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Abstract
The identification and correction of negative factors, such as 4-ethylphenol and ethanethiol, is important to comply with food 
safety regulations and avoid economic losses to wineries. A simple amperometric measurement procedure that facilitates 
the simultaneous quantification of both compounds in the gas phase has been developed using fullerene and cobalt (II) 
phthalocyanine-modified dual screen-printed electrodes coated with a room temperature ionic liquid-based gel polymer 
electrolyte. The replacement of the typical aqueous supporting electrolyte by low-volatility ones improves both operational 
and storage lifetime. Under the optimum conditions of the experimental variables, Britton Robinson buffer pH 5 and applied 
potentials of + 0.86 V and + 0.40 V for each working electrode (vs. Ag ref. electrode), reproducibility values of 7.6% (n = 3) 
for 4-ethylphenol and 6.6% (n = 3) for ethanethiol were obtained, as well as capability of detection values of 23.8 μg/L and 
decision limits of 1.3 μg/L and 9.2 μg/L (α = β = 0.05), respectively. These dual electrochemical devices have successfully 
been applied to the headspace detection of both compounds in white and red wines, showing their potential to be routinely 
used for rapid analysis control in wineries.

Keywords 4-Ethylphenol · Ethanethiol · Wine analysis · Dual screen-printed carbon electrodes · Gas sensor · Gas-phase 
amperometry · Room temperature ionic liquid

Introduction

The production of high-quality wines that do not contain 
any faults or defects is a priority for winemakers. In addi-
tion, to comply with food safety regulations, the identifica-
tion and correction of negative factors, such as off-odors, can 
avoid economic losses, since pleasure on consumption and 
reputation strongly influence the image of a wine and its pur-
chase. Among them, volatile phenols, such as 4-ethylphenol 
reminiscent of stables and sweaty saddles, and volatile sulfur 
compounds, such as ethanethiol reminiscent of rotten-onion at 
threshold levels and fecal odor at higher levels, clearly have a 
negative influence on a wine quality [1, 2]. On the one hand, 
contaminated wines by Brettanomyces yeast can suffer the 

enzymatic transformation of grape hydroxycinnamic acids 
into ethylphenols [3, 4]. On the other hand, the formation of 
traces of mercaptans can be considered only a small anomaly 
in the biochemistry of fermentation, but their sensory impact 
can even alter the aroma of bottled wines [5, 6]. Thus, sim-
ple measurement procedures that facilitate the simultaneous 
quantification of these notable and harmful compounds are 
necessary in wine quality control, with the aim of making 
early preventive diagnoses. In addition to chromatographic 
procedures [7–14], analytical instrumentation based on the 
use of electrochemical sensors has also been developed to 
detect electroactive redox species in a matrix as complex as 
wine [15]. The latter stand out for their high sensitivity, low 
cost, and, above all, for their compact size given their ability 
to be miniaturized, which makes them ideal portable instru-
ments for in situ measurements. In this way, the voltammet-
ric currents of 4-ethylphenol and ethanethiol, representing 
mercaptans, have been registered at hanging mercury drop 
electrodes [6], graphite epoxy composites [16], molecularly 
imprinted polypyrrole-based glassy carbon electrodes [17, 
18] or screen-printed carbon electrodes (SPCEs) modified by 
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gold nanoparticles [19], fullerene  (C60) [20, 21], and cobalt 
(II) phthalocyanine (CoPh) [22]. Electrochemical gas sensors, 
which are based on the detection of electron transferred during 
the oxidation or reduction of volatile targets at the working 
electrode, are quite attractive for this aim since the number 
of species that can interfere the analytical signal is reduced. 
Moreover, these sensors hold improving practices in wine 
analysis given that the sample is not altered [20, 22]. Acti-
vated  C60-modified SPCEs  (AC60/SPCEs) and CoPh-modified 
SPCEs (CoPh/SPCEs) have already highlighted their ability 
to individually quantify 4-ethylphenol and ethanethiol in wine 
samples, using a two-step procedure in which the voltammet-
ric measurements are carried out in solution after an incuba-
tion process in gas phase [20] or directly at the headspace of 
a sealed cell [22]. The main drawbacks of these sensors are 
related to their operational and storage lifetime, limited due 
to the evaporation of the nonreactive electrolyte in which the 
electrodes must be immersed (supporting electrolyte), which 
were pre-loaded by adsorption at the devices. As it has been 
described at the bibliography, the typical aqueous support-
ing electrolyte can be replaced by low-volatility materials, 
such as Nafion [23] or room temperature ionic liquids (RTILs) 
[24, 25]. Up to now, diverse approaches have been attempted 
for the implementation of solid supporting electrolytes onto 
electrochemical devices, ranging from the use of direct Nafion 
[23], RTIL [26] or RTIL/ethanol mixtures [27] drop-casted 
onto the sensor surface, RTILs dried at 60 °C for 1 day [28], 
to blends of RTILs, poly(vinylidene fluoride) (PVDF), and 
organic solvents such as 1-methyl-2-pyrrolidone (NMP) [29] 
or N,N-dimethylformamyde (DMF) [30, 31]. In this work, 
the performance of the simultaneous headspace amperomet-
ric quantification of 4-ethylphenol and ethanethiol, associ-
ated to important organoleptic defects, has been studied using 
 AC60 and CoPh-modified dual SPCEs coated with different 
solid-state supporting electrolytes. These dual electrochemi-
cal devices have successfully been applied to the headspace 
detection of both compounds in white and red wines, showing 
their potential to be routinely used for rapid analysis control in 
wineries, that is, as a kind of point-of-care application.

Experimental

Chemicals and instrumentation

All chemicals were used of analytical reagent grade. Solu-
tions were prepared in Milli-Q water (Millipore, Bedford, 
MA, USA). Britton Robinson buffer, 0.04 M phosphoric 
acid (Panreac, Barcelona, Spain), acetic acid 0.04 M (VWR 
Chemical, Fontenay, France) and boric acid 0.04 M (Pan-
reac, Barcelona, Spain), and 0.1 M potassium chloride 
(Merck, Darmstadt, Germany) solutions were used. A 1 M 

NaOH solution (Ecros, Barcelona, Spain) was used to adjust 
the pH.

Standard solutions of 4-ethylphenol (Alfa Aesar, 
Haverhill, Massachusetts, USA) and ethanethiol (VWR 
Chemicals, Rosny-sous-Bois, France) were prepared by 
dissolving the adequate amount of each reagent in Milli-
Q water.

C60 (Acros Organics, Geel, Belgium) and CoPh (Alfa 
Aesar, Karlsruhe, Germany) solutions were prepared 
in dichloromethane (Panreac, Barcelona, Spain) and 
ethanol (VWR Chemicals, Rosny-sous-Bois, France), 
respectively. 1.0 M potassium hydroxide solutions (Carlo 
Erba, Val de Reuil, France) were used to activate  C60.

Nafion (Sigma-Aldrich, Steinheim am Albuch, Ger-
many), 1-methyl-3-octylimidazolium hexafluorophos-
phate  ([OMIM]PF6, Sigma-Aldrich, San Luis, MO, USA), 
1-n-butyl-3-methylimidazolium hexafluorophosphate 
 ([BMIN]PF6, Thermo Fisher Scientific, Waltham, MA, 
USA), PVDF (Thermo Fisher Scientific, Waltham, MA, 
USA), and NMP (VWR International, Radnor, Pennsylva-
nia, USA) were used as solid supporting electrolytes.

A potentiostat PalmSens4 (PalmSens, BV, Houten, The 
Netherlands) and SPCEs based on a 3-electrode configura-
tion (DRP-C11L, Metrohm DropSens, Oviedo, Spain) and 
dual SPCEs (ED-D2PE-C, MicruX Technologies, Gijón, 
Spain) contain a silver reference, a carbon auxiliary and 
2-carbon working electrodes were used for the electro-
chemical measurements. All the working potentials in this 
work were applied vs this reference electrode.

Dual SPCE modification

The 2-working electrodes were individually modified 
using  C60 and CoPh in order to build a sensitive and 
selective sensor for both 4-ethylphenol and ethanethiol, 
one-to-one, according to previously described procedures 
(Fig. 1a) [20, 22]. Forty microliters of a 0.1 mg/mL solu-
tion of  C60 in dichloromethane was coated on the carbon 
working electrode surface and allowed to dry at room 
temperature. It has been reported a low electrochemical 
activity of  C60 in aqueous solution, so an activation step 
was carried out in order to enhance its electron trans-
fer capacity to the electrode surface. Fifty microliters 
of a 1 M KOH solution was dropped onto the device 
and a cyclic voltammogram between 0 and − 1.5 V was 
recorded at 10 mV/s. The partially reduced  C60-modified 
electrode  (AC60/SPCE1) becomes conducting in this way 
[20, 32]. The second working electrode was modified 
by drop-casting a volume of 10 μL of a 5% w/v solution 
of CoPh in ethanol and left to dry at room temperature 
(CoPh/SPCE2) [22].
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AC60 and CoPh‑modified dual SPCEs coated with gel 
polymer electrolytes based on the use of RTILs

The four electrodes must be immersed in supporting elec-
trolyte to make up the electrochemical cell completely. The 
gel polymer electrolyte was prepared by dispersing PVDF in 
NMP at a mass ratio of 1:10 and stirred at 500 rpm for 10 min 
at 60 °C. Then, this mixture was added to  [OMIM]PF6 or 
 [BMIN]PF6 in a mass ratio of 1:2 and stirred until homog-
enization for a few minutes at 60 °C [33]. Finally, 3 μL of the 
gel mixture was deposited onto the four electrodes, forming a 
thin and reproducible film. The developed devices were kept 
at room temperature until use (Fig. 1b).

Electrochemical measurements

Modified dual SPCEs were placed on top of a sealed cell 
containing 1 mL of Britton Robinson buffer pH 5, except 
for the optimization process, avoiding contact. The cell was 
manufactured using a UV resin for 3D printers with a side 
hole that allows the introduction of samples (Figure S1). 
Amperometric measurements were performed by applying 
a potential of + 0.86 V to  AC60/SPCE1 and + 0.40 V to CoPh/
SPCE2, except for the optimization process. Once constant 
intensities were recorded, a volume of 50 μL of a 0.5 mg/L 
solution of both ethanethiol and 4-ethylphenol was added 
to the cell, recording the corresponding increase in current 
due to the oxidation process that takes place on the surface 
of both electrodes.

Commercial wine samples, analyzed without any kind 
of sample pre-treatment, and fortified wine samples at 
23.8 μg/L or 43.6 μg/L of 4-ethylphenol and ethanethiol, 
prepared by adding the corresponding amount of solutions 
of each analyte to the wine sample, were analyzed as 
well by the standard addition method [34]. Thus, once 
constant intensities were recorded, a volume of 50 μL of 

the corresponding wine sample (unknown sample) was first 
added to the electrochemical cell, following by additions of 
a solution of known concentration of both ethanethiol and 
4-ethylphenol.

Results

The simultaneous headspace amperometric quantification 
of 4-ethylphenol and ethanethiol was attempted using 
modified dual SPCEs, containing  AC60/SPCE1 and CoPh/
SPCE2 as it has been described above. Careful choice of the 
composition of the supporting electrolyte should improve 
the performance of this device in terms of operational and 
storage stability, so low-volatility materials were studied to 
replace the typical aqueous supporting electrolyte.

The behavior of  AC60 and CoPh-modified dual SPCEs 
covered with Nafion was studied [23]. A volume of 5 μL of 
a mixture of a Nafion solution (2% in ethanol) and buffer, 
in different percentages (100:0, 50:50, and 25:75), was 
dropped onto the modified dual SPCEs and left to dry at 
room temperature. The obtained results were similar in all 
the three experiences: while nice signals for ethanethiol 
were obtained, no oxidation currents were registered for 
4-ethylphenol due to a kind of blocked effect of the  AC60/
SPCE1 by the Nafion membrane.

As an alternative, RTILs can also be used as electro-
lytes on solid supports considering their non-volatility 
and the high ionic conductivity [24]. So, RTILs such as 
 [OMIM]PF6 and  [BMIM]PF6 were directly deposited 
by drop-casting onto the modified dual devices, but no 
reproducible currents were recorded due to their leakage. 
Consequently, the RTIL-modified devices were left to dry 
at 100 °C for 1 h and washed to remove the excess of 
electrolyte prior to use. In the case of  AC60 and CoPh-
modified SPCEs covered with  [OMIM]PF6, the most 

Fig. 1  a  AC60 and CoPh-modified dual SPCEs and b  AC60 and CoPh-modified dual SPCEs, coated with a gel polymer electrolyte based on the 
use of  [OMIM]PF6, for the simultaneous detection of 4-ethylphenol and ethanethiol
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influential experimental variables, pH of the supporting 
electrolyte and applied potential, were individually opti-
mized to obtain the highest current for the detection of 
4-ethylphenol and ethanethiol.

22 central composite designs were carried out taking as 
response to the oxidation current of 9.8 µg/L solutions of 
both analytes. The analysis of the variance of the obtained 
data, performed using the Statgraphics software [35], 
showed that the values that maximize the oxidation response 
of 4-ethylphenol were + 0.76 V and pH 2.8, and + 0.55 V 
and pH 5.1 in the case of ethanethiol. However, poor results 
were obtained either at pH 2.8 or at 5.1 when  AC60 and 
CoPh-modified dual SPCEs covered with [OMIM][PF6] or 
[BMIM]PF6 were used, since the response was similar in 
both electrodes although a different potential was applied 
to each one. This was attributed to the fact that a mixture of 
both modifications was possibly produced when covering 
the electrodes with the RTILs.

Thus, solid polymer electrolytes based on the use of both 
RTILs were also attempted. Membranes were prepared 
by combining different ratios of a RTIL, PVDF as poly-
mer matrix and NMP as solvent (Table S1), stirring them 
until a homogeneous mixture was formed and left to dry at 
100 °C during 60 min [29]. It was observed that the greater 
the amount of polymer used in the mixture, the worse the 
adhesion of the membrane to the device. On many occa-
sions, this membrane even ended up falling into the solution. 
In the cases where the membrane was well adhered to the 
surface, no quantifiable oxidation signals for both analytes 
were recorded, which was attributed to a scarce diffusion of 
the volatile analytes to the working electrodes (Figure S2). 
It has already been reported that the thermal treatment of 
PVDF-based solid polymer electrolytes influences the sen-
sitivity, since higher crystallization temperature resulted in 
lower porosity [29, 33].

So, a gel polymer electrolyte was built using a lower PVDF 
concentration and a lower drying temperature, according to 
the procedure described in “AC60 and CoPh-modified dual 
SPCEs coated with gel polymer electrolytes based on the use 
of RTILs” section, reaching in this way both nice membrane 
adhesion and oxidation currents for both 4-ethylphenol and 
ethanethiol when  [OMIM]PF6 was used. In order to obtain 
the best signal for the simultaneous detection of both ana-
lytes, different pH values in the range from 2 to 5 and applied 
potentials from + 0.1 to + 1.0 V were studied. The optimum 
values that led to the maximum oxidation currents were Brit-
ton Robinson buffer pH 5 and applied potential of + 0.86 V 
for  AC60-SPCE1 and + 0.4 V for CoPh-SPCE2 (Fig. 2). Under 
these conditions, increasing oxidation currents were registered 
with increasing concentrations of ethanethiol at the CoPh-
SPCE2, while the  AC60-SPCE1 was only able to record the 
effect of the addition of the solution into the electrochemi-
cal cell. On the contrary, increasing oxidation currents were 
registered with increasing concentrations of 4-ethylphenol 
at the  AC60-SPCE1, but no signals were recorded at the 
CoPh-SPCE2.

Different calibration curves were constructed to study 
the performance of this procedure in terms of precision and 
capability of detection, under these optimum conditions, by 
adding both 4-ethylphenol and ethanethiol simultaneously 
into the electrochemical cell, in such a way that their con-
centration ranges from 23.8 to 83.3 μg/L (Fig. 3). Outli-
ers’ points with a studentized residual above 2.5 in absolute 
value were removed to provide a proper evaluation of the 
calibration parameters obtained by ordinary least squares 
regression [35]. In the case of the reproducibility, the slopes 
of calibration curves recorded using different  AC60 and 
CoPh-modified dual SPCEs coated with a  [OMIM]PF6-
based gel polymer electrolyte were evaluated in terms of 
relative standard deviation (RSD), reaching a value of 7.6% 

Fig. 2  Headspace amperometric 
measurements performed for the 
detection of 4-ethylphenol and 
ethanethiol in Britton Robin-
son buffer pH 5 using a dual 
 AC60/SPCE1 (applied poten-
tial, + 0.86 V) and CoPh/SPCE2 
(applied potential, + 0.40 V) 
device modified by a gel 
polymer electrolyte based on 
 [OMIM]PF6
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(n = 3) for the  AC60/SPCE1 and 6.6% (n = 3) for the CoPh/
SPCE2 (Table 1 and figure S3). When these kinds of meas-
urements were carried out using a single  AC60 and CoPh-
modified dual SPCEs coated with a  [OMIM]PF6-based gel 
polymer electrolyte, it already observed a decrease in the 
slope of the third calibration curve (Table S2 and figure S4). 
Although the repeatability of these devices was slightly 
worse than their reproducibility, this was not considered 
a major drawback considering their disposable nature and 
ease of construction. Decision limit (CCα) and capability 
of detection (CCβ) were also estimated on the base of the 
validated calibration curves, according to the ISO 11843 
approach [36], using the DETARCHI program [37]. CCα of 
the procedure is defined as the lowest concentration level at 
which the method can discriminate if the analyte of interest 
is in the sample with a probability of 1–α, where α is the 
probability of false positive. In this way, limit of decisions 
of 1.3 μg/L and 9.2 μg/L were achieved for 4-ethylphenol 
and ethanethiol, respectively. Likewise, CCβ is estimated 
as the lowest concentration level of analyte that the method 

can detect with a probability of 1–β, where β is the probabil-
ity of false negative. When using α = β = 0.05 values, both 
results were under the concentration of the first standard, 
23.8 μg/L, so this value was taken as the capability of detec-
tion for both analytes from an analytical point of view [38]. 
This performance is as good as that achieved using indi-
vidual electrochemical gas sensors (Table S3), with the great 
advantage that the sensors developed in this work allow the 
simultaneous detection of both analytes and their use for a 
longer time, due to the use of gel polymer electrolytes. In 
fact, it was possible to use these devices at least 15 days after 
their manufacture, having been stored at room temperature.

The selectivity of the developed method was studied, 
considering the possibility that other volatile phenols and 
thiols present in the wine matrix could alter the ampero-
metric response of 4-ethylphenol and ethanethiol. For this 
purpose, two volatile phenols were selected: 4-ethylguaiacol, 
which has a structure like 4-ethylphenol and 4-vinylphenol, 
a precursor of 4-ethylphenol; and a thiol, 4-mercaptoben-
zoic acid. Under the optimum measurements’ conditions 

Fig. 3  Headspace amperometric 
measurements performed for 
the simultaneous detection of 
4-ethylphenol and ethanethiol 
in Britton Robinson buffer pH 
5 using a dual  AC60/SPCE1 
(applied potential, + 0.86 V) and 
CoPh/SPCE2 (applied poten-
tial, + 0.40 V) device modified 
by a gel polymer electrolyte 
based on  [OMIM]PF6. Each 
addition corresponds to 50 μL 
of a 500 μg/L of 4-ethylphenol 
and ethanethiol solution

Table 1  Calibration parameters 
obtained through ordinary least 
squares regressions without 
outliers for the determination of 
4-ethylphenol and ethanethiol 
using different  AC60 and CoPh-
modified dual SPCEs coated 
with a  [OMIM]PF6-based gel 
polymer electrolyte under the 
optimum conditions

4-Ethylphenol 
concentration range 
(μg/L)

Intercept (nA) Slope (nA (μg/L)−1) Coefficient of 
determination 
(R2)

Standard 
error of 
estimate 
 (Syx)

23.8–83.3  − 1.65 0.14 0.998 0.194
23.8–83.3  − 1.20 0.12 0.998 0.175
23.8–83.3  − 2.30 0.14 0.999 0.036
Ethanethiol concen-

tration range (μg/L)
Intercept (nA) Slope (nA (μg/L)−1) Coefficient of 

determination 
(R2)

Standard 
error of 
estimate 
 (Syx)

23.8–83.3 1.67 0.13 0.999 0.136
23.8–83.3  − 0.64 0.15 0.999 0.126
23.8–83.3 0.96 0.13 0.994 0.246
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for the simultaneous determination of 4-ethylphenol and 
ethanethiol, no alteration in the amperometric response was 
obtained due to the presence of these compounds, so they 
were not considered interferents.

The applicability of the method was verified by the 
simultaneous determination of 4-ethylphenol and ethanethiol 
in different wine samples. Four different commercial 
samples from different grape variety were studied without 
finding the presence of analyte in any of them. Recovery 
experiments were also performed by the analysis of fortified 
wine samples at two levels by the standard addition method 
(Table  2), obtaining values from 91 to 105%, which 
highlights the applicability of the developed analytical 
method to be routinely used for rapid analysis control in 
wineries [34].

Conclusions

AC60 and CoPh-modified dual SPCEs coated with a  [OMIM]
PF6-based gel polymer electrolyte enable the simultaneous 
quantification of 4-ethylphenol and ethanethiol in the gas 
phase. The use of this gel polymer electrolyte to immerse the 
four electrodes instead of the typical aqueous ones improves 
the performance of this device in terms of operational and 
storage lifetime. In this way, it has been possible to build 
reproducibility sensors, with RSD of 7.6% (n = 3) for 4-eth-
ylphenol and 6.6% (n = 3) for ethanethiol, and to use them 
at least 15 days after their manufacture, having been stored 
at room temperature, for the quantification of 4-ethylphenol 
and ethanethiol in white and red wines, obtaining recov-
ery values greater than 91% for both analytes. Headspace 

amperometric measurements of these notable and harmful 
compounds, associated to important organoleptic defects in 
wine, are quite attractive since not only the number of spe-
cies that can interfere the analytical signal is reduced, but 
also wine samples are not altered. Considering this success-
ful application, these dual amperometric sensors are promis-
ing candidates for use in rapid analysis control in wineries, 
with the aim of making early preventive diagnoses routinely.
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Table 2  Determination of 
4-ethylphenol and ethanethiol 
in different wine samples using 
 AC60 and CoPh-modified 
dual SPCEs coated with a 
 [OMIM]PF6-based gel polymer 
electrolyte

Sample Analyte Concentration added 
(μg/L)

Concentration found 
(μg/L)

Recovery (%)

White wine 1 4-Ethylphenol 23.8 22.3 ± 1.7 93.7
Ethanethiol 23.8 22.8 ± 2.0 95.6
4-Ethylphenol 46.7 44.8 ± 2.2 96.0
Ethanethiol 46.7 43.0 ± 3.8 92.1

White wine 2 4-Ethylphenol 23.8 22.0 ± 2.0 92.4
Ethanethiol 23.8 21.8 ± 2.8 91.6
4-Ethylphenol 46.7 46.8 ± 2.4 100.2
Ethanethiol 46.7 47.8 ± 3.4 102.4

Red wine 1 4-Ethylphenol 23.8 23.92 ± 1.6 100.4
Ethanethiol 23.8 23.08 ± 1.7 96.9
4-Ethylphenol 46.7 44.3 ± 3.3 94.9
Ethanethiol 46.7 42.6 ± 4.4 91.2

Red wine 2 4-Ethylphenol 23.8 24.5 ± 1.1 102.9
Ethanethiol 23.8 24.9 ± 3.3 104.6
4-Ethylphenol 46.7 46.0 ± 3.3 98.5
Ethanethiol 46.7 46.2 ± 3.0 99.0
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