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Abstract
Vascular endothelial growth factor (VEGF) is an indispensable element in many physiological processes, while alterations in 
its level in the circulating system are signs of pathology-associated diseases. Therefore, its precise and selective detection is 
critical for clinical applications to monitor the progression of the pathology. In this study, an optical immunoassay biosensor 
was developed as a model study for detecting recombinant  VEGF165. The  VEGF165 sample was purified from recombinant 
Kluyveromyces lactis GG799 yeast cells. Indirect ELISA was used during the detection, wherein iron oxide nanoparticles 
(FeNPs) were utilized to obtain optical signals. The FeNPs were synthesized in the presence of lactose p-amino benzoic 
acid (LpAB).  VEGF165 antibody was conjugated to the LpAB-FeNPs through EDC/NHS chemistry to convert the iron oxide 
nanoparticles into  VEGF165 specific probes. The specificity of the prepared system was tested in the presence of potential 
serum-based interferents (i.e., glucose, urea, insulin, C-reactive protein, and serum amyloid A), and validation studies were 
performed in a simulated serum sample. The proposed immunoassay showed a wide detection range (0.5 to 100 ng/mL) 
with a detection limit of 0.29 ng/mL. These results show that the developed assay could offer a sensitive, simple, specific, 
reliable, and high-throughput detection platform that can be used in the clinical diagnostics of VEGF.

Keywords Human vascular endothelial growth factor · Iron oxide nanoparticle · Immunoassay · Indirect ELISA · 
Optical detection

Introduction

Vascular endothelial growth factor (VEGF) is one of the 
most important cytokines that plays an essential role in 
vascular development and permeability [1]. VEGF and its 
receptors have been considered fundamental regulators for 
angiogenesis and vasculogenesis, which describe the pro-
cesses of new capillary blood vessel formation [2]. VEGF 
triggers new blood vessel formation through the induction of 
vascular endothelial cells that can proliferate, migrate, and 
differentiate in healthy tissues [3, 4].

VEGF165 is the most dominant isoform of the human 
VEGF (also called VEGF-A) family and has the highest 
biological activity during angiogenesis [5]. Particularly, 
it participates in a variety of physiological angiogenic 
processes, including wound healing [6], female reproduction 
cycle [7], embryogenesis [8], neural development [9], bone 
formation [10], and hematopoiesis [11] in healthy adults. 
However, under certain circumstances, the overexpression 
of VEGF is well correlated with rheumatoid arthritis 
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[12], Parkinson’s disease [13], psoriasis [14], and several 
ocular diseases [15, 16], while VEGF activity continues 
physiologically normal during vascular development. 
Besides, VEGF has also been widely described as a major 
tumor angiogenic factor in many tumor types [17, 18]. 
Particularly, VEGF participates in different stages of tumor, 
including development, progression, and metastasis, which 
can also orchestrate tumorigenic angiogenesis in ovarian 
[19], pancreatic cancer [20], lung (e.g., non-small cell lung 
cancer) [21], breast [22], oral [23], colorectal cancer [24], 
and liver cancers [25]. In this regard, elevated VEGF levels 
have been proposed as an essential biomarker in many types 
of cancers. In addition to cancer, such diseases as age-related 
macular degeneration in the eyes result in increased VEGF 
concentration in patients’ eyes. Therefore, the detection of 
the VEGF concentration in the patient’s retina is critical 
for the determination of the amount of anti-VEGF drug for 
intravitreal injections [26, 27].

Due to the critical importance of VEGF in biomedical 
research, early diagnosis, and medical applications, the 
detection and quantification of VEGF is strongly required 
to trace its levels in biological samples. Until now, a variety 
of approaches for the detection of VEGF have been reported, 
including enzyme-linked immunosorbent assay (ELISA) 
[28] (the standard assay format), fluorescence in situ hybridi-
zation (FISH) [29], immunohistochemistry (IHC) [30], and 
fluorescent spectrometry [31–33]. Even though each of these 
techniques has such superiorities, there is no available tech-
nique to overcome such drawbacks, including excessive 
time requirement, expensiveness, and requirements of com-
plicated instrumentation. Among the analytical approaches 
in biosensor development, colorimetric techniques can 
overcome these shortcomings, which are commonly used 
for field analysis and point-of-care diagnosis for many 
applications. In the case of antibody-antigen-based reac-
tions, antigen–antibody interaction causes alteration in the 
color intensity with favorable properties that can fulfill the 
desired requirements expected from a biosensor [32–34]. In 
recent years, colorimetry based on metal nanoparticles has 
garnered significant attention and has injected fresh vigor 
into traditional colorimetric methods, enabling precise and 
accurate analyzes [35]. Among the metal-based nanoparti-
cles, iron oxide nanoparticles (FeNPs) provide colorimetric 
changes with many advantages as accuracy, simplicity, broad 
applicability, and high selectivity, which make them appeal-
ing for straightforward colorimetric detection. In addition, 
FeNPs are cost-effective compared to other metals and do 
not cause unstable and spontaneous aggregation when they 
are used as probes in detections [36, 37].

In this study, the synthesized FeNPs were conjugated 
with  VEGF165 antibody for the colorimetric detection of 
 VEGF165. The sensor gave a linear range between 0.5 and 
100 ng/mL with 0.29 ng/mL as the limit of detection (LOD), 

which indicates that the developed immunoassay platform is 
highly promising for clinical applications. Furthermore, the 
sensing system gave excellent specificity for the potential 
interferents such as glucose, urea, insulin, C-reactive protein, 
and serum amyloid A in human serum.

Materials and methods

Reagents and strains

Recombinant Kluyveromyces lactis GG799 (New Eng-
land Biolabs, Massachusetts, USA) was prepared by clon-
ing the human  VEGF165 cDNA (GenBank accession no. 
AF486837.1) in XhoI and EcoRI sites of the pKLAC2 vec-
tor under the control of the LAC4 promoter of the reported 
study [38]. The recombinant strain was cultured in YCB 
plates (3% 1 M Tris–HCl pH 7.4, 1.17% YCB, and 2% agar) 
containing 5 mM acetamide and maintained at – 80 °C as 
glycerol stock. In addition, the expression was performed 
using an unoptimized YPGal medium (1% yeast extract, 
2% peptone, and 4% galactose). Ni–NTA agarose resin, 
1000 kDa MWCO cellulose acetate dialysis membrane, 
and Pierce™ BCA Protein Assay Kit were purchased from 
Qiagen (Hilden, Germany), Spectrum Laboratories (Cali-
fornia, USA), and Thermo Fisher Scientific (Waltham, MA, 
USA), respectively. N′-Ethylcarbodiimide hydrochloride 
(EDC) and N-hydroxysuccinimide (NHS) were purchased 
from Sigma-Aldrich (St. Louis, MO, USA) while C-reac-
tive protein (CRP) (1 mg/mL) was obtained from Prospect. 
Serum amyloid A (SAA) (5.6 mg/mL) was purchased from 
Merck (Merck Millipore, Darmstadt, Germany). The wash-
ing buffer for ELISA was 0.1 M PBS (pH 7.2) containing 
0.05% Tween 20 and 0.15 M NaCl. The coating buffer for 
ELISA was a 50 mM carbonate buffer, pH 9.6. ELISA max-
isorp immunoplate (96 flat-bottom wells) was purchased 
from Nunc (Roskilde, Denmark). Artificial serum sam-
ple was prepared using KCl 0.335 g/L,  MgCl2 0.152 g/L, 
 CaCl2 0.505 g/L, NaCl 8.470 g/L,  NH2CONH2 0.150 g/L, 
D-glucose 0.450 g/L, and BSA 1.000 g/L as depicted in the 
literature [39].

Expression and purification of recombinant human 
VEGF165

The inoculum was prepared by inoculating a single colony 
of recombinant K. lactis GG799 strain in 25 mL YPGal 
medium and incubated at 30 °C at 250 rpm for 72 h. The 
culture was inoculated with a ratio of 1 to 100 in a 2 L 
Erlenmeyer shake flask including 300 mL YPGal, which was 
then followed by, and then, the expression of  VEGF165 was 
performed. After 48 h incubation, the culture suspension was 
centrifuged at 5000 rpm for 5 min at room temperature. The 
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supernatant containing the secreted recombinant  VEGF165 
was utilized to purify the protein to use a standard protein for 
ELISA studies. During the purification process, the superna-
tant was precipitated with 60% ammonium sulfate solution in 
an ice bath for 60 min and then centrifuged at 12,000 rpm for 
20 min. One hundred millimolars of phosphate buffer (pH 
7.4) was used to dissolve the obtained protein pellet. After 
adding Ni–NTA agarose resin to the polycarbonate column 
to perform affinity-based purification chromatography, the 
column was washed with a 100 mM phosphate buffer (pH 
7.4). The protein solution was applied to the column, and 
the target protein bound to the column was obtained through 
fractionations using the same phosphate buffer containing 
300 mM imidazole. The recombinant  VEGF165 elution solu-
tion was dialyzed using 1000 kDa MWCO cellulose acetate 
dialysis membrane against HEPES buffer (20 mM pH 7.4) 
overnight + 4 °C on a magnetic stirrer. The concentration of 
 VEGF165 was calculated using the “Pierce™ BCA Protein 
Assay Kit.”

Synthesis and characterization of LpAB‑FeNP

Synthesis of iron oxide nanoparticles was performed using 
a modified version of the reported studies [40, 41]. Briefly, 
1 M citric acid was mixed with 100 mM of  FeCl3, 50 mM 
of  FeSO4, and 10 mM lactose p-aminobenzoic acid (the 
sugar ligand was provided by Dr. İdris Yazgan of Kasta-
monu University, Turkey). The mixture was then vortexed at 
1200 rpm, and 1 M of NaOH was added to the mixture while 
vortexing at 600 rpm. The addition of NaOH resulted in the 
formation of heat, which played a vital role during the iron 
oxide nanoparticle formation. The colloidal nanoparticles 
were then transferred to a new sterile 15-mL centrifuge tube. 
The goal of the addition of the sugar ligand (the synthesis 
approach can be found elsewhere [42]) was to enhance the 
stability of the synthesized iron oxide nanoparticles [43] 
and introduce an amine group. UV–vis spectroscopy, high-
resolution transmission electron microscopy-selected area 
diffraction (HRTEM-SAED), scanning electron microscopy 
(SEM), and X-ray photoelectron spectroscopy (XPS) were 
used to characterize LpAB-FeNPs.

Conjugation of anti‑VEGF with LpAB‑FeNP

Anti-VEGF conjugation to LpAB-FeNP was performed 
using the EDC/NHS chemistry method [44]. Anti-VEGF was 
activated using 50.0 mM EDC and 12.5 mM NHS and then 
introduced to LpAB-FeNP solution. Anti-VEGF:EDC:NHS 
(1:2:2; v:v:v) was mixed in PBS and incubated at 250 rpm 
in an orbital shaker for 15 min. After that, the LpAB-FeNP/
anti-VEGF conjugate was washed three times with PBS 
buffer using 50-kDa centrifugal filters at 4000 rpm. Dynamic 
light scattering technique (DLS, Malvern Zetasizer Nano 

ZS model) was used to measure the size distributions and 
zeta potential of LpAB-FeNP and LpAB-FeNP/anti-VEGF.

Construction of the immunoassay platform

First, the purified recombinant  VEGF165 (1 mg/mL) was 
diluted to 10 different concentrations (0.5, 1.0, 5.0, 10, 25, 
50,100, and 250 ng/mL) with coating buffer and added onto 
the ELISA plate. This plate was then incubated overnight at 
4 °C. After that, unbound  VEGF165 was removed from the 
plate by cleaning it with a washing buffer. Next, 2 mg/mL 
BSA was added to each well and incubated for 1 h at room 
temperature as a blocking step. The conjugate of LpAB-
FeNP/anti-VEGF was introduced to the plate and incubated 
for 1 h. After the incubation, a washing buffer was used 
to remove the unreacted components. The UV–Vis absorb-
ance of this system was measured, and the absorbance var-
ied according to the  VEGF165 concentration. The proposed 
immunoassay platform was similar to a previous study [45].

Results and discussion

Characterization of LpAB‑FeNP and LpAB‑FeNP/
anti‑VEGF

UV–vis spectroscopy played a significant role in the syn-
thesizing of FeNP, LpAB-FeNP, and its conjugation with 
anti-VEGF. Fig. S1 shows absorbance at 370 nm due to the 
metallic iron oxide core. Fig. S2A shows the absorbance at 
370 nm due to a metallic iron oxide core that confirms the 
presence of LpAB-FeNP [46]. The decrease in the absorb-
ance intensity after the conjugation process indicates the 
successful attachment of anti-VEGF to LpAB-FeNP [47, 
48]. In this study, the morphology of LpAB-FeNP and 
LpAB-FeNP/anti-VEGF was observed by scanning electron 
microscopy (SEM), as depicted in Fig. S2B and Fig. S2C. 
As shown in Fig. 1, the LpAB-FeNP nanoparticles exhib-
ited a globular shape. However, after the conjugation of 
anti-VEGF, the morphology tended to form agglomerations 
and appeared as cloudy clusters. This change in morphol-
ogy provides evidence of the attachment of anti-VEGF to 
LpAB-FeNP.

The HRTEM characterization reveals that the core size of 
FeNPs is in 5.5 ± 1.5 nm, where ~ 5 nm spherical ones were 
in the most abundant form. Selected area diffraction (SAED) 
patterns reveal that the FeNPs had (012), (222), (200), (024), 
and (511) hkl indices. The hkl (012) and (024) belong to 
α-Fe2O3, the hkl (200) belongs to FeO (wustite), and (222) 
and (511) hkl indices belong to  Fe3O4 (magnetite) iron oxide 
crystal structures [49]. Besides, the d-spacing measured on 
an individual FeNP (the inset in Fig. 1A) shows that the 
FeNP had α-Fe2O3 form.
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Zeta potential and size distribution of LpAB-FeNP and 
LpAB-FeNP/anti-VEGF were characterized by DLS. The 
average size of the LpAB-FeNP was measured to be approxi-
mately 33.9 nm, with negative zeta potential − 10.1 ± 2.11. 
DLS recognizes hydrodynamic size while TEM only recog-
nizes size of the metallic core, so the size difference between 
the two techniques is expected. After the conjugation, the 
size of LpAB-FeNP/anti-VEGF increased to 74.4 nm, with 
a zeta potential of − 13.2 ± 2.01. The increase in hydrody-
namic particle size and the difference in zeta potential con-
firmed the successful covalent modification.

X-ray photoelectron spectroscopy (XPS) measurements 
are highly accurate and provide precise details about the 
chemical composition of the target species. In this study, 
XPS was used to thoroughly examine the binding between 
the conjugated molecules. Therefore, LpAB-FeNP sam-
ples and LpAB-FeNP/anti-VEGF conjugates were studied 
using XPS (Fig. 2). Figure 2A and Fig. 2D show Fig. 2C 
1 s photoelectron spectra of LpAB-FeNP and LpAB-FeNP/
anti-VEGF, respectively. Figure 2A shows three main peaks 
of C 1 s in LpAB-FeNP spectrum. The components centered 
at 285.18 eV for C, 286.68 eV for C-N/C-O or C = O, and 
288.38 eV for O-C = O resulted from the presence of car-
boxylic acid of the sugar ligand. The C 1 s spectrum for the 
LpAB-FeNP/anti-VEGF surface was deconvoluted into four 
peaks (Fig. 2D). The peaks were observed at 286.18, 286.98, 
288.88, and 294.78 eV belong to C–C bond [50], C-N/C-O 
or C = O bonds [45], amide groups (N–C = O) [51], and π-π* 
interaction [52].

Figure 2B shows the N 1 s spectrum, which exhibited 
three peaks corresponding to N–H/N–H + [53],  Fe2+, 
and  Fe3+ interacting N–H/N–H + at 399.98, 403.98, and 
406.88 eV, respectively [54]. The N 1 s deconvolution of 
LpAB-FeNP/anti-VEGF (Fig. 2E) gave two distinct groups 
of peaks. The peaks at 400.68 and 403.78 eV correspond to 
N–H, N–H + , N–O [55], and amide groups (N–C = O) [56], 

respectively, which support the covalent linkage between 
LpAB-FeNP and anti-VEGF. In Fig. 2C and Fig. 2E, the 
characteristic peak of Fe 2p3/2 is expected at 710.2 eV, 
which is indicative of the core level spectra of  Fe3O4 nano-
particles [57]. As illustrated, the peaks in the Fe 2p spectrum 
are situated at 726.68 eV for LpAB-FeNP and 710.88 eV 
for bivalent iron  (Fe2+) in LpAB-FeNP/anti-VEGF. Further-
more, the peaks at 712.48, 714.08, 718.38, and 726.98 eV 
can be attributed to trivalent iron  (Fe3+) [58]. The compo-
nent at 724.08 eV corresponds to Fe  2p1/2. According to 
the literature, the characteristic peak of zerovalent Fe  (Fe0) 
is expected at 719.9 eV [56]. As shown in Fig. 2F, a char-
acteristic peak at 719.98 eV for  Fe0 is observed. Combin-
ing all the XPS results, it can be concluded that the anti-
VEGF has been successfully conjugated onto the surface 
of LpAB-FeNP.

Analytical characterization of VEGF LpAB‑FeNP/
anti‑VEGF

Enzyme-mimicking nanomaterials have emerged as potential 
substitutes for natural proteins [59]. Similarly, an antibody-
based immunoassay was developed for C-reactive protein 
(CRP) [45] where a metal organic framework (MOF) labeled 
with anti-CRP was used as a probe. In the presence of CRP, 
the labeled anti-CRP forms a connection via affinity, and a 
fluorescence signal is generated depending on the target. In 
this study, a colorimetric analysis of immunoassay targeting 
different levels of  VEGF165 was performed using colorimet-
ric detection in PBS buffer (pH 7.4). Here, the LpAB-FeNP/
anti-VEGF conjugate was employed as the detection anti-
body, which was captured by  VEGF165 coated onto a 96-well 
plate. LpAB-FeNP served as the source of the colorimetric 
signal. The schematic presentation of the proposed immu-
noassay is given in Fig. 3.

Fig. 1  A HRTEM and B SAED 
images of LpAB-FeNP
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The investigated assay parameters for the detection were 
the concentration of BSA,  VEGF165 incubation time, and the 
concentration of anti-VEGF. The BSA concentration and incu-
bation time for  VEGF165 were determined based on previous 
studies [45, 60]. The calibration curve of the proposed  VEGF165 
determination assay exhibited a wide linear range between 0.5 
and 100 ng/mL with the best fit equation of y = 0.174x − 0.322. 
Absorbance values of  VEGF165 Log (pg/mL) at different con-
centrations are shown in the Supplementary Materials file 
(Table S1). Additionally, the correlation coefficient (R2) was 
calculated as 0.996, indicating a reliable relationship, as shown 
in Fig. 4B. Figure 4D presents an image depicting the potential 
impact of interferences on the proposed immunoassay platform.

The limit of detection (LOD) is a crucial parameter for 
assessing the analytical performance of a method with a cer-
tain level of confidence [61]. In the LpAB-FeNP/anti-VEGF 
immunoassay, the LOD was determined using 10 measure-
ments at the lowest concentration (0.5 ng/mL) on the calibra-
tion curve. LOD was calculated using the formula 3SD/m, 
where SD represents the standard deviation of 10 measure-
ments performed at the lowest  VEGF165 concentration and 

m represents the slope of the  VEGF165 calibration curve. 
The experimental determination of LOD in this study was 
0.29 ng/mL.

Table 1 provides an overview of the comparison of some 
VEGF sensors described in the literature. Based on signal 
transducer types, immunoassays can be classified as elec-
trochemical, colorimetric, or optical immunoassays. Among 
these, colorimetric immunoassays for disease biomarker 
detection have drawn much interest because of their ease of 
use and high level of effectiveness [62].

In the current literature, the tests are mostly performed 
using electrochemical and colorimetric methods. They fre-
quently employ aptamer/antibody combinations, offering 
high specificity and selectivity. Furthermore, the repeat-
ability, stability, and affordability of the test system can be 
improved by using antibodies and/or aptamers [75]. In our 
case, the results show that the prepared LpAB-FeNP/anti-
VEGF has many advantages over the others, including a 
better LOD and a broader linear detection range. The repeat-
ability of the immunoassay played a key role in our  VEGF165 
measurement platform. We investigated the repeatability 

Fig. 2  XPS spectrum of LpAB-
FeNP. A C 1 s LpAB-FeNP. 
B N 1 s LpAB-FeNP. C Fe 
LpAB-FeNP. D C 1 s LpAB-
FeNP/anti-VEGF. E N 1 s 
LpAB-FeNP/anti-VEGF. F Fe 
LpAB-FeNP/anti-VEGF
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through conducting eight measurements in the presence 
of 10 ng/mL  VEGF165 protein. The coefficient of variation 
(CV) of the platform was calculated as 0.152%.

The potential interference effects of glucose, urea, insulin, 
CRP, and SAA (common biological components found in 
blood) on the immunoassay response for detecting  VEGF165 

Fig. 3  Schematic demonstration of colorimetric immunoassay preparation platform

Fig. 4  A Optimization of anti-
VEGF concentration. B Cali-
bration curve of log  VEGF165 
(pg/mL) constructed by linear 
fitting. C The result of the 
proposed FeNP-based ELISA 
assay for  VEGF165 detection 
over some potentially interfer-
ing substances:  VEGF165, 10 ng/
mL; glucose, 10 mM; urea, 
0.1 mg/mL; insulin, 10 μlU/mL; 
CRP, 10 ng/mL; SAA, 10 ng/
mL. D Representative example 
of interference results obtained 
in the ELISA plate. Error bars 
show SD of at least three meas-
urements
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were examined. The reference levels for the interferences are 
0.35–5.0 mM for glucose [76], 0.10–0.16 mg/mL for urea [77], 
2–20 mIU/mL for insulin [78], lower than 0.3 to 1.0 mg/mL 
in healthy individuals for CRP [79], and 0.02–0.05 mg/mL 
for SAA under normal conditions [80] according to literature. 
LpAB-FeNP/anti-VEGF/VEGF165 was prepared, and the effect 
of each substance in the immunoassay response was evaluated 
using the colorimetric method in the presence of 10 ng/mL 
 VEGF165 (Fig. 4C, D). The selectivity was calculated to be 
96.84% for  VEGF165 + glucose, 102.22% for  VEGF165 + urea, 
99.86% for  VEGF165 + insulin, 100.54% for  VEGF165 + CRP, 
and 102.67%  VEGF165 + SAA as seen in Fig. 4C. The impact 
of the potential interferences was found to be lower than 5%, 
indicating that the immunoassay exhibited excellent selectivity. 
Therefore, glucose, urea, insulin, CRP, and SAA did not inter-
fere with the LpAB-FeNP/anti-VEGF immunoassay platform.

The proposed immunosensor platform was employed to 
determine  VEGF165 in the artificial blood sample. A known 
amount of  VEGF165 (10 ng/mL) was added to artificial serum 
and determined the recovery % with LpAB-FeNP/anti-VEGF. 
The recovery % of  VEGF165 detection was calculated as 95.16%, 
and the relative standard deviation (RSS) was calculated as 5.08. 
Confirming the system’s validity, the obtained result falls within 
the acceptable recovery range of 95–105% [81].

Conclusion

In this study, we successfully designed a colorimetric 
measurement system for the detection of  VEGF165. The 
developed LpAB-FeNP/anti-VEGF immunoassay platform 

offers several advantages, including short analysis time, 
high accuracy, high specificity, reduced sample volume, 
and low cost. Besides, the wide linear range and low detec-
tion limit, this developed simple ELISA approach reduces 
the utilization of extended assay time and consumption 
of chemicals and antibodies. Therefore, the developed 
platform can be an alternative method in the detection of 
VEGF, which can be expanded to the detection of different 
analytes that are critically important in diagnostics.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00604- 024- 06228-0.

Acknowledgements The authors would like to thank Prof. Dr. Dilek 
Odacı in Biochemistry Department, Ege University, for the use of labo-
ratory facilities and valuable comments.

Author contribution Conceptualization: Hülya Kuduğ Ceylan, Fatma 
Öztürk Kırbay, and İdris Yazgan; formal analysis and investigation: 
Hülya Kuduğ Ceylan, Fatma Öztürk Kırbay, and İdris Yazgan; writ-
ing—original draft preparation: Hülya Kuduğ Ceylan and Fatma 
Öztürk Kırbay; writing—review and editing: Hülya Kuduğ Ceylan, 
Fatma Öztürk Kırbay, İdris Yazgan, and Murat Elibol; funding acquisi-
tion: Murat Elibol; supervision: Murat Elibol and İdris Yazgan.

Funding Open access funding provided by the Scientific and Techno-
logical Research Council of Türkiye (TÜBİTAK). This study is sup-
ported by Ege University Scientific Research Projects Coordination 
Unit (Project Number FOA-2020–21791).

Data availability Data will be made available on request.

Declarations 

Ethical approval This article does not contain any studies with human 
participants or animals performed by any of the authors.

Table 1  Comparison of VEGF determination studies summarized in literature

RGO/Au NPS reduced graphene oxide/Au nanoparticles, GO G-quadruplex aptamer, GO/MB-AuNPs-aptamer-Fc graphene oxide/methylene 
blue-AuNP-ferrocene-labeled aptamer, AuNA@NC Au nanoarchitecture (Au NA) embedded with nanochitosan, Fe3O4/Fe2O3@Au magnetic 
iron-gold nanoparticles, VEGFR1 vascular endothelial growth factor receptor-1, Au/3-MPA gold electrode/3-mercaptopropionic acid, GO-ssDNA 
graphene oxide/ssDNA, Cd(II)@LP cadmium-loaded liposome, Cu(II)@LP cupper-loaded liposome, Cat catalase

Target Detection method Nanomaterial Linear detection for VEGF LOD Ref

VEGF Electrochemical RGO/Au NPs 2–20,000 ng/mL 6 fg/mL [63]
VEGF Fluorescence GO/Aptamer 0.32–5.0 nM 0.32 nM [64]
VEGF Fluorescence Quantum dot microspheres 25–1600 pg/mL - [65]
VEGF Electrochemical DNA aptamer 5 pM 50 pM–0.15 nM [66]
VEGF Electrochemical GO/MB-AuNPs-aptamer-Fc sensing 2–500 pg/mL 0.1 pg/mL [67]
VEGF Electrochemical AuNA@NC 0.01–10 ng/mL 6.77 pg/mL [68]
VEGF165 Electrochemical Fe3O4/Fe2O3@Au 0.01–10 pg/mL 0.01 pg/mL [69]
VEGFR1 Electrochemical Au/3-MPA 10–70 pg/mL - [70]
VEGF Electrochemical GO-ssDNA 0.05–100 ng/mL 50 pg/mL [71]
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VEGF Chemiluminescence CdTe QD/H2O2 2–35,000 pg/mL 0.5 pg/mL [73]
VEGF165 Colorimetric G-quadruplex DNAzymes/Cat 24.00 pM–11.25 nM 1.70 pM [74]
VEGF165 Colorimetric LpAB-FeNP 0.5–100 ng/mL 0.29 ng/mL This study
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