-edges of � that have this distinguished point as vertex converge to the
corresponding cusp;

� if a distinguished point in P, after equipping the surface ðSg;PÞ with the
signed hyperbolic structure h, becomes a boundary component for this hyperbolic
structure, then the half-edges of � that have this distinguished point as vertex spiral
around the boundary geodesic, in the direction indicated by the orientation of the
boundary geodesic induced by the signed hyperbolic structure h.

2.3. Flip. Consider again a closed surface with distinguished points ðSg;PÞ
equipped with a triangulation �. Let e be an edge of � that is on the boundary
of two distinct triangles T1 and T2. A flip on ðSg; �Þ associated to the edge e is a move
that transforms the triangulation � into another triangulation as follows. LetQ be the
quadrilateral defined as the union T1 [ T2 glued along the edge e. Note that the
interior of Q is embedded in Sg. The flip operation consists in deleting the edge
e from the set of edges of � and replacing it by an arc which represents the other
diagonal of Q. Thus, the flip operation replaces the triangulation � by a new
triangulation. Note that if the two sides of some edge of a triangulation of Sg
are equal, then no flip can be performed on that edge.

When the surface is equipped with a hyperbolic structure, a flip operation on �
gives naturally rise to a flip operation on the corresponding ideal triangulation.
Such a flip operation on an ideal triangulation consists in replacing an ideal
quadrilateral equipped with a diagonal by the same ideal quadrilateral equipped
with its other diagonal.

2.4. Shift coordinates for hyperbolic structures. Consider a hyperbolic sur-
face Sg;b;p equipped with an ideal triangulation �. Each edge e of � has two

312 A. Papadopoulos and G. Théret



distinguished points, which are the orthogonal projections on e of the centers of the
two ideal triangles that are adjacent to it. (Note that these two triangles may be
equal.) We define a signed distance between the two distinguished points in the
following way. The absolute value of this quantity is the distance (measured on the
edge e) between these points, measured using the hyperbolic metric, and the sign is
determined by the sense of the shearing along the edge e that can be performed to
carry one of these points to the other one. The sign is taken to be positive (respec-
tively negative) if the shearing is to the left (respectively to the right) (see Figure 1).
Note that the orientation on the surface suffices to give a well-defined notion of
left and right shear along every edge of �. The signed distance between the two
distinguished points on e is the shift parameter on that edge, with respect to the
hyperbolic structure considered.

The collection of shift parameters on the various edges of � completely deter-
mines the gluing between the ideal triangles, and therefore, it completely deter-
mines the isometry type of the hyperbolic surface S. Isotopic hyperbolic structures
have the same signed shift parameters, and therefore the shift parameters can also
be used as parameters for isotopy classes of hyperbolic structures on the surface,
that is, for elements of the Teichm€uuller space of S.

One of the features of the shift parameters which can make them more advan-
tageous than the Fenchel-Nielsen parameters is that shift parameters can be used as
parameters for signed hyperbolic structures on the surface with distinguished
points ðSg;PÞ. Indeed, we shall see that the shift parameters can be defined by
assigning real numbers to the edges of the original triangulation � on Sg such that
these real numbers determine a hyperbolic structure on the pair ðSg;PÞ together
with, for each edge of �, an information on whether the end of this edge (with is
geodesic for this metric) converges to a puncture or spirals around a boundary
closed geodesic of the hyperbolic structure considered. Furthermore, for each end
of a bi-infinite geodesic representing an edge of � that spirals around a boundary
closed geodesic, the shift parameters on � determine the sense of spiraling. This
sense of spiraling determines an orientation on each boundary component of the
hyperbolic surface.

2.5. Shift coordinates for measured foliations transverse to l. We consider
measured foliations in the sense of Thurston, as described e.g. in [6] and [11]. Let F

Figure 1. Shift coordinates for hyperbolic structures. Case (a) corresponds to a negative shift and
case (b) corresponds to a positive shift
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be a measured foliation on Sg;b;p which is transverse to �. Since each component of
Sg;b;pn� is a triangle, it follows from an Euler characteristic argument that all the
singularities of F are three-pronged and that each component of Sg;b;pn� contains
exactly one singularity. In this way, the measured foliation F induces on each edge e
of � two distinguished points, which are the feet of the singular leaves of F that abut
on that edge from its two sides. A signed transverse measure between these two
points is then defined in the following way. The absolute value of this quantity is the
transverse measure of the segment of e bounded by these two distinguished points,
and the sign is determined by the sense of shearing defined by the two singular
leaves hitting these points. The convention for the sign is analogous to the one for
the sign defining the shift parameters for hyperbolic structures that we discussed in
Sect. 2.4 above (see Figure 2). This signed transverse measure is the shift parameter
induced by the measured foliation on the edge e of �. As in the case of hyperbolic
structures, the set of shift parameters on the various edges of � completely deter-
mines the gluing between the foliations restricted to the components of Sn�, and
therefore, it completely determines the isotopy class of the foliation F.

2.6. Generalized pairs of pants and their canonical involutions. A general-
ized hyperbolic pair of pants is a hyperbolic surface homeomorphic to a sphere with
b boundary components and p cusps, with bþ p ¼ 3. We now describe the decom-
position of a generalized pair of pants into two isometric generalized right-angled
hexagons.

Consider a right-angled hexagon in the hyperbolic space H2. We can make the
length of one of its edges tend to zero while keeping fixed the two edges that form
with the degenerating edge a triple of edges which are pairwise non-adjacent, and
keeping all the angles to be right angles. Then, the vertices of the degenerating
edge converge to a single point on the boundary of H2, and the limit of the right-
angled hexagon is called a degenerate right-angled hexagon with one edge at
infinity (see Figure 3 for a picture of such a hexagon). Likewise, we can make

Figure 2. Shift coordinates for measured foliations. Case (a) corresponds to a negative shift and case
(b) corresponds to a positive shift
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the lengths of two edges of a right-angled hexagon which are separated by an edge
tend to zero, keeping fixed the length of the edge that makes with this pair of edges
a triple of pairwise non-adjacent edges and keeping the remaining angles to be
right angles. Finally, we can make three pairwise non-adjacent edges of the right-
angled hexagon tend to zero. We obtain in this manner degenerate right-angled
hexagons with one, two or three edges at infinity. Note that a degenerate right-
angled hexagon with three edges at infinity is a hyperbolic ideal triangle. A
generalized right angled hexagon is either a genuine or a degenerate right-angled
hexagon. This definition of a generalized right-angled hexagon as a limit of a
sequence of (genuine) right-angled hexagons is useful for studying degenerations
of hyperbolic surfaces. With such a definition, the trigonometric formulae giving
the lengths of the edges of the generalized right-angled hexagons are obtained as
limits of corresponding formulae for right-angled hexagons. From the formulae for
distances in right-angled hexagons (see [6] or [7]), it is easy to see that a degener-
ate right-angled hexagon with one edge (respectively two, or three edges) at
infinity is determined up to isometry by the lengths of the edges that make with
the edge (respectively, the edges) at infinity a triple of edges which are pairwise
non-adjacent (the length of an edge at infinity being, by definition, equal to zero).
The decomposition of a generalized hyperbolic pair of pants into two isometric
generalized right-angled hexagons is obtained by taking the union of the three
geodesics that join perpendicularly pairs of boundary closed geodesics, in the case
there are three boundary geodesics. In the other cases, we take the union of the
geodesics that join a boundary closed geodesic to a cusp or that join a cusp to a
cusp. We call such a geodesic a seam of the generalized pair of pants. From this
decomposition of a generalized pair of pants into two generalized right-angled
hexagons, it is easy to see that any hyperbolic structure on a generalized pair of

Figure 3. These four generalized polygons represent, respectively a right-angled hexagon and three
degenerate right-angled hexagons in the upper half-plane model of the hyperbolic plane
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pants is completely determined by the lengths of its boundary geodesics, a cusp
being considered as a boundary geodesic of length zero. In this sense, the hyper-
bolic structure is rigid at a cusp. For instance, a degenerate right-angled hexagon
with three edges at infinity is a hyperbolic ideal triangle which, as is well-known,
is unique up to isometry. In the same way, any two degenerate hyperbolic pairs of
pants that are spheres with three cusps are isometric.

We shall use the fact that any generalized hyperbolic pair of pants P has a
canonical involution �, which is the unique isometry that fixes the seams and that
interchanges the two generalized right-angled hexagons that compose it.

3. Horocyclic foliations and completeness

3.1. Horocyclic foliations. A hyperbolic ideal triangle is equipped with a natural
foliation, called its horocyclic foliation. This is a partial foliation (that is, a foliation
of a subsurface of the ideal triangle) whose leaves are pieces of horocycles of H2

that are centered at the three ideal vertices, the nonfoliated region being a small
triangle bounded by three pieces of horocycles that meet tangentially at their
boundary points, as represented in Figure 4.

Let g be a hyperbolic structure on a surface Sg;b;p and let � be an ideal
triangulation on that surface. There is a natural measured foliation F�ðgÞ which
is associated to the pair ðg; �Þ, and which is called the horocyclic measured folia-
tion. It is obtained by assembling the horocyclic foliations of the components of
Sg;b;pn�, and it has a natural transverse measure which is determined by the fact
that on the edges of �, the measure coincides with hyperbolic length (see [11]
Sect. 2).

3.2. Holonomy type. Let Sg;b;p be a surface equipped with a hyperbolic struc-
ture. There is a developing map from the metric universal covering space ~SSg;b;p of
Sg;b;p into the hyperbolic planeH2. Recall that this map is a local isometry that arises
as one tries to extend a coordinate chart of the hyperbolic structure to a ‘‘global
chart’’, by gluing the charts that one encounters following paths along the surface
Sg;b;p. The developing map is well-defined up to composition by an isometry of H2

which conjugates the action of the fundamental group �1ðSg;b;pÞ on ~SSg;b;p to an action
of �1ðSg;b;pÞ on H2 by isometries. There is an associated representation of �1ðSg;b;pÞ

Figure 4. The horocyclic foliation of an ideal triangle
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into the group IsomþðH2Þ of orientation-preserving isometries of H2, called the
holonomy representation, such that the developing map is equivariant with respect
to the action of �1ðSg;b;pÞ on ~SSg;b;p and the action on H2 of the image of the
holonomy representation (see Thurston [12] Sect. 3.4). With respect to this repre-
sentation, the holonomy of a closed curve representing an element of �1ðSg;b;pÞ is the
isometry of H2 that is associated by the holonomy representation. We shall talk
below about the holonomy type of a closed curve on Sg;b;p, and this needs some
explanation. The notion of holonomy refers to a representation of the fundamental
group of the surface. Although the holonomy of a closed curve in Sg;b;p, as an
element of IsomþðH2Þ is not well-defined (it depends on the choice of an orientation
for that closed curve, on the choice of a basepoint for the fundamental group and so
on), the type of the holonomy (that is, whether it is parabolic or hyperbolic) is
independent of any choice. Thus, we can talk about the holonomy type of a closed
curve on Sg;b;p.

Let Sg be a closed surface with a set P of distinguished points equipped with a
hyperbolic structure. For each distinguished point, we can take a simple closed
curve that is homotopic to that point, and consider its holonomy type. We shall say
that the distinguished point is of parabolic type (respectively hyperbolic type) if
the holonomy of such a closed curve is parabolic (respectively hyperbolic). If the
distinguished point is of parabolic type, then we shall say that the length of the
distinguished point is zero. If the distinguished point is of hyperbolic type, then we
shall say that the length of this distinguished point is the length of the boundary
geodesic to which it is homotopic. It follows from the construction of the holon-
omy representation that in the case of hyperbolic holonomy, the length of a dis-
tinguished point is equal to the translation distance of any element of IsomþðH2Þ
representing the holonomy of a closed curve that is homotopic to that distin-
guished point.

3.3. Completeness. Let us consider a hyperbolic surface ðSp;PÞ equipped with
an ideal triangulation � obtained by gluing a collection of hyperbolic ideal triangles
by isometries between their boundary edges. The completeness of this hyperbolic
surface depends on the geometric type of the neighborhoods of the punctures (that
is, the vertices of the triangulation). There is a detailed discussion of completeness
for such metrics in Thurston [12] Sect. 3.4. To understand the geometric type of
Sg;b;p near a puncture, it is useful to study the behaviour at that puncture of the
horocyclic foliation associated to the ideal triangulation �. In the next proposition,
we summarize a few facts that will be useful to us.

Proposition 3.1. Let ðSg;PÞ be a surface with distinguished points, equipped
with an ideal triangulation �, and consider a finite area hyperbolic structure h on
the punctured surface SgnP. Then, any puncture a of SgnP is of one of the follow-
ing two types:

(1) the puncture a has an annular neighborhood on which F induces a folia-
tion by closed leaves that are centered at that puncture;

(2) the puncture a has an annular neighborhood equipped with a foliation
induced by F which has no closed leaves.
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In Case (1), the puncture is a cusp, and we can choose a neighborhood N of the
puncture, equipped with the foliation induced by F, in such a way that N is
isometric to the quotient of a subset N 0 ¼ fz ¼ xþ iy j y> y0g of H2 (for some
y0 > 0) by the action of the map z 7! zþ 1. The foliation on N is the quotient of the
foliation of N 0 by horocycles centered at the point 1. Furthermore, the closure in
SgnP of such an annular neighborhood N, equipped with the metric induced from
h, is complete as a metric space.

In Case (2), no neighborhood of the puncture, equipped with the metric in-
duced by h, is complete as a metric space. To obtain complete neighborhoods of
the puncture, one adds to the surface SgnP a simple closed curve in such a way
that the surface at the puncture becomes a surface with boundary. The closed
curve that is added is then a closed geodesic for the completed surface. The leaves
of F abut perpendicularly on that closed geodesic.

The hyperbolic metric on the surface SgnP is complete if and only if all the
punctures of SgnP are of the type described in Case 1.

4. Shift parameters for a triangulation of the sphere
with three distinguished points

In this section, we consider the sphere S ¼ S2 with three distinguished points,
equipped with a triangulation �. Up to homeomorphisms of the sphere that fix
pointwise the three distinguished points, there are exactly four such triangulations,
and they are represented in Figure 6. Any such triangulation has exactly three

Figure 5. The surface S is obtained by gluing the two triangles T1 and T2 according to the pattern
indicated by the arrows in the figure to the left hand side. The type of the holonomy along the closed
curve A that surrounds the vertex is determined by the behaviour of a leaf of the horocyclic foliation
starting at any point x, shown in the right hand side figure. This holonomy type is determined by the
shifts �� and �� . More precisely, if j�� þ �� j ¼ 0, then the holonomy is parabolic and the correspond-
ing vertex in the resulting surface is a cusp. Otherwise, the holonomy is hyperbolic and j�� þ �� j is
equal to the distance between two successive points of intersection of a leaf of the foliation with an

edge of the triangulation
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edges and two triangles, and there are three possibilities for the combinatorial type
of a vertex a in such a triangulation:

(1) exactly one half-edge abuts on a;
(2) exactly two half-edges abut on a (and in that case, the two half-edges are

necessarily half-edges of distinct edges of �);
(3) four half-edges abut on a (and in that case, exactly two of these half-edges

are half-edges of distinct edges of �, and the other two are half-edges of the third
edge of �).

Furthermore, there are exactly three flip operations that can be performed
between these four triangulations; they are represented by the double arrows in
Figure 6.

4.1. Symmetric and nonsymmetric triangulation. We shall consider hyper-
bolic structures on the sphere with its three distinguished points. For each such
hyperbolic structure, we can realize the triangulation � as an ideal triangulation. To
analyze such an ideally triangulated hyperbolic metric, we can start with two ideal
triangles and glue them together along their edges in such a way as to obtain

Figure 6. The four isotopy types of triangulations with 3 vertices of the sphere S2, together with the
flips between them

Figure 7. The combinatorics of the flip operation between the central triangulation in Figure 6 and
the one to the bottom in that same figure
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(topologically) a three-punctured sphere. There are two combinatorially distinct
gluing patterns between the edges of two ideal triangles that give a three-punctured
sphere. One of them is represented by the central triangulation of Figure 6 and
the other one is represented by the three other triangulations of that figure. We shall
call these types of triangulations a symmetric and a nonsymmetric triangulation
respectively.

Let a; b; c be the three distinguished points of the sphere S, let g be a hyper-
bolic structure on ðS; fa; b; cgÞ and let � be a triangulation of this pair. We need to
have a reference orientation on the boundary components of this hyperbolic sur-
face, and we equip each boundary component with the positive orientation induced
from the orientation of the surface. We recall that this positive boundary orienta-
tion is defined in such a way that for any point x on the boundary, the ordered pair
consisting of a vector at x which is tangent to the boundary and which points in the
positive direction, followed by a tangent vector at x pointing in the direction of
the interior of the surface, constitutes a direct basis of the tangent space of the
surface S at x. In the next proposition, the terms ‘‘positive direction’’ and ‘‘nega-
tive direction’’ applied to a geodesic on the surface that spirals around a boundary
component refer to this reference orientation.

We shall use the following notations. For any edge e of �, we shall denote
by �e the shift coordinate induced by the hyperbolic structure g on that edge.
Let v be an element of the vertex set fa; b; cg. If v becomes a boundary compo-
nent when ðS; fa; b; cgÞ is equipped with the hyperbolic structure g, we let lgðvÞ
denote the length of that boundary component, and if v becomes a cusp, we set
lgðvÞ ¼ 0.

With these notations, we have the following:

Proposition 4.1. Let g be a hyperbolic structure on the sphere with three
distinguished points ðS; fa; b; cgÞ. The holonomy type of a vertex and the length
of that vertex depend only on the shift coordinates on the edges of � that abut
on that vertex. To be more precise, let us consider a vertex a. Then, there are
three cases:

Case 1. Exactly two edges � and � of � have one of their ends on the vertex a.
In that case, we have

lgðaÞ ¼ j�� þ ��j:
Furthermore, the holonomy at the vertex a is hyperbolic if j�� þ ��j 6¼ 0 and
parabolic if j�� þ ��j ¼ 0. In the case where the holonomy is hyperbolic, the
geodesics associated to � and � spiral around the simple closed geodesic that
is homotopic to the vertex a in the positive direction if �� þ �� < 0 and in the
negative direction if �� þ �� > 0.

Case 2. Exactly four half-edges of � abut on the vertex a, and two of these half-
edges are half-edges of a single edge of �. Let � denote that single edge of � and
let � and � denote the other two edges that abut (from one side) on a. In that case,
we have

lgðaÞ ¼ j�� þ �� þ 2��j:
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Furthermore, the holonomy at the vertex a is hyperbolic if j�� þ �� þ 2��j 6¼ 0 and
parabolic if j�� þ �� þ 2��j ¼ 0. In the case where the holonomy is hyperbolic, the
edges of � spiral around the boundary closed geodesic that is homotopic to the
vertex a in the positive direction if �� þ �� þ 2�� < 0, and in the negative direction
if �� þ �� þ 2�� > 0.

Case 3. There is a unique edge � of � that abuts on the vertex a. In that case,

lgðaÞ ¼ j��j:
Furthermore, the holonomy at the vertex a is hyperbolic if j��j 6¼ 0 and parabolic if
j��j ¼ 0. In the case where the holonomy is hyperbolic, the spiraling around the
boundary simple closed geodesic homotopic to the vertex a is in the positive
direction if �� < 0, and in the negative direction if �� > 0.

Proof. In each case, we shall obtain the information on the holonomy at the
vertex a and about the length of that vertex by taking an appropriate fundamental
domain for the surface in the upper half-plane model of H2 and examining the
isometries of H2 that perform the pairing of the sides of that fundamental domain.

Figure 8. This figure refers to Case 1 of Proposition 4.1 where there are two edges of � abutting on
the vertex a ¼ 1 and where the holonomy around that vertex is hyperbolic. The upper picture
represents a quadrilateral Q which is a fundamental domain of the group of deck transformations
of the covering. The lower picture represents the successive images of Q by the action of the cyclic
group generated by I. These images accumulate on the geodesic in H2 that is invariant by the
hyperbolic isometry I. We have represented a point p on the boundary of the quadrilateral Q and
its image IðpÞ. The whole orbit of the point p by the group generated by I is situated on a hypercycle.

The two endpoints of the hypercycle are the two endpoints of the geodesic invariant by I
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In particular, we can see from this picture of the fundamental domain the isometry
that gives the holonomy type at a. Let I be this isometry. We shall study below the
nature of the isometry I in each case.

We first consider the pattern corresponding to Case 1. This is represented in
Figure 8, in which the upper picture is a fundamental domain Q of the three-
punctured sphere. This fundamental domain Q is a quadrilateral that is the union
of two ideal triangles T1 and T2 glued along a common edge. Without loss of
generality, we can assume that one of their common vertices, a, is the point 1.
The horizontal segment with an arrow in the upper picture is a lift of a simple
closed curve around the vertex a in the quotient surface, and we study the holon-
omy of this closed curve. In the case drawn in the figure, the shift �� on the edge
that is common to the two ideal triangles is negative (i.e. we have a right shear).
The bottom picture in Figure 8 represents two copies of Q that are glued along a
common edge � with a positive shift ��. The deck transformation I that sends the
quadrilateral Q to the adjacent quadrilateral situated to its left must send the
distinguished point p on a boundary edge of Q to the distinguished point IðpÞ
on the corresponding boundary edge of Q as shown in that figure, since these two
distinguished points project on the same point on the surface. The deck transfor-
mation I is a representative of the holonomy at the vertex a. In the case considered,
we have �� þ �� < 0 and the isometry I is hyperbolic. In the case where
�� þ �� 6¼ 0, we choose coordinates in H2 so that the origin 0 of the real axis is
the intersection point of the Euclidean line joining the points p and IðpÞ (this line is
a hypercycle in the sense of hyperbolic geometry) with the x-axis. Then the
isometry I is of the form z 7! e�hz, where h ¼ j�� þ ��j is the translation distance
of that isometry. Note that in the case considered (i.e. the case where �� þ �� 6¼ 0),
the point p together with its image IðpÞ allow us to determine geometrically the
position of the geodesic that is invariant by the isometry I.

The case where the isometry I is parabolic corresponds to �� þ �� ¼ 0. In that
case, p and its images are situated on a horocycle centered at 1.

Note that if a vertex a of S is in the situation of Case 1, then the triangulation �
is symmetric (in the sense defined in Sect. 4.1), which implies that we have the
following formulae for the lengths of the three vertices a, b and c of S:

8g2TðSÞ; lgðaÞ ¼ j�� þ ��j; lgðbÞ ¼ j�� þ ��j; lgðcÞ ¼ j�� þ ��j;
where lgðaÞ ¼ 0 if and only if the holonomy type of a is parabolic.

We now study the sense of the spiraling. This is best seen by looking at
Figure 8. Recall our conventions on the sign of the shifts and on the orientation
of the boundary components of S. They imply that when the three shifts are
positive, the half-edges of � spiral around the boundary components in the sense
opposite to that of the reference orientation on that boundary component, induced
from the orientation of the surface. This can be seen in Figure 8 where the
geodesic line ð0;1Þ, joining q and IðqÞ, which is on the boundary of the universal
cover of the hyperbolic surface and which is invariant by the isometry I, projects to
a boundary geodesic on the quotient surface. The orientation of the geodesic line
ð0;1Þ induced from the orientation of the surface is from top to bottom. The
sequence of vertical geodesics that accumulate on the geodesic line ð0;1Þ are lifts
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of the edges of � that spiral around the boundary closed geodesic which is the
image of the line ð0;1Þ in the quotient surface. All these vertical geodesics have
the vertex 1 in common with the geodesic line ð0;1Þ, and the accumulation is
the result of applying a covering translation of the form z 7!�z with 0<�< 1.
The spiraling along the image closed geodesic in the quotient hyperbolic surface is
in the direction induced from the orientation from 0 to 1 on the line ð0;1Þ, which
indeed corresponds to the negative orientation on the image closed geodesic.

Now we consider Case 2. A fundamental domain for the surface is represented
in Figure 9. A simple closed curve around the vertex a has four intersection points
with the edges of the ideal triangulation. Note that if such a closed curve is chosen
in minimal intersecting position with respect to �, then its intersection with each
ideal triangle has two components. The upper picture in Figure 9 represents, in the
upper half-space H2, the ideal triangles that the lift of this curve passes through,
with the point a being at 1. This lift is represented as a horizontal line with an
arrow, as was done in Figure 8 that corresponds to the preceding case. The shifts
that are associated to the four edges that the curve crosses are (from left to right)
��, ��, �� , ��, ��. To see this, note that in the ideal triangulation considered of the
sphere with three cusps or boundary components, the edge � separates the surface,
and �� represents the shift that identifies the two components of the surface S cut
along �. Thus, when we follow the simple closed curve homotopic to a, we cross
two times the edge �, and at each time the shift is ��. In the lower picture, we have
represented the image of the upper picture under the action of the group generated
by the isometry I that represents the holonomy at the vertex a. In the case drawn,
this holonomy is hyperbolic, and it is represented by the map z 7! e�hz where

Figure 9. The holonomy at a vertex in the case where there are four half-edges abutting on that vertex
(Case 2 of Proposition 4.1)
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h ¼ j�� þ 2�� þ ��j. The rest of the analysis is similar to the one of the previous
cases.

The situation in Case 3 is represented in Figure 10. It can be treated in the same
way as the two other cases. (As a matter of fact, this is the simplest case.) &

4.2. Signed length. It is convenient to introduce the notion of signed length elglgðaÞ
of a distinguished point a of the sphere with three distinguished points equipped
with an ideal triangulation � and a hyperbolic structure g. (The distinguished point
is, as usual, either a boundary component or a cusp of the hyperbolic structure g.)
This length is nonzero if and only if the vertex is a boundary component, and its sign
depends on the direction of the spiraling of the edges of � around the boundary
component a. More precisely, following the notations of Proposition 4.1, we set, for
a given vertex a,

elglgðaÞ ¼ lgðaÞ if the spiraling is in the negative direction

�lgðaÞ if the spiraling is in the positive direction

0 if a is a cusp:

8<
:

Using the notion of signed length, the formulae given in Proposition 4.1
become respectively elglgðaÞ ¼ �� þ ��;elglgðaÞ ¼ �� þ �� þ 2��elglgðaÞ ¼ ��:

8><
>:

Figure 10. The holonomy in the case where there is only one edge abutting on a vertex (Case 3 of
Proposition 4.1)
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5. The unfolded Teichm€uuller space associated to a triangulation
with three vertices of the sphere

Let � be a triangulation of the sphere S ¼ S2 with three distinguished points. In
this section, we show that the shift coordinates on the edges of � give a parame-
trization of the unfolded Teichm€uuller space fTTðSÞ ¼ fTTðS;PÞ by R3. We recall that
the elements of fTTðSÞ are isotopy classes of signed hyperbolic structures. In this
parametrization, the orientation on the geodesic boundary components is induced
by the direction of spiraling of the edges of � realized as an ideal triangulation
around these boundary components.

We shall analyze several features of the parametrization of fTTðSÞ by shift
coordinates and we shall give a description of fTTðSÞ as a cone over an octahedron
in R3. Each open simplex of the octahedron corresponds to a special kind of
behaviour at the vertices of �.

We call the Teichm€uuller space of a given surface with orientations specified on
its boundary components, a special Teichm€uuller space.

Theorem 1. The shift coordinates on the edges of � parametrize the unfolded
Teichm€uuller spacefTTðSÞ by R3. This parametrization gives a natural description offTTðSÞ as the cone over an octahedron. Each open simplex of the octahedron
corresponds to a special Teichm€uuller space embedded in fTTðSÞ. The origin O of
R3 parametrizes the special Teichm€uuller space of the sphere with three cusps
(which is indeed reduced to one point). Furthermore, the unfolded Teichm€uuller
space has a canonical projection onto an augmented Teichm€uuller space of the pair
of pants, that is, the union of the Teichm€uuller space of the pair of pants with
the various Teichm€uuller spaces of the generalized pair of pants with one, two or
three cusps on their boundary.

In the rest of this section, we prove this theorem. In fact, we shall give a more
complete description of fTTðSÞ and of its subspaces than the one in the statement of
the theorem.

We note that although our definition of the unfolded Teichm€uuller space does
not make use of the triangulation �, the parametrization of that space by R3

depends on �, and the structure of that space as a combinatorial object and, a
priori, its topology, could depend on �. We shall sometimes denote by T�ðSÞ the
unfolded Teichm€uuller space equipped with its parametrization by shift coordinates
on the edges of �. We shall study below the dependence of this combinatorial
structure on the choice of �.

We treat in detail the case where � is a symmetric triangulation. (Recall that
this is the case of the triangulation represented at the center of Figure 6). In this
case, the picture of the combinatorial structure of the unfolded Teichm€uuller space
T�ðSÞ is given in Figure 11.

We use the notations that we introduced before, in which �; �; � are the three
edges of �, and ��; ��; �� are the corresponding shifts.

The Euclidean space R3, with coordinates ��; ��; �� , is subdivided into eight
conical regions by the three hyperplanes defined by the equations �� ¼ 0, �� ¼ 0
and �� ¼ 0. In Figure 11, we have represented two octahedra in R3, which we call
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O and O0. The larger one, O0, is the octahedron whose two-simplices are the in-
tersections of these eight regions with the hyperplanes of equations e1�� þ e2��þ
e3�� ¼ 1, where each equation is associated to a triple ðe1; e2; e3Þ, where e1, e2 and
e3 take their values in f0; 1g. The vertices of the octahedron O are the barycenters
of the two-dimensional faces of the octahedron O0, that is, the points U ¼
ð1=3;�1=3; 1=3Þ, V ¼ ð�1=3; 1=3; 1=3Þ, W ¼ ð1=3; 1=3;�1=3Þ and the points
U0;V 0;W 0 that are symmetric to U;V;W , respectively with respect to O. Note that,
geometrically, the octahedron O is obtained from a cube by chopping off two pieces
bounded by the two triangular faces UVW and U0V 0W 0 of that octahedron.

The octahedron O (and, likewise, the octahedron O0), viewed as a simplicial
complex, has 8 þ 12 þ 6 ¼ 26 distinct simplices. Each of the 26 positive cones

Figure 11. The two-dimensional faces of the large octahedron O0 (whose edges are drawn in light
lines) are the intersections of that octahedron with the eight standard quadrants of R3. The small
octahedron O (drawn in bold lines) is the octahedron dual to O0. Each of the eight cones over the open
two-dimensional faces of O parametrizes the Teichm€uuller space TðS0;3;0Þ of the sphere with three
boundary components. Each of these Teichm€uuller space TðS0;3;0Þ is characterized by a given way of
spiraling of the edges of � around the boundary components. Likewise, the cones over the lower-
dimensional simplices parametrize Teichm€uuller spaces of the sphere in which one or more distin-

guished points are punctures, the rest of the distinguished points being boundary components
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over the interior of such a simplex, together with the origin O of R3 (which make
in total 27 objects), is a Teichm€uuller space of the sphere with three distinguished
points where each of the distinguished points has been specified to be either a
puncture or a boundary component, that is, a space whose elements are isotopy
classes of hyperbolic structures on a fixed (generalized) pair of pants. Several of
the Teichm€uuller spaces that occur in this collection are Teichm€uuller spaces of the
same surface, and there are canonical identifications between them. Each of these
spaces is specified by a certain way of spiraling of the edges of � around the
boundary components of the surface or, equivalently, by an orientation on each
boundary geodesic.

Thus, the topology induced on the unfolded Teichm€uuller space fTTðSÞ by the
shift coordinates on the edges of � makes a continuous link between any two
special Teichm€uuller spaces of generalized pairs of pants. This will be made precise
below. Degenerate structures where the length of a simple closed curve is equal to
0 are elements of the unfolded Teichm€uuller space T�ðSÞ, and they also appear as
boundary structures of the various special Teichm€uuller spaces of pairs of pants.
Recall that these structures also appear in complex analysis as surfaces with nodes,
on the boundary of Teichm€uuller space.

More precisely, the space R3 parametrizes an unfolded Teichm€uuller space which
is the union of 26 þ 1 ¼ 27 subspaces, each of which can be identified with a
Teichm€uuller space in the usual sense. These subspaces can be described as follows:

� Each positive cone over one of the eight open two-dimensional faces of the
octahedron O is a special Teichm€uuller space of a pair of pants with three boundary
geodesics. Such a Teichm€uuller space is distinguished by the fact that the three
distinguished points are chosen to be boundary components, and it is distinguished
from the two other congruent spaces by a specific sense of spiraling for the edges
of the ideal triangulation � around the boundary geodesics. Four of these spiraling
behaviours are represented in Figure 11.

� Each positive cone over an open one-dimensional face of the octahedron O is
a special Teichm€uuller space of a (generalized) pair of pants with one cusp and two
boundary geodesics. There are 12 such special Teichm€uuller spaces, and each of
them is specified by the three different choices of the cusp for the sphere with three
distinguished points, and, for each such choice, by a specific sense of spiraling of
the edges of the ideal triangulation � around the two boundary geodesics of the
surface.

� Each positive cone over a vertex of the octahedron O is the Teichm€uuller
space of a generalized pair of pants with two cusps and one boundary geodesic.
There are six such special Teichm€uuller spaces, each of them corresponding to a
special choice of the boundary component among the three distinguished points of
the sphere, and, for each such choice, by the sense of spiraling of the edges of the
ideal triangulation � around that boundary geodesic.

� Finally, the origin O corresponds to the Teichm€uuller space of the sphere with
three cusps.

Note that for each of the eight cones over the two-dimensional faces of O, the
various spiraling behaviours around the geodesic boundary components are deter-
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mined by linear inequalities in the shift parameters on the edges of the ideal
triangulation �. For instance, the case labelled 1 in Figure 11 (that is, the cone
over the triangle UVW) corresponds to the system of inequalities

�� þ �� > 0

�� þ �� > 0

�� þ �� > 0:

8<
:

Case 2 (the cone over the triangle U0VW) corresponds to

�� þ �� > 0

�� þ �� < 0

�� þ �� > 0:

8<
:

Case 3 (the cone over the triangle UV 0W) corresponds to

�� þ �� > 0

�� þ �� > 0

�� þ �� < 0:

8<
:

Case 4 (the cone over the triangle UVW 0) corresponds to

�� þ �� < 0

�� þ �� > 0

�� þ �� > 0:

8<
:

5.1. The type of the horocyclic foliation. In Figure 12, the triangular face UVW
is subdivided into four smaller triangles. The fact that a point of T�ðSÞ which is in

Figure 12. This figure represents the patterns of the singular graphs of the horocyclic foliations for
the various hyperbolic structures representing points in the cone over the face UVW of the octahedron

O. The star indicates a cusp
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the cone over the face UVW belongs to one of the various cones over the smaller
triangles represented in this figure depends on the type of the horocyclic foliation
F�ðgÞ of a hyperbolic structure g representing this point. More precisely, this fact
depends on the behaviour of the singular graph of the measured foliation F0

�ðgÞ
obtained from F�ðgÞ by collapsing each non-foliated region onto a tripod (that is, a
graph consisting in a singular point with three segments contained in the leaves
starting at that point). Note that the measured foliation F0

�ðgÞ is well defined up to
isotopy. The singular graph of a measured foliation on a pairs of pants which is
transverse to the boundary is the union of the leaves that start at singular points. The
various topological types of singular graphs are represented in Figure 12. Note that for
any hyperbolic structure g representing a point in the interior of the cone over UVW,
the horocyclic foliation F�ðgÞ is transverse to the boundary of the pair of pants.

If g is any hyperbolic structure on the pair of pants S equipped with the ideal
triangulation �, the associated horocyclic measured foliation F�ðgÞ is transverse to
the ideal triangulation �. We already saw that any measured foliation transverse
to � induces a set of shift coordinates on the edges of �. Notice that the shift
parameter on an edge of � induced by a hyperbolic structure g is equal to the shift
parameter on that edge induced by the horocyclic measured foliation F�ðgÞ.

Consider again the division of the triangular face UVW into four smaller
triangles (Figure 12). The three segments in the interior of the face that define
this division correspond to hyperbolic metrics g on the sphere with three distin-
guished points, a; b; c that are defined in terms of lengths of the closed geodesics
representing these points by the equalities lgðaÞ ¼ lgðbÞ þ lgðcÞ, lgðbÞ ¼ lgðaÞþ
lgðcÞ and lgðcÞ ¼ lgðaÞ þ lgðbÞ, respectively. (Remember that, by convention, a
cusp is considered as a geodesic of length 0.) Note that one can write equivalent
equations in terms of transverse measures of the boundary components, with res-
pect to the horocyclic foliations.

5.2. Identifications between special Teichm€uuller spaces. There are natural
identifications between special Teichm€uuller spaces contained in the unfolded
Teichm€uuller space. Namely, let T1 and T2 be two Teichm€uuller spaces of S that
correspond to hyperbolic structures of the same type (meaning that any distin-
guished point of the surface S is a cusp for both structures or a boundary component
for both structures). Then, it is natural to identify any two points in T1 and T2

whenever they are represented by the same hyperbolic structure. Note that this
amounts to forgetting the sign of the hyperbolic structures. This gives a homeo-
morphism T1 ! T2. Such a homeomorphism is described in a simple manner
using the shift parameters. For instance it is easy to see that if the two spaces T1

and T2 are of maximal dimension and are represented in R3 by two three-dimen-
sional cones that share a common two-dimensional face, then the identification is
a (non-orthogonal) symmetry that fixes that face. Specifically, consider the two
Teichm€uuller spaces that are parametrized by the three-dimensional cones over the
open faces UVW and UVW 0 of O. Then, the natural identification between these two
subspaces is the unique linear involution that preserves the two-dimensional face
OUV and that sends W to W 0. The other identifications between the 3-dimensional
spaces are compositions of such symmetries.
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Each of the eight three-dimensional special Teichm€uuller spaces is parametrized
by a cone that is defined by three inequalities. Each two such Teichm€uuller spaces
T1 and T2 that share a common 2-dimensional face are defined by three inequal-
ities, two of which are identical and the third one being different. For instance, the
cones over the faces UVW and UVW 0 are defined respectively by the systems of
equations

�� þ �� > 0

�� þ �� > 0

�� þ �� > 0

8<
:

and

�� þ �� < 0

�� þ �� > 0

�� þ �� > 0:

8<
:

Therefore, a point in T1 whose coordinates are (��; ��; ��) is identified with
the point in T2 whose coordinates (�0�, �0�, �0�) satisfy

�0� þ �0� ¼ ��� � ��
�0� þ �0� ¼ �� þ ��
�0� þ �0� ¼ �� þ ��

8<
:

or equivalently

�0� ¼ ���
�0� ¼ ���
�0� ¼ �� þ �� þ ��:

8<
:

With this, we can easily check that the symmetry s that exchanges the two
spaces is induced by the linear map of R3 whose matrix in the canonical basis is

0 �1 0

�1 0 0

1 1 1

0
@

1
A:

This matrix has
1
�1
0

� �
and

0
0
1

� �
as eigenvectors with eigenvalue 1 and

1
1
�1

� �
as

eigenvector with eigenvalue �1.

In other words, s is the linear map that fixes the plane �� þ �� ¼ 0 (that
is, the common face to the two cones) and that acts as a symmetry along the
line ðWW 0Þ.

We denote by G the group of linear homeomorphisms of R3 that is generated
by all the natural identifications between the various special Teichm€uuller spaces.
The group G is finite. The quotient of fTTðSÞ by this group is an augmented
Teichm€uuller space of the pair of pants, that is, the union of the Teichm€uuller space
of the pair of pants with the various Teichm€uuller spaces of the generalized pair of
pants on its boundary.

5.3. The central symmetry. Let P be a generalized hyperbolic pair of pants. The
canonical involution � on P (cf. Sect. 2.6) preserves each boundary component of P,
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and if P is equipped with an ideal triangulation �, then � sends � to an ideal
triangulation � which spirals around each boundary component in the sense oppo-
site to that of �. The set of all such maps � on generalized hyperbolic pairs of pants is
induced by a map which is defined on the unfolded Teichm€uuller space fTTðSÞ of the
sphere with three distinguished points. In the space R3 of shift coordinates on the
edges of �, this map is the symmetry with respect to the origin O. Note that the fixed
point set of this involution of R3 is the origin as expected, since the sphere with three
cusps coincides with its image by its order-two symmetry as points in the unfolded
Teichm€uuller space fTTðSÞ.

6. Changing the ideal triangulation

The shift coordinates associated to an ideal triangulation � on a sphere S
with three distinguished points define a homeomorphism 	 between the unfolded
Teichm€uuller space fTTðSÞ and R3, and therefore they provide the space fTTðSÞ with a
linear structure. Changing the ideal triangulation � on ðS;PÞ to another triangula-
tion �0 induces a global coordinate change map 	0 � 	�1 from R3 to itself.

Proposition 6.1. The map 	0 � 	�1 is linear.

Proof. We start with a symmetric triangulation � and we let ð��; ��; ��Þ be the
shift coordinates on the edges �.

Let ð�0�; �0�; �0�Þ be the shift coordinates on the edges of a non-symmetric trian-
gulation �0 obtained from � by a flip.

Let g ¼ ðelglgðaÞ; elglgðbÞ; elglgðcÞÞ2R3 represent a hyperbolic structure, the tilde rep-
resent the signed lengths as defined in Sect. 4.2 above.

In the case of the triangulation �, we have

elglgðaÞ ¼ �� þ ��elglgðbÞ ¼ �� þ ��elglgðcÞ ¼ �� þ ��:

8><
>:

In the case of the triangulation �0, the formulae are

elglgðaÞ ¼ �0� þ �0� þ 2�0�elglgðbÞ ¼ �0�elglgðcÞ ¼ �0�:

8><
>:

The natural identification between the two parameter spaces of the unfolded
Teichm€uuller spaces given by the shifts on the edges of � and �0 is induced by the
canonical identification between the signed hyperbolic structures that are parame-
trized by these spaces. At the level of the shift coordinates, the change in coordi-
nates are given by the following linear formulae:

�0� ¼ ���
�0� ¼ �� þ ��
�0� ¼ �� þ ��:

8<
:

&
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Corollary 6.2. The shift coordinates provide the unfolded Teichm€uuller space of
the sphere with three distinguished points with a linear structure which is inde-
pendent of the choice of the triangulation �.

7. Stretch lines and earthquakes on the unfolded Teichm€uuller space

7.1. Stretch lines. Consider a surface Sg;b;p equipped with an ideal triangulation
�. We recall that a stretch line directed by � in the Teichm€uuller space TðSg;b;pÞ
starting at (the equivalence class of) a hyperbolic g is the map t 7! gt from R into
TðSg;b;pÞ, where gt is the (equivalence class of the) hyperbolic structure whose
horocyclic foliation F�ðgtÞ is obtained from the measured foliation F�ðgÞ by
multiplying its transverse measure by the factor et.

We shall say that the hyperbolic metric gt is obtained from g by a t-stretch.

Proposition 7.1. The effect of a t-stretch multiplies the lengths of all the
boundary geodesics of the surface by the factor et.

Proof. This follows from the fact that the leaves of the horocyclic foliation abut
perpendicularly on the boundary geodesics, and that the transverse measure of this
horocyclic foliation coincides with hyperbolic length on geodesic arcs that are
perpendicular to the leaves of this foliation. &

Now consider the special case where the surface is a pair of pants. Since a
hyperbolic structure on a pair of pants is determined by the lengths of its three
boundary components, any stretch line starting at a given point in the Teichm€uuller
space of the pair of pants can be described as the line in that space obtained by
changing the lengths of the boundary components of the surface by a common
multiplicative factor. In particular, to obtain any stretch line in Teichm€uuller space,
one can take an arbitrary ideal triangulation all whose bi-infinite edges spiral along
the boundary geodesics of this pair of pants, and perform a stretch along that ideal
triangulation. Any two such ideal triangulations give the same stretch line.

This is not true if we take an arbitrary surface Sg;b;p equipped with a pair of
pants decomposition. In other words, stretch lines starting at that surface which are
defined after completing a given pair of pants decomposition into an ideal trian-
gulation depend on the choice of the completion. We shall study precisely this
phenomenon in Sect. 9 below. We shall see in some precise examples that if we
start at some hyperbolic structure on a surface Sg;b;p and perform stretches along

Figure 13. Varying a hyperbolic structure along a stretch line multiplies the shift parameters on the
edges of the ideal triangulation by a constant factor
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ideal triangulations � and �0 that have different spiraling behaviour around geo-
desic curves of a given pair of pants decomposition, then these lines are distinct in
the Teichm€uuller space of the surface, except of course at the starting point.

The next proposition states that we can define stretch lines on the unfolded
Teichm€uuller space fTTðSÞ of a sphere with three distinguished points. We can send
one of these lines in one cone over a simplex into a line in a cone over another
simplex of the same dimension using elements of the group G of symmetries offTTðSÞ that we described in Sect. 5.2 above.

In the shift parameters for fTTðSÞ associated to �, the stretch lines have a nice
description, summarized in the following.

Proposition 7.2. Stretch lines can be defined on the unfolded Teichm€uuller
space fTTðSÞ. In the shift coordinates associated to an ideal triangulation �, a
stretch line directed by � corresponds to a Euclidean ray starting at the origin.
More precisely, a stretch line starting at a signed hyperbolic structure g2fTTðSÞ is
described, using the shift parameters, by

t 7! ðet��ðgÞ; et��ðgÞ; et��ðgÞÞ; t2R:

With this definition, the flow induced on each special Teichm€uuller space in fTTðSÞ is
a stretch flow in fTTðSÞ directed by �.

Proof. The transverse measure of the horocyclic foliation coincides with hy-
perbolic length on geodesic arcs that are perpendicular to the leaves of this folia-
tion, and this transverse measure, under a stretch line, is multiplied by the factor et.
Therefore, the shift parameters under a stretch line are multiplied by the same
factor. &

This means that a stretch line in T�ðSÞ is an open Euclidean ray starting at the
origin O and passing through g. It can be extended by continuity to a closed ray
containing the origin. In particular, all the stretch rays in the shift coordinates
associated to � converge in the negative direction to the point in T�ðSÞ represent-
ing the sphere with three cusps.

It is a natural question to find an expression for the stretch lines on a surface
Sg;b;p in terms of the Fenchel-Nielsen coordinates. In the next section, we shall see
in particular that under a stretch line, the Fenchel-Nielsen twist between adjacent
pairs of pants is not constant.

7.2. Earthquakes. Besides the stretch flow, there is a natural flow defined on the
unfolded Teichm€uuller space T�ðSÞ, whose effect is to shift any two adjacent ideal
triangles relatively to each other in the same direction by the same constant vector.
In terms of the shift coordinates, the effect is to add a constant, and it is given by

t 7! ð��; ��; ��Þ þ tð��; ��; ��Þ; t2R:

In analogy with Thurston’s earthquake flows defined along compactly supported
measured laminations, we call this flow an earthquake flow along the ideal triangu-
lation �. The normalization that we use in this definition makes the origin O of
T�ðSÞ (that is, the sphere with three cusps) fixed, and it makes the flow commute
with the stretch flow on T�ðSÞ. The flowlines are parallel Euclidean lines.
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In general, performing an earthquake along � changes the lengths of the
boundary components of the surface. In fact, some of these lengths which are
nonzero can become 0 as we perform an earthquake. In other words, along an
earthquake line, the boundary components can become cusps, and the sense of
spiraling of edges of � around boundary components can change as the line passes
through such a point.

8. The position of the singular arcs of the horocyclic foliation

In this section, S is a hyperbolic pair of pants equipped with a measured
foliation F transverse to the boundary. A singular arc joining two boundary com-
ponents of S is an injective arc contained in the leaves of F which joins these
boundary components and which passes through a singular point of F. In what
follows, F will be the horocyclic foliation associated to a hyperbolic structure
(with three geodesic boundary components) and to an ideal triangulation �. Note
that since the horocyclic foliation has only three-prong singularities, then for any
two boundary components of S, there are exactly two singular arcs joining them.
(This follows from the classification of measured foliations on pairs of pants,
cf. [6]).

Let g be a hyperbolic structure on S. Let A and B be two boundary components
of S, let k and k0 be the two singular arcs of F ¼ F�ðgÞ joining them and let l be the
geodesic seam joining these components (see Figure 14).

We shall give a formula for the relative position of one of the singular arcs, say
k, with respect to l. This formula will be useful in studying the relative behaviour
of various stretch lines in the Teichm€uuller space of a surface obtained by gluing
pairs of pants along their boundary. It is also used to study the relation of these
lines to earthquakes. Recall that stretch lines are naturally expressed using shift
coordinates, whereas earthquakes along the curves of the pairs of pants decom-
positions (that is, Fenchel-Nielsen flows) are naturally expressed using Fenchel-
Nielsen coordinates.

Figure 14. A schematic picture of the singular arcs k and k0 (in bold lines) and the geodesic arc l
joining the two boundary components A and B
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In the next section, we shall consider a surface obtained by gluing two pairs of
pants along their boundary components. There are at least two useful cooordinates
on the Teichm€uuller space of that surface, the Fenchel-Nielsen coordinates and the
shift coordinates. Fenchel-Nielsen coordinates involve distances between end-
points of seams of adjacent pairs of pants, whereas shift coordinates involve dis-
tances between endpoints of singular arcs of adjacent pairs of pants. Making the
relations between the shift and Fenchel-Nielsen coordinates involves computing
distances between endpoints of singular arcs and endpoints of geodesic seams
connecting curves in the pairs of pants, and we shall do this below.

The computations are done in the universal covering of the surface S. In
Figure 15, the universal covering of the hyperbolic pair of pants is represented
as a subset of the upper-half plane model of H2. The universal covering is nor-
malized so that the vertical geodesic line eAA that joins the points 0 to 1 is a lift of
the closed geodesic A. The line eAA divides H2 into two regions, one of them
containing the universal covering of the pair of pants S. In Figure 15, this region
is the one to the right of eAA. We choose a lift eBB of the boundary component B of S
such that the geodesic segment l joining perpendicularly A and B lifts to a segment
~ll joining perpendicularly eAA and eBB. Let eFF be the preimage of the foliation F to
this universal covering. There are two singular arcs of the horocyclic foliation eFF
which join the lifts eAA and eBB of A and B. These singular arcs are the two lifts of
k and k0. We let ~kk and ~k0k0 be respectively these arcs. We suppose without loss
of generality that the ordinate of the intersection point ~kk \ eAA is greater than the
ordinate of the intersection point ~k0k0 \ eAA. We compute the signed distance U be-
tween the points eAA \~ll and eAA \ ~kk, with the convention that the orientation on
the line eAA goes from 0 to 1. Note that this is inverse to the orientation induced
from the orientation of the surface. To do these computations, we can fix the ordi-
nate of eAA \ ~kk to be equal to 1 (see Figure 15 in which u> 1, that is, U ¼ log ðuÞ> 0).

Figure 15. In bold lines, we have represented a fundamental region of the action of the deck
transformation group on the universal cover of the pair of pants S. This region is the union of lifts
of two right-angled hexagons in S obtained by connecting pairwise the three boundary components by
geodesic arcs that are perpendicular to these components. The normalization is such that the singular
arc ~kk connecting the geodesic lines eAA ¼ ð0;1Þ and eBB ¼ ðc; dÞ intersects the geodesic line eAA at height 1.

We are interested in the ordinate u of the arc ~ll connecting eAA and eBB perpendicularly
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We treat in detail the case where the shift coordinates ��, ��, �� of the pair of
pants are all positive. (This is Case 1 represented in Figure 12). The other cases
can be treated by adapting the computations of this special case. We use the
notations of Figure 15.

The aim is to compute the value of u. Since the three shifts are positive, the
spiraling in S around the three boundary geodesics of S is in the inverse sense with
respect to the orientation induced by that of the surface.

Figure 15 shows part of the preimage of � in the upper half-plane containing
the universal covering of the pair of pants. The triangles labeled T1 and T2

(which have vertical sides) are lifts of the two ideal triangles that are determined
by � in the surface S, and which (for simplicity) have the same name. As already
stated, the normalization in the universal covering is such that the lift eAA of the
boundary component A of S is the vertical geodesic line starting at the origin of
the boundary R of the upper half-plane. We have also drawn lifts of the boundary
components C and B; these are respectively the geodesics with endpoints ða; bÞ
and ðc; dÞ. We start by computing the abscissas c and d in terms of the shifts
��; ��; �� .

Using the Euclidean theorem of Pythagoras (see Figure 16), we can see that the
geodesic segment that minimizes the distance between the vertical line eAA and a
hyperbolic geodesic which intersects the real line at points whose abscissas are x
and y (0< x< y) intersects eAA at a point u whose ordinate is

ffiffiffiffiffi
xy

p
. Therefore, in our

situation (using the notations of Figure 15), we have u ¼
ffiffiffiffiffi
cd

p
.

Using again the notations of Figure 15, we now compute the values of e, c, a
and d, and we then deduce the value of u.

The hyperbolic isometry z 7! f ðzÞ ¼ e�lðAÞz is a covering transformation
that preserves the geodesic eAA. Under the action of this isometry, the orbits
of the vertical sides of the triangles labelled T1 and T2 in Figure 15 accumulate
on the vertical line eAA. The segment on the x-axis with endpoints e and a is a
fundamental domain for the action induced by this isometry on the x-axis,

Figure 16. The abscissa of the center N of the Euclidean circle that passes through the points
of abscissas x and y equals ðxþ yÞ=2, and the radius of this circle is ðy� xÞ=2. By applying the

Pythagorean theorem to the Euclidean triangle OMN, we obtain u2 ¼
�
xþy

2

�2 �
�
y�x

2

�2 ¼ 1
4
ð2yÞð2xÞ,

which gives u ¼ OM ¼ ffiffiffiffiffi
xy

p
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since, by this isometry, the triangle with label T1 in Figure 15 is sent to a
triangle to the left in that figure. Thus, we have

e ¼ ðe� aÞ þ ðe� aÞe�lðAÞ þ ðe� aÞe�2lðAÞ þ � � �
or, equivalently, using the fact that lðAÞ ¼ �� þ �� ,

e ¼ ðe� aÞ þ
X1
n¼0

e�nð��þ��Þ ¼ e� a

1 � e�ð��þ��Þ

Using the fact that the length of the largest segment of the horocyclic foliation
in the triangle T1 whose vertices are c, e and 1 is equal to 1, we obtain e� c ¼ 1.
Likewise, by examining the triangle T2 whose vertices are a, c and 1, we see that
c� a ¼ e��� .

Now we write e� a ¼ e� cþ c� a ¼ 1 þ c� a ¼ 1 þ e��� . This gives us

e ¼ 1 þ e���

1 � e�ð��þ��Þ
;

c ¼ e� 1 ¼ e�ð��þ��Þ þ e���

1 � e�ð��þ��Þ

and

a ¼ e�ð��þ��Þe:

To compute the value of d, we apply the isometry

z 7! gðzÞ ¼ �1

z� c
þ 1

d � c
:

This isometry sends the hyperbolic geodesic joining the points c and d at
infinity to the geodesic eAA ¼ ð0;1Þ. Now that the geodesic gðcdÞ is the vertical
line ð0;1Þ, we can do the computations as we did for the situation described in
Figure 15, and we obtain

gðeÞ ¼ � 1

e� c
þ 1

d � c
;

gð1Þ ¼ 1

d � c
and

gðcþ iÞ ¼ � 1

i
þ 1

d � c
¼ 1

d � c
þ i:

In particular, the point gðcþ iÞ has ordinate 1. Therefore, we can compute
gð1Þ in the same way we computed e in the preceding situation. We obtain, using
now the notations of Figure 17,

gð1Þ ¼ ðgð1Þ � xÞ þ ðgð1Þ � xÞe�lðBÞ þ � � � ¼ ðgð1Þ � xÞ
1 � e�lðBÞ ¼ 1 þ e���

1 � e�ð��þ��Þ
:

Therefore,

d ¼ cþ 1 � e�ð��þ��Þ

1 þ e���
:
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We obtain, after a simplification,

u2 ¼ e��� ð1 þ e���Þð1 þ e��� Þð1 þ e�ð��þ��þ��ÞÞ
ð1 þ e���Þð1 � e�ð��þ��ÞÞ2

:

From this, we can deduce the value of U ¼ log u.
Note that if U0 is the signed distance between l and the other singular arc

joining a and b (i.e. the arc k0), we have

U0 ¼ U þ ��:

Remark 8.1. It is interesting to compare the behaviour of the distance U with
that of the length lðAÞ of the boundary geodesic A as the metric varies on the stretch
line gt directed by �, with t ! 1. We already know that under a stretch of factor et,
the length of A is multiplied by et. Denoting by rt the ratio U=lðAÞ, we have

lim
t!þ1

rt ¼ � ��
2ð�� þ ��Þ

� � 1

2
:

Furthermore, it is easy to see that the function rt is strictly decreasing for t
large enough. Thus, along a stretch line, and for t greater than a certain value, the
positions of k and k0 stabilize in the sense that these paths do not wind indefinitely
around boundary components.

The situation is totally different along an anti-stretch line. Whereas the length
of the boundary component A tends to zero, the distance U goes to infinity. More
precisely, one can show that if lðAÞ denotes the length of the boundary component
A at the origin of the anti-stretch line, we have

rt �t!�1 � t e�t

lðAÞ ;

which tends to infinity as t ! �1.

Figure 17
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This behaviour suggests that the horocyclic foliation is not a sufficiently stable
tool to study the asymptotic behaviour of an anti-stretch line.

9. Fenchel-Nielsen coordinates and shift coordinates

In this section, S ¼ S0;4;0 is the sphere with four boundary components equipped
with a hyperbolic structure obtained by gluing two hyperbolic pairs of pants P1 and
P2, whose boundary geodesics are denoted respectively by A1;B1;C1 and A2;B2;C2.
We equip each pair of pants with a symmetric ideal triangulation, and the surface S
with the union ideal triangulation. We suppose that the geodesics A1 and A2 have
the same lengths, and are identified: A1 ¼ A2 ¼ A. We denote the shift coordinates in
P1 by �1

�; �
1
�; �

1
�, and those in P2 by �2

�; �
2
�; �

2
�. The gluing condition is j�1

� þ �1
�j ¼

j�2
� þ �2

�j. The union of the two ideal triangulations of P1 and P2 defines a geodesic
lamination on S. This lamination is chosen such that all the spirals of P1 and P2 are
positive and all the spirals around A1 ¼ A2 that come from the two adjacent pairs of
pants are in the same direction (that is, the lamination is chain recurrent).

There are at least two ways of specifying the gluing between P1 and P2, that is,
of describing the twist along A between these two pairs of pants. First, we have the
Fenchel-Nielsen twist 
A, which measures the signed distance on A between the
feet of the geodesic seams of P1 and P2 (after the choice of a pair of boundary
components in each pair of pant) and then, we have the shift twist �A, which
measures the signed distance on A between the feet of the singular arcs of the
horocyclic foliations (again, after making choices).

In this section, we shall give a formula that relates these two twists. Recall that
the shift twist �A along A is natural for describing stretches.

First, one has to choose a geodesic arc in each pair of pants: we shall choose
the seam joining A and B1 on one side of A and the seam joining A and B2 on the
other side. Likewise, we choose one singular arc on each side of A, joining the same
boundary components of the pair of pants as the geodesic arcs that we choose.

Moreover, we choose an orientation on the closed geodesic A.
We note that these choices do not suffice to determine the Fenchel-Nielsen and

the shift parameters. One also needs to choose an origin for each of these shifts.
The choices become natural if we lift the situation to the universal covering of the
surface. First consider a lift eAA of A. This lift separates the universal covering into
two half-planes bounded by eAA. In each of these half-planes, there is a whole family
of lifts of seams with one endpoint on eAA, all of these lifts being congruent under
the action of the cyclic subgroup of the deck transformations group that preserveseAA. The choices that we have to make for the definition of the Fenchel-Nielsen
coordinates amount to choosing an orientation on eAA and two representatives, one in
each half-plane, of the two families of these lifts of the seams. The choices made
for one lift propagate under the action of the deck-transformations group.

Of course, the determination of the shift twist parameters is based on an
analogous battery of choices.

We want to compare the two twist parameters, and there is a convenient way
to do so. Once we have made choices to define one type of parameters, there is a
convenient way for making the choices defining the other type of parameters.
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Indeed, each type of segment (seam or singular arc) used in the definition of the
corresponding type of parameters joins two boundary components of the pair of
pants containing this segment. Each lift of such a segment joins lifts of those
boundary components. If one chooses two particular lifts of the boundary compo-
nents to define the parameters, then it is natural to choose a segment of the other type
joining the same lifts. Thus, in what follows, we will apply the following procedure:
we first make choices for the definition of the Fenchel-Nielsen twist parameters, and
then make choices for the definition of the shift twist parameters accordingly. This
will allow us to use the computations made in the previous section.

We now consider the lift of this situation to the universal cover eSS of S. We
choose an identification between eSS and a subset of the upper half-plane H2 in such
a way that a lift eAA of A is the geodesic whose endpoints are at 0;1. We choose a
lift ~lli, i ¼ 1; 2, of a seam in each pair of pants in order to compute the Fenchel-
Nielsen twist. The orientation of A corresponds to the orientation of eAA pointing
from 0 to 1. In Figure 18, the subset of the universal cover of P1 containing eAA is
situated to the right of eAA, and that of P2 to the left. The picture on the right is put in
the same position as in Figure 15, that is, the lifts of the edges spiraling around A
(which are geodesics accumulating on eAA) have 1 as an endpoint. We refer to the
position pictured in Figure 15 as the ‘‘standard position’’. The picture on the left is
not in the standard position, but it can be made so by using the map z 7! � 1=z.

We make the choices of the singular segments according to the discussion
above and to Figure 18, namely, we choose among the two possible singular
segments joining the chosen lifts of boundary components of pairs of pants. In
P1, we take the singular segment with the highest point of intersection with eAA, and
we make the same choice in P2 after having put it in the standard position. We call
~kki, i ¼ 1; 2, the singular segments chosen in this way. and we let ui, vi denote the
ordinates of the points of intersection of ~lli and respectively ~kki with eAA. Then, we
have (see Figure 19 where the geodesic eAA is oriented from bottom to top):

� 
A ¼ log
�
u2

u1

�
,

� �A ¼ log
�
v2

v1

�
,

� U1 ¼ log
�
v1

u1

�
,

� U2 ¼ log
�
v2

u2

�
,

Figure 18. To pass from the left hand figure to the right hand figure, we use the isometry z 7! � 1=z.
Thus, a0 ¼ �1=a; b0 ¼ �1=b and so on. Therefore, 1=u0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�1=c0Þð�1=d0Þ

p
, i.e., u0 ¼

ffiffiffiffiffiffiffiffi
c0d0

p
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where Ui denotes the signed distance from the foot of the seam ~lli on eAA to the foot
of the singular segment ~kki on eAA. The sign is determined using the orientation on ~AA.
This orientation allows one to distinguish a preferred side to that curve, namely,
the side which induces an orientation on ~AA compatible with the chosen one. The
sign of the shift is then obtained by considering in which direction the preferred
side is shifted with respect to the orientation of ~AA. Therefore, we have


A ¼ �A þ U1 � U2:

10. An example on the surface of genus 2

Let P be a hyperbolic pair of pants with geodesic boundary components A;B;C
equipped with a complete geodesic lamination � of symmetric type (that is, no leaf
joins a puncture to itself). As before, ��; ��; �� denote the shift parameters associ-
ated to �. Consider a hyperbolic structure on P satisfying the following conditions:

(1) the shifts are all positive, i.e., �� > 0, �� > 0, �� > 0;
(2) the lengths of all the boundary components are equal to some L> 0, i.e.,

�� þ �� ¼ �� þ �� ¼ �� þ �� ¼ L.

Note that we then have �� ¼ �� ¼ �� ¼ L=2.
We take two copies P1 and P2 of P, and we call respectively �1 and �2 the

laminations in these two pairs of pants corresponding to �. We glue pairwise the
boundary components of P1 with the boundary components of P2, respecting the
labels of these components. We denote by S ¼ S2 the resulting surface. It is a
closed surface of genus 2. We can naturally talk about the geodesics A;B;C in S.
Note that there is one degree of freedom for each identification between boundary

Figure 19. Gluing two copies of the the universal coverings of the two pairs of pants along eAA. The
dotted lines represent lifts of the singular arcs and the perpendicular arcs represent lifts of the seams.
The directions of the arrow represent positive values of the various quantities. Using the orientation of
the geodesic ~AA and the orientation of the surface, the preferred side of ~AA lies here on the left-hand side.

In this figure, the arrangement of the curves ~hhi; ~kki; i ¼ 1; 2; gives U1 < 0;U2 > 0; 
A < 0; �A < 0
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components of P1 [ P2 and that for any choice of identifications between these
components, the union of the complete laminations �1 and �2 is a complete
geodesic lamination on S, which we also denote by �, and which we shall suppose
to be chain-recurrent (i.e. all leaves of � that spiral along the same closed geodesic
A, B or C spiral in the same direction). We choose the identifications between the
boundary components of P1 and P2 in such a way that the seams have the same
endpoints, thus forming three disjoint simple closed geodesics A0;B0;C0, each of
which have at most one intersection point with the closed geodesics A;B;C
(A0 \ A ¼ ;, B0 \ B ¼ ;, C0 \ C ¼ ;). Finally, let us denote by h the resulting
hyperbolic structure on S. (Recall that h is only defined up to isometry).

The hyperbolic surface h has two order-two symmetries. The first one, �, fixes
the geodesics A;B;C and exchanges the (images in S of the) pairs of pants P1 and
P2. The second one, �0, fixes A0;B0;C0 and its restriction to each pair of pants P1,
P2 is the canonical involution fixing the seams.

Let ��� be the image of � by the symmetry �0 of S. The geodesic lamination ��� is
also obtained from � by reversing the sense of spiraling around the three closed
geodesics A;B;C. Note that if ����; ����; ���� denote the shift parameters associated to
���, then we can easily see that we have

���� ¼ ���; ���� ¼ ���; ���� ¼ ���:

We now consider the two stretch lines ‘ : t 7! ht and �‘‘ : t 7! �hht starting at
h ¼ h0 ¼ �hh0 and directed by � and ��� respectively. We shall study explicitely the
Fenchel-Nielsen coordinates of the points ht and �hht on these lines, associated to the
pair of pants decomposition A;B;C. Note that since liðhtÞ ¼ lið�hhtÞ, for i ¼ A;B;C,
we can always pass from ht to �hht by a composition of Fenchel-Nielsen twists along
the curves A, B and C, but it is a priori conceivable that ht ¼ �hht for some (or even
for all) t, in addition to t ¼ 0. For instance, it is conceivable that a stretch map does
not change the Fenchel-Nielsen parameters between adjacent pairs of pants. In
fact, we shall show that this is not the case. We shall see that the twist parameters
along A, B and C are always different for points on ‘ and on �‘‘ except at the origin,
thus proving the following

Proposition 10.1. The geodesic lines ‘ and �‘‘ have a unique point of intersec-
tion, which is the point h.

Proof. Consider the Fenchel-Nielsen coordinates ðlA; 
A; . . . ; lC; 
CÞ associated
to the three closed curves A;B;C, such that 
AðhÞ ¼ 
BðhÞ ¼ 
CðhÞ ¼ 0.

By Proposition 7.1, we have, for each t5 0,

liðhtÞ ¼ lið�hhtÞ ¼ etL; with i ¼ A;B;C:

We shall show that the Fenchel-Nielsen twist parameters 
iðhtÞ and 
ið�hhtÞ, for
any i ¼ A;B;C, are different for all t> 0. For this, we use the formulae that give
these twist parameters in terms of the shift coordinates. The situation being the
same for the three geodesics A, B and C, it suffices to consider one of them, say, 
A.

To compute the shift parameters �AðhtÞ and �Að�hhtÞ along A, we must choose a
singular arc in each pair of pants P1 and P2 joining A to another boundary com-
ponent of this pair of pants with respect to the two horocyclic foliations F�ðhÞ and
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F���ðhÞ. We shall make such a choice for the structure h, and we shall then keep the
same choice as t varies. There is a natural choice for the singular arcs with respect
to F���ðhÞ once singular arcs with respect to F�ðhÞ have been chosen: to a singular
arc in one pair of pants with respect to F�ðhÞ, we associate the singular arc with
respect to F���ðhÞ of the same pair of pants that joins the same curves in the

Figure 20. Both pictures represent, in the metric universal cover of h, a neighborhood of a lift eAA of A.
The left-hand side picture shows a part of the preimage of � (in dashed lines) and the right-hand
side picture shows the same neighborhood but with a part of the preimage of ��� (also in dashed lines).
The (lifts of the) seams ~hhi; ~hh

0
i; i ¼ 1; 2; and the singular arcs ~kki; ~kk

0
i; i ¼ 1; 2; chosen to evaluate the

various shift and twist parameters are indicated, as well as the ordinates of their points of intersection
with eAA (denoted by ui; vi; i ¼ 1; 2; and u0i; v

0
i; i ¼ 1; 2;). By symmetry, one has U1 ¼ �U2 and,

similarly, �UU1 ¼ ��UU2. Furthermore, by symmetry again, one has U1 ¼ �UU2

Figure 21. The left-hand side picture represents a neighborhood of a lift of A in the metric universal
cover of ht and the right-hand side picture represents a neighborhood of a lift of A in the metric
universal cover of �hht. The notations of Fig. 20 carry out readily to these pictures. One observes that

there is a symmetry between the two pictures, namely, a reflection through eAA
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collection fA;B;Cg and whose ends on each curve are exchanged by the involu-
tion �0 of h.

Note that this involution sends Fhð�Þ to Fhð���Þ.
By symmetry, we have

(1) �AðhÞ ¼ �2U ¼ L
2
� log

�
1 þ 1

4 sinh 2ðL=4Þ
�

(see Figure 20);

(2) for every t5 0, 
AðhtÞ ¼ �
Að�hhtÞ (see Figure 21).

Using the fact that the shift twists always have opposite signs, it suffices, in order
to prove the proposition, to see that for each t> 0, we have 
AðhtÞ 6¼ 0. Using the
notation of Figure 21, we have �AðhtÞ ¼ 
AðhtÞ � 2UðtÞ, where UðtÞ denotes the
distance between the foot of the chosen seam and the foot of the chosen singular arc.
From the definition of a stretch line, we have �AðhtÞ ¼ et�AðhÞ. Therefore,


AðhtÞ ¼ et�AðhÞ þ 2UðtÞ;
where 2UðtÞ ¼ � etL

2
þ log

�
1 þ 1

4 sinh 2ðetL=4Þ
�

and Uð0Þ ¼ U ¼ ��AðhÞ
2

.

In particular, for all i ¼ A;B;C and for all t5 0, we have


iðhtÞ ¼ log

�
1 þ 1

4 sinh ðetL=4Þ

ð1 þ 1
4 sinh ðL=4ÞÞ

et

�
:

We can check that this function is strictly decreasing, positive for t< 0 and
negative for t> 0 (see the graph in Figure 22).

Indeed, we have

8t< 0; 1 þ 1

4 sinh ðetL=4Þ > 1 þ 1

4 sinh ðL=4Þ >
�

1 þ 1

4 sinh ðL=4Þ

�et

;

8t> 0; 1 þ 1

4 sinh ðetL=4Þ < 1 þ 1

4 sinh ðL=4Þ <
�

1 þ 1

4 sinh ðL=4Þ

�et

;

which determines the sign of the function.

Figure 22. The graph of the function 
iðhtÞ used in the proof of Proposition 10.1
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For the strict decreaseness, d
dt

iðhtÞ has the same sign as

d

dt

�
1 þ 1

4 sinh ðetL=4Þ

ð1 þ 1
4 sinh ðL=4ÞÞ

et

�

which has the sign of�
d

dt

�
1 þ 1

4 sinh ðetL=4Þ

���
1 þ 1

4 sinh ðL=4Þ

�et�

�
�

1 þ 1

4 sinh ðetL=4Þ

��
d

dt

�
1 þ 1

4 sinh ðL=4Þ

�et��
:

We have

d

dt

�
1 þ 1

4 sinh ðetL=4Þ

�
¼ � Let cosh ðetL=4Þ

16 sinh 2ðetL=4Þ < 0

and �
d

dt

�
1 þ 1

4 sinh ðL=4Þ

�et�
> 0:

This concludes the proof of the proposition. &

Remarks 10.2. (1) The Fenchel-Nielsen twist parameters are not linear in terms
of the shift parameters. More precisely, we have lA ¼ �� þ �� , lB ¼ �� þ �� and
lC ¼ �� þ ��,


A ¼ �A � ð�� þ ��Þ þ 2 log

�
1 þ 1

4 sinh 2ðð�� þ ��Þ=4Þ

�
:

(2) The formula for 
iðhtÞ given in the proof of Proposition 10.1 indicates the
following:

� limt!þ1 
iðhtÞ ¼ �1 and
� 
iðhtÞ=liðhtÞ is bounded (and is convergent at infinity).
� limt!�1 
iðhtÞ ¼ þ1 and
� 
iðhtÞ=liðhtÞ � �te�t explodes to 1 as t tends to �1.
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