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Abstract
The intricate tapestry of biomarkers, including proteins, lipids, carbohydrates, vesicles, and nucleic acids within sweat, 
exhibits a profound correlation with the ones in the bloodstream. The facile extraction of samples from sweat glands has 
recently positioned sweat sampling at the forefront of non-invasive health monitoring and diagnostics. While extant platforms 
for sweat analysis exist, the imperative for portability, cost-effectiveness, ease of manufacture, and expeditious turnaround 
underscores the necessity for parameters that transcend conventional considerations. In this regard, 3D printed microfluidic 
devices emerge as promising systems, offering a harmonious fusion of attributes such as multifunctional integration, flex-
ibility, biocompatibility, a controlled closed environment, and a minimal requisite analyte volume—features that leverage 
their prominence in the realm of sweat analysis. However, formidable challenges, including high throughput demands, 
chemical interactions intrinsic to the printing materials, size constraints, and durability concerns, beset the landscape of 3D 
printed microfluidic devices. Within this paradigm, we expound upon the foundational aspects of 3D printed microfluidic 
devices and proffer a distinctive perspective by delving into the computational study of printing materials utilizing density 
functional theory (DFT) and molecular dynamics (MD) methodologies. This multifaceted approach serves manifold purposes: 
(i) understanding the complexity of microfluidic systems, (ii) facilitating comprehensive analyses, (iii) saving both cost and 
time, (iv) improving design optimization, and (v) augmenting resolution. In a nutshell, the allure of 3D printing lies in its 
capacity for affordable and expeditious production, offering seamless integration of diverse components into microfluidic 
devices—a testament to their inherent utility in the domain of sweat analysis. The synergistic fusion of computational assess-
ment methodologies with materials science not only optimizes analysis and production processes, but also expedites their 
widespread accessibility, ensuring continuous biomarker monitoring from sweat for end-users.
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Introduction

In recent years, humanity has fervently embraced technolo-
gies that empower individuals to scrutinize their health 
status [1]. Particularly, glucose sensors stand as vanguards 

in this wave of transformative technological progress [2]. 
Traditionally, the analysis of target molecules was confined 
to laboratory settings before becoming accessible to the end-
users. However, with the evolution of biosensor technolo-
gies, these analyses can now be conveniently conducted in 
domestic environments, thereby effecting significant savings 
in both cost and time [3, 4]. Analysis of sweat, a complex 
biological fluid containing various analytes, is crucial for 
tracking health conditions [5, 6] such as drug and alcohol 
monitoring [7], temperature regulation [8], infectious dis-
eases [9], glucose levels [10], and hydration levels [11] 
(Fig. 1).

During the metamorphosis of bulky biosensing systems 
into their portable versions, microfluidic systems have taken 
a crucial role since they offer a broader range of miniaturized 
total chemical analysis systems based on the manipulation 
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of fluidic devices in micro/nanoscale volumes [12, 13]. 
Investigations of microfluidic devices and their fabrication 
with micromechanics technology back in the 1970s first 
launched with gas chromatograph and inkjet printer noz-
zles, then continued with flow sensors and valves to complex 
microfluidic systems for chemical and biological analysis. 
Various fabrication methods have been employed for micro-
fluidic device fabrication and continually developed [14, 15]. 
The availability of material, environmental impact, device 
dimension, cost, and rapid fabrication process are critical 
parameters affecting overall device performance and wide 
application [16]. Among them, 3D printing technologies are 
emerging advancements with varied techniques, including 
stereolithography (SLA) [17], two-photon polymerization 
(2PP) [18], fused deposition modeling (FDM) [19], digital 
light processing (DLP) [20], and PolyJet [21] techniques 
which are adaptable methods for microfluidic device fabrica-
tion. The materials selection depends on which 3D printing 
techniques are employed, including plastic (acrylonitrile, 
1,3-butadiene, and styrene (ABS) [22], poly methyl meth-
acrylate (PMMA) [23], and poly lactic acid (PLA) [24]), 
metal (titanium [25] and Inconel 625 [26]), and compos-
ite materials (carbon fiber [27] and fiberglass [28]). Even 
though many of these materials cannot be used directly, they 
are added to the printing material to increase the materials’ 
heat capacity or mechanical strength [29, 30].

In addition, one of the strongest points of these 3D printed 
microfluidic devices, which can be produced quickly and at 
a low-cost, is that they can be customized to the person’s 
requirements. Moreover, the properties of printing materi-
als, including flexibility [31], optical transmittance [32], and 
heat and mechanical resistance [29, 30], can be altered and 
produced by including additives or adjusting device settings 
(such as exposure time and resolution) in the direction of 
interest. In addition to improving the quality of these materi-
als, properties such as pore width, flexibility, and mechanical 
strength of materials are made possible by analyzing them 

at the molecular level, owing to computational techniques 
such as DFT [33, 34]. Moreover, the sensor system (tattoo 
[35] and pH monitoring [36]) to be developed depending 
on the target molecule can be included in these microfluidic 
systems at the end of the day. By adding electronic circuits 
to these systems, information flow can be instantly trans-
ferred to devices such as smartphones via NFC, Wi-Fi, or 
Bluetooth [37, 38].

Focusing on the adaptation of health monitoring systems 
for daily use, low-cost, short turnaround time, and ease of 
use are pivotal parameters for the end-users. Therefore, 3D 
printed microfluidic devices for sweat analysis would be a 
niche for this manner. Moreover, blood drawing requires 
invasive methods such as needles. Since sweat is on the 
body’s surface, it does not require using any needles or 
other invasive methods [39], and this is an appealing point 
for patients, newborns, children, and those who are hav-
ing difficulties in blood sampling [40]. Briefly, sweat is a 
rich source of biomarkers including ions (sodium  (Na+), 
potassium  (K+), and chloride  (Cl−)), metabolites (lactate, 
glucose, and urea), hormones (cortisol and testosterone), 
metals (arsenic (As) and lead (Pb)), and enzymes (amylase 
and creatine kinase) in which are secreted from the sweat 
glands in the dermis and secreted through the dermal duct 
from dermis to the uppermost layer of the epidermis to the 
skin [41]. Changing conditions of the body fluids are also 
reflected to the sweat since the sweat secretion is an ulti-
mate route of channeling toxins and disposed molecules out 
of the body. This rich mixture of components makes sweat 
as an ultimate source of biomarker detection related to dif-
ferent diseases [42, 43]. Moreover, continuous monitoring 
can be implemented by constantly monitoring sweating. To 
exemplify, Nyein et al. managed to continuously and autono-
mously monitor the body’s pH,  Cl−, and levodopa levels by 
developing a wearable patch. By this means, it was possible 
to watch stress situations, activities, and findings associ-
ated with Parkinson’s disease instantly [44]. Many different 

Fig. 1  Schematic illustration of the 3D printed microfluidic platform and the application of such platforms to skin for measuring multiple param-
eters and biomarkers from sweat
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studies have revealed that the amounts of glucose and lactate 
in blood are strongly related to the levels of molecules in 
sweat [40]. To simply put the combination of the ability to 
perform multiple analyses using sweat and the advantages 
of those mentioned above, 3D printed microfluidic devices 
help to put forward a promising health monitoring system.

This review aspires to undertake a thorough exploration 
of the application of 3D printed microfluidic systems inte-
grated with biosensors for detecting biomarkers in sweat. 
Moreover, our endeavor extends to bridging the divide 
between these platforms and computational perspectives 
by elucidating select computational studies focused on the 
materials integral to 3D printing for advancing microfluidic 
systems for health monitoring. In this regard, computational 
strategies would enhance comprehension of the intricacies 
inherent in microfluidic systems, facilitate in-depth and com-
prehensive analyses, concurrently economize both cost and 
time, refine the optimization of design elements, and bolster 
the resolution. The studies mentioned below are directed 
towards propelling significant strides in enhancing the man-
ufacturability and adaptability of 3D-printed microfluidic 
systems, with the ultimate aim of meeting the discerning 
needs and expectations of the end-users.

3D printing devices for fabricating 
microfluidic systems

Conventional microfluidic fabrication methods heavily 
depend on expensive and sophisticated cleanroom facili-
ties, including soft photolithography steps that are time-
consuming and tedious processes [45]. On the other hand, 
3D printing, as a revolutionary additive manufacturing tech-
nology, provides a simplified, facile, and accessible method 
for fabricating microfluidic devices in one or two steps [46]. 
Contrary to the traditional methods, 3D printing minimizes 
the labor of the fabrication process, eliminating cleanroom 
setups and reducing the time required to fabricate micro-
fluidic systems. 3D printing in microfluidics allows com-
plex, robust, and intricate structures. 3D printing methods 
(SLA, 2PP, FDM, DLP, and PolyJet) offer the rapid produc-
tion [47] of microfluidic devices, forming complex chan-
nel structures, precise control over dimensions, and several 
materials, including tailored resins for diverse microfluidic 
applications [48]. Various microfluidic devices with different 
functionalities can be fabricated, including 3D microfluidics 
for cell culture [49], biosensing [50], drug delivery, iner-
tial microfluidics [51], micromixers [16], and droplet-based 
microfluidics [52].

Briefly, SLA employs a focused UV laser to selec-
tively cure layers of liquid photopolymer resin to build 
the desired structures by controlling the positions of the 
laser focus, layer-by-layer, repeatedly and gradually. SLA 

provides delicate, intricate structures with high resolution 
and smooth surfaces, but it is limited to a slow speed due 
to single-point laser operation [53]. SLA can be operated 
either in free (bath) or constrained (bat) configurations, as 
demonstrated in Fig. 2A, B. In the free surface method, a 
mobile build platform is submerged in a tank with photo-
curable resin, while the constrained surface method utilizes 
a platform above the resin tank cured with UV light. DLP 
works similarly to SLA, yet a light source is utilized instead 
of a UV source to cure photopolymer resin. It is faster than 
SLA due to the simultaneous curing of all layers at once. In 
the 2PP technique, a femtosecond laser is employed to cure 
photopolymers similar to SLA. However, it can fabricate a 
volume structure without a layers-by-layer technique due to 
a photoinitiator’s absorption of two photons. The representa-
tion of SLA that applies a one-photon laser and two-photon 
laser of 2PP is depicted in Fig. 2C. Although high resolution 
is achieved and many materials could be adaptable, it is a 
slower technique than SLA and FDM.

As a second method, PolyJet printing operates by jet-
ting a liquid photosensitive polymer ink to deposit layers 
and curing with UV light to obtain desired structures. This 
method has the potential for mass production and enables 
complex multi-material fabrication, including rigid and flex-
ible forms. Employing diverse materials enables the crea-
tion of objects with different properties, like soft and hard 
plastics, elastomers, and different colors. Its high resolution 
and multi-material properties make more attractive for the 
applications of microfluidic devices. However, the tedious 
post-process of cleaning the sacrificial layer and the cost are 
the main limitations to boosting its applicability [54].

FDM technology is commonly used for 3D printing; 
a thermoplastic is melted and extruded through a heated 
nozzle and deposited layer by layer to build a microfluidic 
structure [55]. Despite the fact that it is widely used with 
many thermoplastic polymers, the resolution and strength 
of structures are low due to incomplete layer fusion. FDM 
is cost-effective and straightforward; however, it is limited 
to low precision and pore formation compared to SLA and 
DLP techniques.

The working principles of SLA, PolyJet, FDM, and layer-
by-layer 3D printing technologies, along with their respec-
tive components, are depicted in Fig. 2. A comprehensive 
study is illustrated in Fig. 2G, which evaluates microfluidic 
performance printed by SLA-DLP, FDM, and PolyJet 3D 
printing techniques. It has been shown that SLA-DLP offers 
less roughness, making it more suitable for precise flow con-
trol. On the other hand, SLA-DLP and PolyJet provide high 
resolution according to FDM techniques [56]. Although 
3D microfluidic-based printing is a promising fabrication 
method, it has yet to reach the level of resolution required by 
lithographic techniques. 3D printing technology for micro-
fluidic devices with high precision is in the developmental 
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stage, and further advancements in materials science, opti-
mization processes, and printing techniques are necessary to 
expand its applicability.

Materials for 3D printed chips

Various thermoplastic polymers, photopolymers, and elas-
tomers can be implemented for 3D printing microfluidic 
devices [57, 58]. The choice of materials holds signifi-
cant importance within microfluidics, influencing critical 
aspects such as resolution, mechanical strength, transpar-
ency, biocompatibility, surface quality, and manipulation 
of fluid flow. Each of these parameters plays a pivotal role 
that impacts the overall functionality and performance 
of the microfluidic application. As an example, polydi-
methylsiloxane (PDMS) is a widely used elastomer in 
microfluidics due to its inertness, robust structure, and 
transparency, which is conventionally utilized with soft 
lithography for microfluidic fabrication [55]. 3D print-
ing enables the fabrication of PDMS either directly or 
as a mold [59]. The 3D printing for PDMS as a mold is 
reported down to a 10-µm feature resolution [60]. Fabrica-
tion of microfluidic devices employs a series of lithogra-
phy techniques. A photomask is generated initially by soft 
lithography to transfer the pattern to SU8 spin-coated sili-
con wafers. Following the pouring and peeling of PDMS, 
the glass substrate is encapsulated with PDMS via oxy-
gen plasma bonding. In contrast, 3D presents a simple 
approach and eliminates multistep fabricating a PDMS 

as a mold or direct fabrication of a complete microflu-
idic device while retaining its oxygen permeability and 
biocompatibility [53]. The PDMS mold and the whole 
microfluidic device can be fabricated using SLA, DLP, 
FDA, and PolyJet 3D printing techniques.

Thermoplastic is a sub-division of polymers that soften 
when heated and solidify when cooled. Thermoplastics 
are reprocessable and do not undergo irreversible changes, 
unlike thermosetting polymers, which allow them to be 
melted, reshaped, and solidified many times while retain-
ing their properties. Almost all thermoplastic can be printed 
by FDM technology. There are numerous commercial ther-
moplastics that can be employed in 3D printing, including 
PMMA, PLA [61], polycarbonate (PC) [62], ABS [63], 
polypropylene (PP), and polyethylene terephthalate glycol 
(PETg). Among them, ABS and PLA polymers are widely 
utilized for robust microfluidic systems due to their dura-
bility and mechanical strength. Besides direct printing of 
microfluidic devices, PLA and ABS-based molds can be 
printed via FDM printing [64].

Photopolymerization is a chemical reaction triggered by 
photosensitive material when exposed to light, generally 
a UV or visible light wavelength. Hence, it undergoes a 
process where the molecules within polymer material react 
and form large molecule structures. Acrylates, epoxides, 
and urethanes are mainly photopolymers that have been 
used, and they are prone to swelling in some solvents, 
which inhibits their wide range of applications [65]. In 
addition, SLA, DLP, and 2PP, PolyJet technologies, utilize 
photopolymers [66].

Fig. 2  Schematic illustrations of  3D printing techniques. (A) free 
and (B) constrained configurations of SLA 3D printing systems. 
Reprinted with permission [55]. Copyright 2022, Royal Society of 
Chemistry. (C) one-photon laser (i) and two-photon laser (ii) absorp-
tion.   Reprinted with permission [67]. Copyright 2006, Elsevier. 
(D) PolyJet 3D printing system [54]. (E) FDM 3D printing system. 

Reprinted with permission [54]. Copyright 2016, Royal Society of 
Chemistry. (F) Layer-by-layer printing. Reprinted with permission 
[58]. Copyright 2020, Science Advances. (G) Comparison of rough-
ness and resolution in microfluidics fabricated by SLA-DLP (i), Pol-
yJet (ii), and FDM (iii) 3D printing. Reprinted with permission [56]. 
Copyright 2017, American Chemical Society (ACS)
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Sweat analysis through biosensors 
integrated with 3D printed chips

The ongoing literature effort has turned into a few designs that 
could integrate 3D printed microfluidic platforms as sweat 
analysis platforms combined with in-device biosensors. In a 
pioneering study, researchers demonstrated one of the first 
examples of 3D printed microfluidic chips [68]. The molten-
syrup-based 3D printing technique used in this study is an 
eco-friendly and low-cost alternative to plastic-based 3D 
printing materials. Positive molds created with molten-syrup 
printing were later complemented with PDMS and additive 
layers with embedded electrodes to form the final skin mount-
ing device for sweat collection and analysis. Integrated elec-
trochemical sensor to the system with electrodes resulted in 
the comparative readout of sweat pH values compared with 
a commercial pH-meter in a narrow measurement range and 
real-time fashion. In another study, a 3D printed microfluidic 
sampling module with a flexible and multiplex sensor module 
patch from an integrated circuit is demonstrated [69]. Over-
all, the design in this study is capable of monitoring multiple 
electrolytes  (Na+,  K+, and  Ca2+) from non-invasively col-
lected sweat samples. As a result, all three target ions could 
be detected between 0.1 and 100 mM concentration using the 
silver 3D printed electrode including ion-selective membrane. 
In order to analyze more indicators from sweat, Yang et al. 
demonstrated a multiplexed sweat analysis module based on 
spectroscopic measurement [70]. This study initially investi-
gates the properties of flexible 3D printing resins by printing a 
microfluidic design with sweat containers and reaction cham-
bers in order to achieve an ideal measurement chamber for the 
optic components. Next, the reaction chambers were filled 
with either colorimetric assays for the concentration determi-
nation of  Cu2+,  Cl−, and pH values or a fluorometric reaction 
for glucose concentration detection (Fig. 3A). The resulting 
system, which is attached with a medical-grade adhesive to 
the skin, shows compatible results in human trials with labora-
tory results on a scale of 0–3 ppm for copper, 0–160 mM for 
Cl, pH 4.0 to pH 9.0, and 0–50 µM for glucose.

Additionally, 3D printing could be used not only to design 
microfluidic systems, but also measurement chambers for 
sweat collection studies. In a different study, a smartphone-
based lactate measurement system was developed based on 
lactate oxidize reaction and detecting hydrogen peroxide 
output with horseradish peroxidase (HRP) luminometric 
assay. The overall system was composed of a mini cartridge 
that contains the reactions, a dark box to contain light out-
put generated by HRP-luminol reaction, and a universal 
holder for smartphones [71]. The designed device is capa-
ble of measuring lactate levels in sweat and saliva with the 
millimolar level per liter in both types of samples. Apart 
from being a production platform for microfluidic chips, 3D 

printing could also assist microfluidic system production for 
sweat analysis by being a low-cost and high-volume platform 
for mold production. In Nah et al. (2021) study, scientists 
utilized this advantage of 3D printing by designing a flexible 
microfluidic system based on PDMS reaction chambers and 
Ti3C2Tx MXene-loaded laser-burned graphene as flexible 
electrode material on flexible polyimide (PI) film, for later 
also to be transferred to PDMS [72].

Considering the advancement of the 3D printing field 
and the advantages of the overall approach as being a low-
cost, easy-to-produce, and easy-to-deploy alternative to the 
current methods, 3D printed microfluidic systems for sweat 
collection and on-chip analysis will be a game changer in 
the future. Moreover, the role of computational studies can 
support game changer platforms by analyzing and predicting 
3D printing materials.

Computational methods in designing 
materials for 3D printing and advancing 
performance of sensors

In the past decade, novel technologies have been developed 
and applied by researchers for biomarker detection. Reac-
tions extensively happen between analytes in solution and 
receptors on a surface [73]. Microfluidic systems include 
continuous flow regimes in micron-sized channels that are 
developed for different biological and chemical applications 
[74]. Due to the limitation of experimental methods at the 
microscopic level, a combination of in silico designs with 
experimental studies has immense potential in developing 
biosensors [75]. This part of the review exhibits an over-
view of the applications of computation methods, particu-
larly DFT to study and the design of 3D printed microfluidic 
biosensors. Furthermore, for more clear understanding of 
these methods, Table 1 briefly presents some comparisons 
and properties of computational and simulation methods.

Briefly, Yin et al. designed a portable fluorescence sensor 
using high-transparency resin and 3D printing technology 
for sensitive detection of multiple pathogenic bacteria. Using 
fluorescent probes (tetraphenylethylene (TPE) derivatives) 
caused bacteria to emit fluorescence with different colors. 
By injecting fluorescent bacteria into a microfluidic device, 
the number of fluorescent bacteria was counted. Photosensi-
tive resin was used as the synthetic material for 3D printing. 
Different fluorescence of three TPE derivatives were proven 
using DFT computations. Figure 4 presents the results of 
these computations on TPE and TPE derivatives including 
TPE-COOH, TPE-B-COOH, and TPE-X-COOH [95].

Litti et al. presented a 3D printed microfluidic chip com-
bined with Janus magnetic/plasmonic nanostars Fe3O4/Au 
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(JMNSs) as surface-enhanced Raman scattering (SERS) 
colloidal substrates. In this study, several small-molecule 
analytes were selected, such as a dye with antifungal and 
antibacterial activity, the standard pH-sensitive molecule 
p-mercaptobenzoic acid (MBA), a clinically relevant anti-
cancer drug, and herbicide flumioxazin. DFT computations 
were performed to achieve the Raman spectrum of flumi-
oxazin [96]. Santangelo et al. fabricated a disposable 3D 
printed lab-on-chip based on epitaxial graphene for heavy 
metals detection. The 3D printed microfluidic chip interface 
led to the interaction between the sample solution and the 
graphene sensing surface. DFT computations were employed 
for the evaluation of conductivity changes and the sensing 
mechanism [97]. In spite of the significance of computation 
and in silico studies and their advantages in decreasing of 
manufacturing costs, and in the validation of experimental 

results through accurate computations, however, there are 
too limited studies about the application of computation in 
the study and design of 3D printed microfluidic biosensors. 
In the following, some DFT computations and MD simula-
tions that were carried out to study of 3D printing mate-
rial are mentioned as a suggestion for more use of these 
methods in the design of 3D printed microfluidic biosensors. 
Sun et al. prepared PDMS elastomer with good mechani-
cal strength and self-healing function. They found that their 
powder-based 3D printing of PDMS elastomer as one the 
most investigated materials contains hindered pyrazole urea 
dynamic bonds. Using DFT computations and experiments 
of small molecule models, they studied the dynamic chemi-
cal mechanism of these hindered pyrazole urea bonds [98]. 
Using a heating-accelerated in situ gelation mechanism and 
direct ink writing (DIW) technique, Sun et al. reported a 

Fig. 3  (A) Fabrication steps of 3D printed microfluidic sweat analy-
sis device is depicted. (B) The layers of the device, (C) the analysis 
methods for the target analytes, (D−F) internal structure of the device 

with different dyes, and (G) the completed device are presented. 
Reprinted with permission [70]. Copyright 2023, Royal Society of 
Chemistry
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strategy to achieve rapid 3D printing of thermosets (silicone 
Sylgard 184). Heating-accelerated gelation of the thermoset-
ting ink is the underlying principle of their technique. Using 
DFT computations, they showed that heating reduces the 
energy barrier for crosslinking and led to the rapid DIW of 
various thermosetting materials with heterogeneous struc-
tures, complex geometries, and multifunctionality [99].

Otieno et al. used both experimental studies and ab ini-
tio structural computations to characterize the structural, 

optical, mechanical, and electronic properties of PLA and 
ABS. The obtained PLA and ABS via lab-scale filament 
extrusion showed tensile strengths of 39.07 and 16.12 MPa. 
In addition, using DFT computations, they achieved the 
value of 1.899 and 2.539 eV for the band structure of PLA 
and ABS, and this result indicates the poor conductivity of 
both materials [100]. Due to properties such as high load-
ing capability and excellent biocompatibility, silica-based 
mesoporous systems attract attention in drug delivery 

Table 1  Comparisons and properties of computational methods

Density functional theory (DFT) Theory Solving of Kohn–Sham equations for many-body systems [76, 77]
Applications • Electronic and magnetic properties of semiconductors

• Prediction of mechanical properties
• Prediction of sensitivity of nanostructures to environmental pollutants
• Prediction of molecular properties, geometries, total energies, and vibrational fre-

quencies [76, 78–80]
Software GAUSSIAN, MOPAC, ABINIT, Quantum Espresso, OpenMx, Qbox, VASP, ORCA, 

GAMESS, and SIESTA [81]
Molecular dynamics (MD) simulation Theory Solving of Newton’s equation of motion for atoms and molecules [82]

Applications • 3D structures of macromolecules
• Conformation of ligand–protein interaction
• Drug design and drug delivery
• Characterization of membrane structure and organization
• Lipid–drug interactions
• Lipid–protein interactions
• Protein structure and dynamics
• Membrane permeability [83, 84]

Software DL_ POLY, AMBER, NAMD, LAMMPS, GROMACS, CHARMM, and TINKER [85]
Molecular docking Theory Using a search algorithm in prediction of interaction energies of ligand and receptor 

[86–89]
Applications • Identifying ligand binding pocket

• Prediction of ligand–protein interactions
• Prediction of protein–protein interactions
• Prediction of pollutants degraded by enzymes
• Drug design [90, 91]

Software Swissdock, Autodoc Vina, Dock, ZDOCK, AutoDock, Glide, Hdock, Gold, and Flex X 
[92–94]

Fig. 4  DFT-calculated HOMO and LUMO values of TPE derivative. Reprinted with permission [95]. Copyright 2023, Elsevier
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applications. Pore-size limitation is however one of the chal-
lenges in using of these materials to host large molecules 
such as proteins and enzymes. Considering bone remode-
ling, Banche-Niclot et al. developed large-pore mesoporous 
silicas (LPMSs) and used horseradish peroxidase (HRP) as 
a model enzyme to evaluate the ability of the LPMSs in the 
adsorption and the release of large biomolecules. By coating 
of LPMSs with poly (ethylene glycol) (PEG), they indicated 
the release of biomolecules in response to a pH decrease. 
Using DFT computations, they determined the pore size dis-
tribution of LMPSs and introduced the PEG-coated large 
mesoporous silica for protein delivery and its application 
in collagen-based formulation for 3D printing [101]. Tran 
et al. introduced modified graphene oxide as a gas barrier 
using polymer epoxy on 3D printing ABS substrates. Using 
experimental methods such as Raman, atomic force micros-
copy (AFM), and X-ray photoelectron spectroscopy (XPS), 
as well as DFT and MD simulations, their graphene epoxy-
coated 3D printing substrates exhibited excellent barrier 
properties for  O2. They estimated energy barriers of  O2 in 
graphene nanopores using DFT computations and studied 
 O2 penetration in nanopores using MD simulations [102]. 
Finding new materials for bone tissue repair is one of the 
important tasks of modern medicine. For the development of 
materials, 3D printing offers great opportunities. Stepanova 
et al. reported the characterization and biological develop-
ment of 3D scaffolds based on poly (ε-caprolactone) (PCL) 
loaded with ciprofloxacin or dexamethasone. Preparation 
of drug-loaded PCL scaffolds by direct 3D printing from 
a polymer/drug blend was the novelty of their work. They 
applied DFT computations to calculate the pore character-
istics of the 3D printed matrices. The results of computa-
tions validated their experimental studies about the effects 
of drugs on porous characterizes and specific surface area 
of 3D printed scaffolds [103].

Challenges and future perspectives

As previously expounded, the utilization of 3D printed 
microfluidic systems constitutes a paradigm replete with 
advantages for the meticulous analysis of sweat constituents. 
Nonetheless, akin to any technological modality, these meth-
odologies are not devoid of inherent challenges. Surmounting 
these impediments through inventive stratagems possesses 
the latent capacity to augment the holistic efficacy of the sys-
tem across multifarious dimensions. A conspicuous challenge 
resides in the circumscribed array of materials amenable to 
3D printing endeavors, with a pronounced emphasis on appli-
cations within the purview of biological studies. The impera-
tive necessitates a discerning focus on the exploration and 
refinement of materials characterized by elevated biocom-
patibility, particularly in the sphere of implantable devices 

[104]. Furthermore, the salience of compatibility between 
these materials and assorted apparatus, such as printed circuit 
boards (PCBs), cannot be overstated [105]. The integration 
of hybrid ceramic polymers emerges as a sanguine avenue 
for augmenting material attributes, especially in contexts 
mandating optical transparency [106]. Similarly, advance-
ments in mechanical and chemical resistance can be achieved 
by optimizing curing agent ratios for polydimethylsiloxane 
(PDMS) molds [107]. The pursuit of new materials and refin-
ing existing ones is pivotal for overcoming these challenges 
and expanding the capabilities of 3D printed microfluidic 
systems in diverse applications.

The judicious execution of surface modification stands 
out as a preeminent concern for optimizing the efficacy and 
dependability of a microfluidic device [108]. Concurrently, 
the selection of a 3D printing material necessitates meticu-
lous consideration of its compatibility with these surface 
modifications. A pivotal facet pertaining to both material 
composition and spatial configuration within the microflu-
idic framework is the efficacy in fluid collection from per-
spired exudates. Given the intrinsic variability in the rate 
of perspiration among individuals and across diverse ana-
tomical regions in the body, the capacity to adeptly harvest 
a substantial volume of sweat at a designated site augments 
the sensor’s efficiency by amplifying the quantity of tar-
geted analytes. A pervasive challenge being inherent in 3D 
printing resides in the dearth of standardized protocols and 
validated correlations between disparate printing devices 
and materials. Mitigating this challenge requires a strategic 
approach, wherein validation endeavors are propelled by ML 
algorithms that continually scrutinize and adapt to varia-
tions in printing techniques, printer parameters, materials 
employed, and subsequent analysis outcomes post-applica-
tions. While advancements in materials science and biosen-
sor technologies remain imperative, complementary impetus 
can be garnered through robust support for computational 
studies, thereby fostering a symbiotic relationship between 
empirical innovation and computational acumen.

Conclusions

The integration of 3D printing with microfluidics points out a 
significant advancement in various sensor systems, particularly 
in the context of sweat analysis. These integrated systems pre-
sent notable advantages, including expedited manufacturing, 
cost-effectiveness, and the capacity for continuous monitoring 
of biomarkers. As materials science progresses and optimiza-
tion processes refine, 3D printed microfluidic platforms are 
poised to expand their applicability further. Sweat analysis, on 
the other hand, emerges as a preferable alternative to blood sam-
ple analysis, particularly for populations such as newborns and 
elderly patients, for whom can be discomforting. The analysis of 
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sweat as a bodily fluid finds applications in disease diagnosis, as 
well as routine activities like daily walking and sports practice. 
These integrated systems hold a pivotal position in biomedical 
research and, notably, disease detection and analysis methods 
at the home or the point-of-care settings, offering promising 
prospects for human health. Crucially, for both patients and car-
egivers, the desirability of wearable systems that enable con-
tinuous and autonomous analysis, coupled with the ability to 
share these analyses via NFC, Wi-Fi, or Bluetooth with devices 
such as phones or computers, is paramount. Moreover, due to 
the economic difficulties experienced worldwide, it is essential 
that everyone has access to such low-cost systems. In addition 
to accessibility, the easy interpretability of these systems holds 
great promise for rapid disease detection.
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