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Abstract
 The modification of graphite screen-printed electrodes (SPEs) is reported using an eco-friendly and extremely fast method 
based on the direct cobalt pin electrode-to-SPE spark discharge at ambient conditions. This approach does not utilize any 
liquids or chemical templates, does not produce any waste, and allows the in-situ generation of CoxOy nanoparticles onto the 
electrode surface and the development of efficient electrocatalytic sensing surfaces for the determination of H2O2. Co-spark 
SPEs were characterized using scanning electron microscopy, energy-dispersive X-ray spectroscopy and x-ray photoelectron 
spectroscopy (XPS), revealing the formation of surface confined CoxOy nanoparticles and the diverse oxidation states of 
cobalt species. Co-spark SPEs were also characterized with cyclic voltammetry and electrochemical impedance spectros-
copy. Redox transitions of the surface confined electrocatalysts are demonstrated by electrochemical polarization studies, 
showing the formation of different oxides (CoxOy), varying the XPS results. Amperometric measurements at 0.3 V vs. Ag/
AgCl revealed a linear relationship between the current response and the concentration of H2O2 over the range 1 − 102 μM, 
achieving a limit of detection (3σ/m) of 0.6 μM. The interference effect of various electroactive species was effectively 
addressed by employing dual measurements in the absence and presence of the enzyme catalase. The analytical utility of 
the method was evaluated in antioxidant rich real-world samples, such as energy drinks, demonstrating sufficient recovery.

Keywords  Spark generated nanoparticles · Green method · Cobalt nanoparticles · Hydrogen peroxide electrode ·  
Amperometry · Food analysis

Introduction

Energy drinks is a group of carbonated beverages that has 
grown significantly popular over the past two decades. Their 
basic ingredients are caffeine (up to 0.04% w/v), carbon 
dioxide and other components such as sugars, salts, taurine, 
amino acids and B-complex water-soluble vitamins [1]. 
They also contain various reducing species to suppress the 
oxidation process caused by oxygen, oxygen derived species 

(ROS) and free radicals [2]. While the adverse effects of 
ROS and free radicals are usually regulated by multiple 
protective responses in vivo, the chemistry of mixtures of 
redox-active ingredients and oxygen is relatively unregulated 
in formulated food products, particularly aqueous beverages, 
such as energy drinks [2, 3]. In the presence of oxygen and 
any oxidisable compounds acting as substrates, hydrogen 
peroxide (H2O2) can be generated by progressive reduction 
of molecular oxygen, and consequently, there is the pos-
sibility of its ingestion, in the case of beverages and foods. 
Over the past years there have been reports of the produc-
tion of H2O2 in various foods and drinks. The production of 
H2O2 has been verified in beer brewing, originating from 
L-cysteine and thiol-rich proteins respectively [4]. Another 
instance is the production of H2O2 in polyphenolic beverages 
like cocoa [5], green [6–9] and black tea [7, 9], red wine 
[8], and similar phenolic-rich drinks under physiological 
conditions.

 *	 Alexandros Ch. Lazanas 
	 alazanas@outlook.com.gr

 *	 Mamas I. Prodromidis 
	 mprodrom@uoi.gr

1	 Department of Chemistry, University of Ioannina, 
451 10 Ioannina, Greece

2	 Department of Materials Science & Engineering, University 
of Ioannina, 451 10 Ioannina, Greece

http://crossmark.crossref.org/dialog/?doi=10.1007/s00604-024-06233-3&domain=pdf
http://orcid.org/0000-0002-1309-403X


	 Microchim Acta (2024) 191:150150  Page 2 of 12

The non-enzymatic electrochemical determination of 
H2O2 can be achieved through its oxidation at (noble) 
metal electrodes at high overpotentials (> + 0.65 V versus 
common reference electrodes) [10]. However, this method 
may lead to a loss of selectivity in the presence of other 
reducing species and fouling phenomena, gradually reduc-
ing the response of the electrodes [10]. Alternatively, H2O2 
can be reduced under sufficiently cathodic potentials, typi-
cally in deoxygenated solutions to mitigate interference 
from the oxygen reduction reaction [9].

To address these limitations, a significant amount of 
research has been dedicated to the modification of elec-
trode surfaces with various charge-transfer mediators 
[11–13], electrocatalysts [14–16], conducting polymers 
[17, 18], biomolecules [19–21], noble metal (such as 
platinum, and gold) nanoparticles (NPs) [9, 22–24] etc. 
The current emphasis is on the advancement of chemical 
sensors employing non-noble (like copper, nickel, iron, 
and cobalt) metal NPs, particularly through eco-friendly 
methods that eliminate the need for organic solvents and 
costly reagents. This approach aligns with the principles 
of green chemistry and is geared towards reducing sensor 
costs [25–30].

Among the non-precious metal based electrocatalysts 
for H2O2, spinel type (A2+B2

3+X4
2−, where A2+and B2

3+ 
are metal cations and X4

2− are usually chalcogens such as 
oxygen [31–34] or sulfur [35, 36]), nano structures of fer-
romagnetic elements (Fe, Co and Ni), which present redox 
pairs that can effectively mediate the electro oxidation or 
reduction of H2O2, have been also proposed [31, 33–36].

Our study details the in-situ modification of graphite 
screen-printed electrodes (SPEs) using cobalt oxide nano-
particles (CoxOy NPs) through an eco-friendly spark-dis-
charge process. This process occurs between a cobalt pin 
electrode and the graphite SPE, leading to instant surface 
modification and advanced electrocatalytic properties 
towards H2O2. The direct modification of the electrode 
surface with spark-generated nanoparticles represents a 
robust approach in line with environmental sustainabil-
ity considerations and the principles of green chemistry 
in modern electroanalysis [30]. This method has been 
acknowledged as highly effective for developing various 
sensing surfaces (such as Mo NPs [37], Au NPs [38, 39], 
Ag NPs [40], carbon NPs and nanosheets [41–43]) with 
a simple, liquid-free, and cost-effective procedure. The 
effective modification of graphite SPEs with CoxOy NPs 
is substantiated through scanning electron microscopy 
(SEM), x-ray photoelectron spectroscopy (XPS), cyclic 
voltammetry, and electrochemical impedance spectroscopy 
(EIS). Furthermore, the analytical efficacy of Co-spark 
SPEs for the determination of H2O2 in energy drinks is 
demonstrated.

Experimental

Materials

A cobalt piece (Sigma-Aldrich, 99.5% trace metal basis) 
was fine cut with a metal saw to narrow strips to be used 
as cathode material (electrode pin) in the sparking pro-
cess. Before use, the strips were thoroughly rinsed and 
sonicated with acetone. Sodium hydroxide, sodium dihy-
drogen phosphate, potassium chloride, ascorbic acid, 
caffeine and D-glucose were purchased from Merck. 
Hexaammineruthenium(III) chloride (RuHex) was pur-
chased from Aldrich. Catalase from bovine liver (EC 
1.11.1.6, ≥ 200 KU mL−1) was a Fluka product. A stock 
solution of ca. 0.1 M H2O2 was prepared by appropriate 
dilution of the stock product (30% H2O2, Supelco) in dou-
ble distilled water (DDW), stored at 4 °C, and was weekly 
standardized with the permanganate method. Working 
solutions were daily prepared by appropriate dilutions of 
the stock solution in DDW.

Apparatus

Electrochemical measurements were conducted with an 
Autolab PGSTAT12/FRAII electrochemical analyser 
(Metrohm Autolab) in a conventional 3 − electrode cell. 
Plain or cobalt sparked SPEs (Co-spark SPEs) were used as 
the working electrode, while a Ag/AgCl 3 M KCl electrode 
(IJ Cambria) and a platinum wire served as the reference and 
the counter electrode, respectively. All the potential values 
quoted are referred to the potential of the reference electrode.

Cyclic voltammograms (CVs) were recorded in 0.1, 0.5 
or 1 M NaOH at a scan rate of 0.05 V s−1 (unless stated oth-
erwise). EIS spectra were recorded in 0.5 M NaOH over the 
frequency range from 100 kHz to 0.1 Hz using a sinusoidal 
excitation signal of 10 mV (rms) amplitude superimposed 
on a DC potential of 0.120 V or 0.500 V. Amperometry 
measurements were conducted in stirred (300 r.p.m) solu-
tions of 0.5 M NaOH at 0.3 V. XPS measurements were 
conducted under ultrahigh vacuum with a base pressure of 
2 × 10−9 mbar using a SPECS GmbH instrument equipped 
with a monochromatic MgKa source (hv = 1253.6 eV) and a 
Phoibos-100 hemispherical analyzer. The energy resolution 
was set to 1.18 eV and the photoelectron take-off angle was 
45° with respect to the surface normal. Recorded spectra 
were set with energy step set of 0.05 eV and dwell time 
of 1 s. All binding energies were referenced with regard to 
the C1s core level centered at 284.6 eV. Spectral analysis 
included a Shirley background subtraction and peak decon-
volution involved mixed Gaussian–Lorentzian functions 
was conducted with a least squares curve-fitting program 
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(WinSpec, University of Namur, Belgium). Field-emission 
scanning electron microscopy (FE-SEM) images were 
taken with a Phenom Pharos G2 desktop FEG-SEM (Ther-
moFisher Scientific) at 11 kV on chromium coated samples 
(Quorum Q150T ES plus, sputter coater).

Fabrication and modification of electrode surface

The in-situ modification of the graphite SPE surface with 
spark-generated CoxOy NPs was implemented using a 
16 × "linear" sparking mode. This involved connecting the 
cobalt electrode pin as the cathode ( −) and the graphite SPE 
as the anode ( +) to a high-voltage power supply. The two 
electrodes were brought into proximity (approximately 1 mm) 
through a G-code-controlled 2D positioning device until spark 
discharge occurred at 1.2 kV DC under ambient conditions. 
An external capacitor (2.8 nF) was connected in parallel to the 
power supply output terminals. Details on the experimental 
setup for electrode modification with electrical discharge and 
the fabrication of the graphite SPE can be found in Refs. [38, 
41, 42] and Ref. [40], respectively. The electroactive area (A) 
of the plain and Co-spark SPE was calculated using double 
potential step chronocoulometry in 1 mM RuHex in 0.1 M 
KCl according to the procedure given in Ref. [44].

Analytical procedure

Energy drink samples were purchased at the local market. The 
samples were degassed in an ultrasonication bath for 10 min, 

and then were used to prepare the following solutions: (A) 
1.0 mL sample, 0.5 mL 1 M phosphate buffered saline (PBS) 
pH 6, and 0.5 mL 2 M NaOH; (B) 1.0 mL spiked sample (950 
μL sample plus 50 μL 50 mM H2O2), 0.5 mL 1 M PBS pH 6, 
and 0.5 mL 2 M NaOH; (C) 1.0 mL sample, 0.5 mL enzyme 
solution (480 μL 1 M PBS pH 6 plus 20 μL catalase), and, 
after the hand mixing of the solution for 10 min, 0.5 mL 2 M 
NaOH. In sample (C), PBS pH 6, is used to maximize the 
enzymatic activity of catalase [45], while in samples (A) and 
(B), which do not contain catalase, PBS was added to ensure 
that the same assay protocol was applied for all the measure-
ments. Catalase was employed to eliminate H2O2, and as a 
result, the signal of solution (C) is ascribed to the electroac-
tive species coexisting in the sample. Consequently, it was 
subtracted from the signals of solutions (A) and (B).

Amperometric measurements were conducted under stir-
ring in an electrochemical cell containing a 2.0 mL aliquot 
as described for solutions A, B, or C, and 8.0 mL 0.5 M 
NaOH. The concentration of H2O2 in both the plain and 
spiked samples was determined by applying the standard 
addition method.

Results and discussion

Morphological studies

SEM images of plain and Co-spark SPE are shown in 
Fig. 1A and B, respectively. It is apparent that while the 

Fig.1   SEM images of (A) plain and (B) Co-spark SPE. EDS mapping of (C) carbon, (D) cobalt and (E) oxygen atoms on the surface of Co-
spark SPE
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plain SPE has a compact layered structure of graphite, the 
Co-spark SPE shows exfoliated, micrometre-sized graphite 
sheets enriched with spherical cobalt nanoparticles. This 
double impact of the spark process benefits the sparked elec-
trode in terms of sensitivity due to the electrocatalytic effect 
steaming from the cobalt-based NPs and the augmentation 
of the electroactive surface area of the SPE due to exfoliated 
nanosheets produced. Based on chronocoulometric meas-
urements in 1 mM RuHex in 0.1 M KCl, the electroactive 
area of plain and Co-sparked SPEs [44], was found to be 
0.1126 cm2 and 0.1883 cm2, respectively. From the EDS 
mapping shown in Figs. 1C-E, the spark generated nano-
particles exhibit both cobalt (depicted with red colour in 
Fig. 1D) and oxygen (depicted with green colour in Fig. 1E) 
sites which demonstrate the formation of CoxOy NPs on the 
electrode surface. The average particle diameter of CoxOy 
NPs was found to be 163 ± 73 nm.

XPS studies

XPS studies were conducted in the surface of a Co-spark SPE 
(Figs. 2A, C) and a Co-spark SPE after its treatment with five 
cyclic voltammetry scans between 0.0 and 0.7 V in 0.5 M 
NaOH (termed Co-spark SPE-NaOH) (Figs. 2B, D). The Co 
2p spectrum involves two main peaks corresponding to 2p1∕2 
and 2p3∕2 spin orbitals. The binding energies of 2p1∕2 and 
2p3∕2 are separated by 15.3 eV at Co-spark SPE and 15.8 eV 

at Co-spark SPE-NaOH, indicating a difference of 0.5 eV for 
the two electrodes. At the Co-spark SPE, the 2p3∕2 orbit is 
deconvoluted into two peaks at 781.2 eV and 782.9 eV corre-
sponding to the presence of Co(III) and Co(II) species, respec-
tively. The existence of the intense shake-up satellite located at 
787.0 eV is attributed to the high-spin nature of Co(II) species 
[46]. In accordance with previous works [46–48], the observed 
peaks and positions indicate the formation of Co3O4 spinel 
structure.

In the case of Co-spark SPE-NaOH, shown in Fig. 2B, the 
two fitted peaks of the 2p3∕2 orbit are shifted to higher binding 
energies (781.6 and 783.1 eV). The shift of the binding ener-
gies for the Co-spark SPE-NaOH in combination with the dif-
ference of the energy separation of about 0.5 eV between the 
2p1∕2 and 2p3∕2 orbitals at the two sparked electrodes as well as 
the lack of the shake-up features in the spectrum of Co-spark 
SPE-NaOH lead to the conclusion that the high-spin phase of 
Co(II) is present only at the Co-spark SPE. Conversely, we can 
deduce that both the peaks at 781.6 and 783.1 eV are attrib-
uted to low-spin Co(III) species [47]. However, it is evident 
that the Co(III) peak at 781.6 eV in 2p3∕2 orbit at Co-spark 
SPE-NaOH can be attributed to the same Co(III) species exist-
ing also in Co-spark SPE, while the peak at 783.1 eV can be 
attributed to CoOOH, that is, the product of the OH− adsorp-
tion and simultaneous oxidation of CoO (782.9 eV in 2p3∕2 
orbit at Co-spark SPE) according to the chemical equation, 
CoO + OH−

⇌ CoOOH + e−.

Fig. 2   The Co 2p spectrum 
of (A) Co-spark SPE and (B) 
Co-spark SPE after five cyclic 
voltammetry scans from 0 to 
0.7 V in 0.5 M NaOH. The C 1s 
spectrum of (C) Co-spark SPE 
and (D) Co-spark SPE after five 
cyclic voltammetry scans from 
0 to 0.7 V in 0.5 M NaOH
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The C1s photoelectron peak is deconvoluted into four 
peaks at Co-spark SPE and three peaks at Co-spark SPE-
NaOH, respectively as shown in Fig. 2C, D. The basic car-
bon frame consists of C − C/C = C bonds, while at lower 
binding energies, at both samples, a small peak which is 
attributed to the C − Co bond can also be seen. The forma-
tion of the C − Co bond can be explained considering the 
extremely high temperatures, up to 20000 K [49], grown 
locally due to the sparking process (XPS spots have been 
selected on the sparked areas).

Electrochemical characterization

Figure 3A shows the cyclic voltammetric behavior of Co-spark 
SPE within the potential window from 0 to 0.7 V in 0.5 M 
NaOH. The recorded CV exhibits two pairs of peaks, which 
both correspond to quasi-reversible redox transitions. The first 
redox transition is manifested by a pair of well-defined peaks 
with a formal potential of ca. 0.12 V, which can be attributed 
to the following equation:

while the second redox transition is manifested by a pair 
of broad peaks centered at ca. 0.5 V. According to previ-
ous works, this pair of peaks can either be attributed to the 
complete oxidation of Co(III) to Co(IV) according to Eq. 2 
[50, 51]:

or to the adsorption of hydroxyl species and the anodic dis-
solution of the anodic layer [50, 51]. In our case, the fact that 
no Co(IV)O2 species were identified in the XPS characteri-
zation of the Co-spark electrode after the CV treatment in 
NaOH, urges us to lean towards the hydroxyl species adsorp-
tion explanation.

The effect of scan rate on the cyclic voltammetric behavior 
of Co-spark SPE was examined with CV measurements at dif-
ferent scan rates from 10 to 500 mV s−1 (Fig. S1A). As can be 
seen in Fig. S1B the peak current values for the first pair of 

(1)Co3
(II,III)O4 + OH− + H2O ⇌ 3Co(III)OOH + e−

(2)Co(III)OOH ⇌ Co(IV)O2 + H+ + e−

Fig. 3   A Cyclic voltammogram 
of Co-spark SPE in 0.5 M 
NaOH. Scan rate, 50 mV s−1. B 
Nyquist plots of Co-spark SPE 
in 0.5 M NaOH at 0.12 V and C 
0.5 V. Inset graphs illustrate the 
respective equivalent electrical 
circuits depicted at the same 
coloration
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peaks (Ipa1, Ipc1) have a linear relationship to the square root 
of the scan rate, indicating a diffusion-limited electrochemi-
cal process [52]. Considering that Co3

(II,III)O4 molecules are 
confined onto the electrode, the formation of three molecules 
Co(III)OOH from one Co3

(II,III)O4 molecule through a diffusion-
limited electrochemical process (Eq. 1) can be explained as 
follows: Co3

(II,III)O4, is a mixed oxide incorporating the Co(II)O 
and Co2

(III)O3 forms. Co(II)O is oxidized to Co(III)OOH through 
an 1e−/OH− mechanism, while at the same time, through the 
transfer of a H2O molecule, one molecule of Co2

(III)O3 forms 
two Co(III)OOH molecules [53]. Thus, the CoOOH forma-
tion is dependent on the mass transfer (diffusion) of hydroxyl 

ions and water molecules from the solution to the electrode. 
Acknowledging the challenge of accurately measuring the cur-
rent at the second pair of (broad) peaks (Fig. S1A), linear plots 
between Ipa2 and Ipc2 with the square root of the scan rate 
were also received (Fig. S1C), suggesting a diffusion-limited 
electrochemical process [52]. However, based on the XPS data 
indicating that Co(IV)O2 is not formed, the mechanism of this 
redox transition may be more complex than described by Eq. 2.

In response to the cyclic voltammetric behavior of the Co-
spark SPE in alkaline conditions, EIS studies were also con-
ducted by applying either a DC potential of 0.12 V (the formal 
potential of the Co3O4/CoOOH redox couple) or 0.5 V (the for-
mal potential of the second redox transition). When the imped-
ance measurements were conducted at 0.12 V and under alka-
line conditions, the impedance spectrum (Fig. 3B) exhibited a 
distorted semicircle over the high frequency range followed by 
a straight line over the low frequency range. Based on previous 
studies by Lyons and Brandon [54] regarding the impedimet-
ric behavior of oxide-covered Ni, Co, and Fe electrodes, the 
obtained impedimetric data were effectively modeled using the 
equivalent electrical circuit shown as an inset graph in Fig. 3B. 
The circuit is represented as R1(QfRf) (Qdl[Rct(CaW)]), where 
R1 represents the electrolyte resistance, (QfRf) represent the 
dielectric properties of the Co3O4 film [50], Qdl represents 
the capacitance of the double-layer, Rct represents the charge 
transfer resistance of the redox transition (Eq. 1), and (CaZW) 
[55] represents the coupled hydroxyl ions diffusion and adsorp-
tion, modeling the relaxation of the charge associated with the 
adsorbed intermediate of the CoOOH phase. As evident from 
the slope of the linear part of the spectrum over the low-fre-
quency range (slope ≠ 1), the acquired impedance cannot be 
solely attributed to the semi-infinite diffusion of hydroxyl ani-
ons modeled by the Warburg impedance (ZW). Instead, it is 
indicative of a coupled diffusion/adsorption process modeled 
by ZW and Ca components connected in parallel [55].

On the other hand, when the impedance measurements 
were conducted at 0.5 V and under alkaline conditions, the 
impedance spectrum illustrated in Fig. 3C can be sufficiently 
modeled with a quite similar equivalent electrical circuit 
(Fig. 3C, inset graph). In this case, the (QfRf) time constant is 
not included, which can be interpreted as the complete transi-
tion of Co3O4 to other CoxOy species at this potential. Con-
sequently, the final equivalent circuit is R1(Qdl[Rct(CaZW)]), 
where all the symbols have their aforementioned meaning.

Optimization studies

The electrocatalytic activity of the “linear’’ mode Co-spark 
SPEs towards the electro oxidation of H2O2 was studied by 
comparing the cyclic voltammetric responses of SPEs modi-
fied with a different number of sparking lines (12, 14, 16, 
18, and 20) in the absence and the presence of 5 mM H2O2. 

Fig. 4   Electrocatalytic currents of Co-spark SPEs modified by a dif-
ferent number of sparking lines (12 − 20) in 0.5 M NaOH, containing 
5 mM H2O2. Errors bars represent the standard deviation of the meas-
urements at three different electrodes

Fig. 5   Cyclic voltammograms of Co-spark SPEs in (black line) PBS 
pH 7 and (red line) 0.1 M NaOH in the (dashed line) absence and 
(solid line) presence of 5 mM H2O2. Scan rate 50 mV s−1
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The mean electrocatalytic response and the standard devia-
tion of the measurements with three different electrodes in 
each case is illustrated in Fig. 4. The highest electrocatalytic 
responses were observed for a modification of 16 lines, and 
therefore, Co-spark SPEs modified with 16 sparking lines 
were selected for subsequent work.

The effect of the electrolyte on the electrocatalytic activity 
of Co-spark SPE was also investigated. As shown in Fig. 5, 
CVs of Co-spark SPE were recorded in 0.1 M phosphate buff-
ered saline (PBS) at pH 7 and 0.1 M NaOH in the absence 
(dashed line) and presence (solid line) of 5 mM H2O2. The 
data revealed a poor electrocatalytic response in neutral pH, 
while the remarkable electrocatalytic behaviour in alkaline pH 
seems to be related to the first redox transition Co3O4/CoOOH 
and the chemical reduction of the electrochemically gener-
ated CoOOH by H2O2 to Co3O4, according to Eq. 3. This is 
then re-oxidized to CoOOH during the sweep (Eq. 1), giving 
rise to a several-fold increase in the anodic current, while the 
cathodic current decreases accordingly.

Consequently, it stands to reason that since the elec-
trocatalytic reaction is mediated by CoOOH species, the 

(3)3CoOOH + H2O2 → Co3O4 + O2 + 2H2O + e
− + H

+

concentration of NaOH plays a large role to the electrocat-
alytic process. The optimum concentration of NaOH was 
determined by examining the cyclic voltammetry response 
at 0.1, 0.5, and 1 M NaOH, as illustrated in Fig. S2. In both 
cases of 0.5 and 1 M NaOH there is a shift of the first redox 
transition Co3O4/CoOOH to lower potentials (ca. 0.2 to 0.12 
V), compared with that in 0.1 M NaOH, since in those cases 
there is an abundance of hydroxyl ions facilitating the for-
mation of CoOOH at lower overpotentials. This shift is also 
prevalent in the presence of 5 mM H2O2, which favours its 
electrocatalysis at lower overpotentials as well. However, 
while both 0.5 and 1 M NaOH enhance the electrocatalytic 
activity of the modified electrode, the faradaic current pro-
duced in the case of 0.5 M NaOH is higher. Therefore, the 
concentration of 0.5 M NaOH was chosen as the optimum.

Calibration features

The amperometric response of Co-spark SPEs at various 
concentrations of H2O2 over the range 1 − 102 μM at three 
different polarization voltages was investigated. The ampero-
grams at 0.1, 0.2, and 0.3 V and the respective calibration 
plots are shown in Fig. 6, while the major electroanalytical 

Fig. 6   (Left panel) Amperomet-
ric plots of Co-spark SPEs over 
the concentration range 1 – 102 
μM Η2Ο2 at (black line) 0.1, 
(blue line) 0.2, and (red line) 
0.3 V in 0.5 M NaOH. (Right 
panel) The corresponding cali-
bration plots

Table 1   Calibration features of Co-spark SPEs for the amperometric determination of H2O2, at 0.1, 0.2 and 0.3 V

Voltage (V) Linear range (μM) Intercept (10–8 A) Sa
(10–8 A)

Slope
(10–8 A/μM)

LOD 
3Sa/slope
(μM)

R2 Sensitivity 
(μA/μM/
cm2)

0.1 7 − 102  − 23.5 4.024 7.22 1.7 0.9992 0.383
0.2 1 − 102  − 25.19 3.724 7.19 1.6 0.9989 0.382
0.3 1 − 102  − 4.18 1.841 8.78 0.6 0.9998 0.466
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performance parameters are listed in Table 1. Based on these 
data and judging by the sensitivity and the limit of detection 
(LOD), calculated as 3Sa/slope, at each case, the polarization 
voltage of 0.3 V was selected as optimum for subsequent 
work on the determination of H2O2 in real-world samples.

The repeatability of the measurements for three successive 
additions of 10 μM H2O2 was found to be 2.9%, while the 
inter-electrode reproducibility among four different Co-spark 
SPEs at the concentration level 10 μM H2O2 was found to be 
5.6%. The storage stability of the sensor was also evaluated 

Table 2   Comparison of Co-spark SPEs with previously reported H2O2 sensors

CoFe2O4/GO, cobalt ferrite/graphene oxide; ZnO NS/zinc oxide nanosheets; Co3O4 NW/rGO, cobalt(II,III) oxide nanowire/reduced graphene 
oxide; CoOOH NSs, cobalt oxyhydroxide nanosheets; CuO-NP/CILE, copper(II)oxide nanoparticle/carbon ionic liquid electrodes; Cu2S MC, 
copper(I) sulfide mesoporous carbon; MnO2 NW/Gr, manganese(IV) oxide nanowire/graphene; nanoporous PdFe, nanoporous palladium-iron 
alloy; AuNP-NH2/Cu-MOF/GCE, ammoniated gold nanoparticle/copper-based metal oxide framework/glassy carbon electrode; WC–Co NP/
GCE, cobalt nanoparticle-decorated tungsten carbide/glassy carbon electrode; CuO@Cu2O-NW/PVA, cupric/cuprous oxide core shell-nanow-
ire/poly(vinyl alcohol)

Electrode Linear range (μM) Detection limit 
(μM)

Applicability Reference

CoFe2O4 /GO 0.9–900 0.54 Rainwater [31]
ZnO NSs 1–1000 0.8 H2O2 released from human hepatoma cells [56]
Co3O4 NW/rGO 15–675 2.4 H2O2 released from liver cancer cells [57]
CoOOH NSs 4–16 40  −  [58]
CuO-NP/CILE 1–2500 0.5 Milk [59]
Cu2S MC 1–3030 0.2 Serum [60]
MnO2 NW/Gr 100–45000 10 H2O2 released from live cells macrophage [61]
Nanoporous PdFe 500–6000 2.1  −  [62]
AuNP-NH2/Cu-MOF/GCE 5–850 1.2 H2O2 released from Hela cells [63]
WC–Co NP/GCE 0.05–1020 0.0063 Contact lens cleaning solution & human blood [64]
CuO@Cu2O-NW/PVA 1–3000 0.35  −  [65]
CoxOy NP/SPE 1–102 0.6 Energy drinks This work

Fig. 7   A Representative 
amperometric plots of Co-spark 
SPEs showing the response in 
the unspiked sample #1 con-
taining catalase, the unspiked 
sample #1 plus three additions 
of 25 μΜ Η2Ο2, and the sample 
#1 spiked with 25 μΜ Η2Ο2 
plus three additions of 25 μΜ 
Η2Ο2. Standard addition plots 
for the B unspiked and C spiked 
sample #1
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on a weekly basis by measuring a standard of 10 μM H2O2, 
and it was found that Co-spark SPEs maintained more than 
85% of their original signal over the course of one month.

Compared with other works on the electrochemical deter-
mination of H2O2 listed in Table 2, Co-spark SPEs exhibit 
favourable [31, 56–59, 61–63] or comparable [60, 65] analyti-
cal features. Considering their low cost, ease of fabrication, 
and eco-friendliness of modification, it is believed that Co-
spark SPEs are highly promising electroanalytical platforms 
for the determination of H2O2.

Application in real energy drink samples

The response of Co-spark SPEs to three common compounds 
present in energy drink like ascorbic acid, glucose, and caffeine, 
at a concentration of 5 μM, was investigated with amperomet-
ric measurements at 0.3 V in 0.5 M NaOH. Even though the 
response of Co-spark SPEs to glucose and caffeine was nil, 
ascorbic acid gave a significant amperometric response which 
hampered the determination of H2O2. The interference effect 
of ascorbic acid and the potential interference of other reduc-
ing compounds that might exist in real-world samples were 
effectively addressed by employing dual measurements in the 
absence and presence of the enzyme catalase. Following the 
assay protocol described above, the method was applied to the 
determination of H2O2 in two commercial energy drinks. The 
accuracy of the method was evaluated by recovery studies at 
both samples fortified with 25 μM H2O2. The concentration of 
H2O2 in both the unspiked and spiked samples was determined 
using the standard addition method (Fig. 7). The responses of 
Co-spark SPEs before the three additions, were corrected to that 
obtained in the corresponding unspiked sample in the presence 
of catalase. Results are shown in Table 3.

Conclusions

This work employs low-cost and eco-friendly semi-dispos-
able graphite screen-printed electrodes modified with an 
ease to perform, extremely fast (9 s), liquid-free method 

based on direct cobalt pin-to-electrode electrical discharge 
under ambient conditions.

SEM inspection showed that the direct sparking pro-
cess has a dual effect on the electrode surface generating 
both low-dimensional micrometre-sized graphite sheets 
and spherical cobalt-based nanoparticles with an average 
diameter of 163 ± 73 nm. Interestingly, after the sparking 
process, the electroactive area of the electrodes increased by 
167%, from 0.1126 to 0.1883 cm2. Based on the EDS data, 
the spark-generated nanoparticles represent different oxide 
cobalt-based species (CoxOy), which according with the 
XPS data can be attributed to Co3O4 spinel type nanostruc-
tures. Furthermore, XPS data also indicated the formation 
of C − Co bonds that probably occurred due to the extremely 
high temperatures grown locally due to the sparking process.

Cyclic voltammetric studies demonstrated advanced elec-
trocatalytic properties towards the electro oxidation of H2O2 
at alkaline conditions, enabling the amperometric determina-
tion of the target over the concentration range 1 − 102 μM 
(LOD 0.6 μM). Due to the high electrocatalytic properties 
of spark generated CoxOy NPs toward other reducing com-
pounds, potential interferences in real-world samples were 
mitigated by subtracting the signal obtained from the sam-
ple containing catalase. The analytical data obtained from 
antioxidant-rich real-world samples, such as energy drinks, 
suggest that the method holds promise for the routine analy-
sis of H2O2 in various food and drink products with minimal 
sample preparation.
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Table 3   Determination and recovery of Η2Ο2 in two commercial 
energy drinks

Figures show the means and the standard deviation of the data for 
three different electrodes

Sample H2O2 added 
(μM)

H2O2 determined (μM) Recovery (%)

1 0 4.69 ± 0.76 -
25.0 28.0 ± 2.2 94.3 ± 8.2

2 0
25.0

2.30 ± 0.43
24.9 ± 1.9

-
91.2 ± 9.2
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