Skip to main content
Log in

Ultra-sensitive fluorescent biosensor for multiple bacteria detection based on CDs/QDs@ZIF-8 and microfluidic fluidized bed

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An ultra-sensitive fluorescent biosensor based on CDs/QDs@ZIF-8 and microfluidic fluidized bed was developed for rapid and ultra-sensitive detection of multiple target bacteria. The zeolitic imidazolate frameworks (ZIF-8) act as the carrier to encapsulate three kinds of fluorescence signal molecules from the CDs/QDs@ZIF-8 signal amplification system. Besides, three kinds of target pathogenic bacteria were automatically, continuously, and circularly captured by the magnetic nanoparticles (MNPs) in the microfluidic fluidized bed. The neutral Na2EDTA solution was the first time reported to not only dissolve the ZIF-8 frameworks from the MNPs-bacteria-CDs/QDs@ZIF-8 sandwich complexes, but also release the CDs/QDs from sandwich complexes with no loss of fluorescence signal. Due to the advantages of signal amplification and automated sample pretreatment, the proposed fluorescent biosensor can simultaneously detect Escherichia coli O157:H7, Salmonella paratyphi A, and Salmonella paratyphi B as low as 101 CFU/mL within 1.5 h, respectively. The mean recovery in spiked milk samples can reach 99.18%, verifying the applicability of this biosensor in detecting multiple bacteria in real samples.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X, Guan L, Wei Y, Li H, Wu X, Xu J, Tu S, Zhang Y, Chen H, Cao B (2020) Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet 395(10229):1054–1062

    Article  CAS  Google Scholar 

  2. Wilkins W, Waldner C, Rajic A, McFall M, Muckle A, Mainar-Jaime RC (2010) Comparison of bacterial culture and real-time PCR for the detection of Salmonella in grow-finish pigs in Western Canada using a Bayesian approach. Zoonoses Public Health 57(Suppl 1):115–120

    Article  PubMed  Google Scholar 

  3. Wang Z, Zuo J, Gong J, Hu J, Jiang W, Mi R, Huang Y, Chen Z, Phouthapane V, Qi K, Wang C, Han X (2019) Development of a multiplex PCR assay for the simultaneous and rapid detection of six pathogenic bacteria in poultry. AMB Express 9(1):185

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zhang Y, Zhu L, Zhang Y, He P, Wang Q (2018) Simultaneous detection of three foodborne pathogenic bacteria in food samples by microchip capillary electrophoresis in combination with polymerase chain reaction. J Chromatogr A 1555:100–105

    Article  CAS  PubMed  Google Scholar 

  5. Hu J, Huang R, Wang Y, Wei X, Wang Z, Geng Y, Jing J, Gao H, Sun X, Dong C, Jiang C (2018) Development of duplex PCR-ELISA for simultaneous detection of Salmonella spp. and Escherichia coli O157: H7 in food. J Microbiol Methods 154:127–133

    Article  CAS  PubMed  Google Scholar 

  6. Latif U, Can S, Sussitz H, Dickert F (2020) Molecular imprinted based quartz crystal microbalance sensors for bacteria and spores. Chemosensors 8(3):64

    Article  CAS  Google Scholar 

  7. Matta LL, Harrison J, Deol GS, Alocilja EC (2018) Carbohydrate-functionalized nanobiosensor for rapid extraction of pathogenic bacteria directly from complex liquids with quick detection using cyclic voltammetry. IEEE Trans Nanotechnol 17(5):1006–1013

    Article  CAS  Google Scholar 

  8. Huang F, Xue L, Qi W, Cai G, Liu Y, Lin J (2021) An ultrasensitive impedance biosensor for Salmonella detection based on rotating high gradient magnetic separation and cascade reaction signal amplification. Biosens Bioelectron 176:112921

    Article  CAS  PubMed  Google Scholar 

  9. Yu H, Guo W, Lu X, Xu H, Yang Q, Tan J, Zhang W (2021) Reduced graphene oxide nanocomposite based electrochemical biosensors for monitoring foodborne pathogenic bacteria: a review. Food Control 127(1):108117

  10. Zheng L, Cai G, Wang S, Liao M, Li Y, Lin J (2019) A microfluidic colorimetric biosensor for rapid detection of Escherichia coli O157:H7 using gold nanoparticle aggregation and smart phone imaging. Biosens Bioelectron 124–125:143–149

    Article  PubMed  Google Scholar 

  11. Zhou J, Duan M, Huang D, Shao H, Zhou Y, Fan Y (2022) Label-free visible colorimetric biosensor for detection of multiple pathogenic bacteria based on engineered polydiacetylene liposomes. J Colloid Interface Sci 606(Pt 2):1684–1694

    Article  CAS  PubMed  Google Scholar 

  12. Xu L, Lu Z, Cao L, Pang H, Zhang Q, Fu Y, Xiong Y, Li Y, Wang X, Wang J, Ying Y, Li Y (2017) In-field detection of multiple pathogenic bacteria in food products using a portable fluorescent biosensing system. Food Control 75:21–28

    Article  CAS  Google Scholar 

  13. Zhai Y, Meng X, Li L, Liu Y, Xu K, Zhao C, Wang J, Song X, Li J, Jin M (2021) Rapid detection of Vibrio parahaemolyticus using magnetic nanobead-based immunoseparation and quantum dot-based immunofluorescence. RSC Adv 11(61):38638–38647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dashtian K, Binabaji F, Zare-Dorabei R (2023) Enhancing on-skin analysis: a microfluidic device and smartphone imaging module for real-time quantitative detection of multianalytes in sweat. Analy Chem 95(44):16315–16326

    Article  CAS  Google Scholar 

  15. Cui F, Ye Y, Ping J, Sun X (2020) Carbon dots: current advances in pathogenic bacteria monitoring and prospect applications. Biosens Bioelectron 156:112085

    Article  CAS  PubMed  Google Scholar 

  16. Huang Z, Li Y, Yao N, Duan Y (2021) Pulling G-quadruplex out of dilemma for better colorimetric performance. Sensor Actuator-B Chem 338:129830

  17. Duan N, Wu S, Dai S, Miao T, Chen J, Wang Z (2014) Simultaneous detection of pathogenic bacteria using an aptamer based biosensor and dual fluorescence resonance energy transfer from quantum dots to carbon nanoparticles. Microchim Acta 182(5–6):917–923

    Google Scholar 

  18. Xu L, Callaway ZT, Wang R, Wang H, Slavik MF, Wang A, Li Y (2015) A fluorescent aptasensor coupled with nanobead-based immunomagnetic separation for simultaneous detection of four foodborne pathogenic bacteria. T ASABE 58(3):891–906

    CAS  Google Scholar 

  19. Xue L, Huang F, Hao L, Cai G, Zheng L, Li Y, Lin J (2020) A sensitive immunoassay for simultaneous detection of foodborne pathogens using MnO2 nanoflowers-assisted loading and release of quantum dots. Food Chem 322:126719

    Article  CAS  PubMed  Google Scholar 

  20. Jalili R, Khataee A, Rashidi M-R, Luque R (2019) Dual-colored carbon dot encapsulated metal-organic framework for ratiometric detection of glutathione. Sens0r Actuator-B Chem 297:126775

  21. Yang W, Yang Y, Li H, Lin D, Yang W, Guo D, Pan Q (2020) Integration of Cd:ZnS QDs into ZIF-8 for enhanced selectivity toward Cu2+ detection. Inorganic Chem Frontiers 7(19):3718–3726

    Article  CAS  Google Scholar 

  22. Son YR, Kwak M, Lee S, Kim HS (2020) Strategy for encapsulation of CdS quantum dots into zeolitic imidazole frameworks for photocatalytic activity. Nanomaterials (Basel) 10(12):2498

  23. Norouzi S, Dashtian K, Amourizi F, Zare-Dorabei R (2023) Red-emissive carbon nanostructure-anchored molecularly imprinted Er-BTC MOF: a biosensor for visual anthrax monitoring. Analyst 148(14):3379–3391

    Article  CAS  PubMed  Google Scholar 

  24. Sun C, Chang L, Hou K, Liu S, Tang Z (2019) Encapsulation of live cells by metal-organic frameworks for viability protection. Sci China Mater 62(6):885–891

    Article  CAS  Google Scholar 

  25. Rezaei H, Motovali-Bashi M, Radfar S (2019) An enzyme-free electrochemical biosensor for simultaneous detection of two hemophilia A biomarkers: combining target recycling with quantum dots-encapsulated metal-organic frameworks for signal amplification. Anal Chim Acta 1092:66–74

    Article  CAS  PubMed  Google Scholar 

  26. Zhong M, Yang L, Yang H, Cheng C, Deng W, Tan Y, Xie Q, Yao S (2019) An electrochemical immunobiosensor for ultrasensitive detection of Escherichia coli O157:H7 using CdS quantum dots-encapsulated metal-organic frameworks as signal-amplifying tags. Biosens Bioelectron 126:493–500

    Article  CAS  PubMed  Google Scholar 

  27. Wang L, Huo X, Zheng L, Cai G, Wang Y, Liu N, Wang M, Lin J (2020) An ultrasensitive biosensor for colorimetric detection of Salmonella in large-volume sample using magnetic grid separation and platinum loaded zeolitic imidazolate Framework-8 nanocatalysts. Biosens Bioelectron 150:111862

    Article  CAS  PubMed  Google Scholar 

  28. Hou Y, Tang W, Qi W, Guo X, Lin J (2020) An ultrasensitive biosensor for fast detection of Salmonella using 3D magnetic grid separation and urease catalysis. Biosens Bioelectron 157:112160

    Article  CAS  PubMed  Google Scholar 

  29. Mohamadi RM, Svobodova Z, Bilkova Z, Otto M, Taverna M, Descroix S, Viovy J-L (2015) An integrated microfluidic chip for immunocapture, preconcentration and separation of β-amyloid peptides. Biomicrofluidics 9(5):054117

  30. Armbrecht L, Dincer C, Kling A, Horak J, Kieninger J, Urban G (2015) Self-assembled magnetic bead chains for sensitivity enhancement of microfluidic electrochemical biosensor platforms. Lab Chip 15(22):4314–4321

    Article  CAS  PubMed  Google Scholar 

  31. Lee W, Kwon D, Chung B, Jung GY, Au A, Folch A, Jeon S (2014) Ultra-rapid detection of pathogenic bacteria using a 3D immunomagnetic flow assay. Anal Chem 86(13):6683–6688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang Y, Li Y, Wang R, Wang M, Lin J (2017) Three-dimensional printed magnetophoretic system for the continuous flow separation of avian influenza H5N1 viruses. J Sep Sci 40(7):1540–1547

    Article  PubMed  Google Scholar 

  33. Pereiro I, Bendali A, Tabnaoui S, Alexandre L, Srbova J, Bilkova Z, Deegan S, Joshi L, Viovy JL, Malaquin L, Dupuy B, Descroix S (2017) A new microfluidic approach for the one-step capture, amplification and label-free quantification of bacteria from raw samples. Chem Sci 8(2):1329–1336

    Article  CAS  PubMed  Google Scholar 

  34. Srbova J, Krulisova P, Holubova L, Pereiro I, Bendali A, Hamiot A, Podzemna V, Macak J, Dupuy B, Descroix S, Viovy JL, Bilkova Z (2018) Advanced immunocapture of milk-borne Salmonella by microfluidic magnetically stabilized fluidized bed. Electrophoresis 39(3):526–533

    Article  CAS  PubMed  Google Scholar 

  35. Hernandez-Neuta I, Pereiro I, Ahlford A, Ferraro D, Zhang Q, Viovy JL, Descroix S, Nilsson M (2018) Microfluidic magnetic fluidized bed for DNA analysis in continuous flow mode. Biosens Bioelectron 102:531–539

    Article  CAS  PubMed  Google Scholar 

  36. Alexandre L, Pereiro I, Bendali A, Tabnaoui S, Srbova J, Bilkova Z, Deegan S, Joshi L, Viovy JL, Malaquin L, Dupuy B, Descroix S (2018) A microfluidic fluidized bed to capture, amplify and detect bacteria from raw samples. Methods Cell Biol 147:59–75

    Article  PubMed  Google Scholar 

  37. Jin S, Son HJ, Farha OK, Wiederrecht GP, Hupp JT (2013) Energy transfer from quantum dots to metal-organic frameworks for enhanced light harvesting. J Am Chem Soc 135(3):955–958

    Article  CAS  PubMed  Google Scholar 

  38. Feng J, Liang X, Ma Z (2021) New immunoprobe: dual-labeling ZIF-8 embellished with multifunctional bovine serum albumin lamella for electrochemical immunoassay of tumor marker. Biosens Bioelectron 175:112853

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Key Research and Development Program of China (2019YFC1606600 and 2019YFC1606602), the National Natural Science Foundation of China Youth Science Fund Project (No. 32102076), and the Foundation of Innovation Academy for Green Manufacture Institute, Chinese Academy of Sciences, under Grand No. IAGM2020C31.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14455 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, F., Sun, C., Dong, J. et al. Ultra-sensitive fluorescent biosensor for multiple bacteria detection based on CDs/QDs@ZIF-8 and microfluidic fluidized bed. Microchim Acta 191, 237 (2024). https://doi.org/10.1007/s00604-024-06303-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06303-6

Keywords

Navigation