Skip to main content
Log in

Boron difluoride modified zinc metal–organic framework-based “off–on” fluorescence sensor for tetracycline and Al3+ detection

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel fluorescence “off–on” probe was developed using a boron difluoride–modified zinc metal–organic framework (Zn-MOF3) for sensitive determination of tetracycline (TC) and Al3+. The Zn-MOF3 has excellent optical property and good applicability in aqueous phase. The fluorescence recorded at 436 nm was quenched at the excitation wavelength of 336 nm. Signal-off detection of tetracycline via fluorescence quenching of Zn-MOF3 is based on the inner filter effect. Fluorescence on–off-on detection of Al3+ occurs via the specific binding between tetracycline and Al3+. The limits of detection for TC and Al3+ were 28.4 nM and 106.7 nM, respectively. This probe exhibited high selectivity which was used for the determination of TC and Al3+ with satisfied recoveries (89.8 to 105.6% for TC, 90.0 to 110.4% for Al3+) and good precision (< 5%) in milk. The developed sensor represents the first “off–on” system for fluorescence detection of TC and Al3+ based on Zn-MOF3 with a better aspect of the innovation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jin Y, Zhang J, Zhao W, Zhang W, Wang L, Zhou J, Li Y (2017) Development and validation of a multiclass method for the quantification of veterinary drug residues in honey and royal jelly by liquid chromatography–tandem mass spectrometry. Food Chem 221:1298–1307

    CAS  PubMed  Google Scholar 

  2. Granados JAO, Thangarasu P, Singh N, Vázquez-Ramos JM (2019) Tetracycline and its quantum dots for recognition of Al3+ and application in milk developing cells bio-imaging. Food Chem 278:523–532

    CAS  PubMed  Google Scholar 

  3. Granados-Chinchilla F, Rodríguez C (2017) Tetracyclines in food and feedingstuffs: from regulation to analytical methods, bacterial resistance, and environmental and health implications. J Anal Methods Chem 2017:1315497

    PubMed  PubMed Central  Google Scholar 

  4. Xie J, Li C, Li Y, Fu Y, Nie S, Tan H (2017) A near-infrared chemosensor for determination of trivalent aluminum ions in living cells and tissues. Dyes Pigm 136:817–824

    CAS  Google Scholar 

  5. Xie X, Qin Y (2011) A dual functional near infrared fluorescent probe based on the bodipy fluorophores for selective detection of copper and aluminum ions. Sensors Actuators B: Chem 156(1):213–217

    CAS  Google Scholar 

  6. Ahmadi F, Shahbazi Y, Karami N (2015) Determination of tetracyclines in meat using two phases freezing extraction method and HPLC-DAD. Food Anal Methods 8(7):1883–1891

    Google Scholar 

  7. Miranda JM, Rodríguez JA, Galán-Vidal CA (2009) Simultaneous determination of tetracyclines in poultry muscle by capillary zone electrophoresis. J Chromatogr A 1216(15):3366–3371

    CAS  PubMed  Google Scholar 

  8. Devkota L, Nguyen LT, Vu TT, Piro B (2018) Electrochemical determination of tetracycline using AuNP-coated molecularly imprinted overoxidized polypyrrole sensing interface. Electrochim Acta 270:535–542

    CAS  Google Scholar 

  9. Wang G, Zhang H, Liu J, Wang J (2019) A receptor-based chemiluminescence enzyme linked immunosorbent assay for determination of tetracyclines in milk. Anal Biochem 564–565:40–46

    PubMed  Google Scholar 

  10. Wu Q, Peng D, Liu Q, Shabbir MAB, Sajid A, Liu Z, Wang Y, Yuan Z (2019) A novel microbiological method in microtiter plates for screening seven kinds of widely used antibiotics residues in milk, chicken egg and honey. Front Microbiol 10:436

    PubMed  PubMed Central  Google Scholar 

  11. Kanu AB (2021) Recent developments in sample preparation techniques combined with high-performance liquid chromatography: a critical review. J Chromatogr A 1654:462444

    CAS  PubMed  Google Scholar 

  12. Khanhuathon Y, Siriangkhawut W, Chantiratikul P, Grudpan K (2015) Spectrophotometric method for determination of aluminium content in water and beverage samples employing flow-batch sequential injection system. J Food Compost Anal 41:45–53

    CAS  Google Scholar 

  13. Nguyen KL, Lewis DM, Jolly M, Robinson J (2004) Determination of soluble aluminium concentration in alkaline humic water using atomic absorption spectrophotometry. Water Res 38(19):4039–4044

    CAS  PubMed  Google Scholar 

  14. Frankowski M, Zioła-Frankowska A, Kurzyca I, Novotný K, Vaculovič T, Kanický V, Siepak M, Siepak J (2011) Determination of aluminium in groundwater samples by GF-AAS, ICP-AES, ICP-MS and modelling of inorganic aluminium complexes. Environ Monit Assess 182(1):71–84

    CAS  PubMed  Google Scholar 

  15. Hong YS, Choi JY, Nho EY, Hwang IM, Khan N, Jamila N, Kim KS (2019) Determination of macro, micro and trace elements in citrus fruits by inductively coupled plasma–optical emission spectrometry (ICP-OES), ICP–mass spectrometry and direct mercury analyzer. J Sci Food Agric 99(4):1870–1879

    CAS  PubMed  Google Scholar 

  16. Zhang Z, Wu M, Phan A, Alanazi M, Yong J, Ping XuZ, Sultanbawa Y, Zhang R (2023) Development of europium(III) complex functionalized silica nanoprobe for luminescence detection of tetracycline. Methods 214:1–7

    CAS  PubMed  Google Scholar 

  17. Zhang Z, Zhang H, Tian D, Phan A, Seididamyeh M, Alanazi M, Ping XuZ, Sultanbawa Y, Zhang R (2024) Luminescent sensors for residual antibiotics detection in food: recent advances and perspectives. Coord Chem Rev 498:215455

    CAS  Google Scholar 

  18. Ali M, Shah I, Kim SW, Sajid M, Lim JH, Choi KH (2018) Quantitative detection of uric acid through ZnO quantum dots based highly sensitive electrochemical biosensor. Sens Actuator A: Phys 283:282–290

    CAS  Google Scholar 

  19. Ensafi AA, Nasr-Esfahani P, Rezaei B (2018) Synthesis of molecularly imprinted polymer on carbon quantum dots as an optical sensor for selective fluorescent determination of promethazine hydrochloride. Sensors Actuators B: Chem 257:889–896

    CAS  Google Scholar 

  20. Yuvasri GS, Goswami N, Xie J (2019) AIE-type metal nanoclusters: synthesis, luminescence, fundamentals and applications. In: Tang Y, Tang BZ (eds) Principles and applications of aggregation-induced emission. Springer International Publishing, Cham, pp 265–289

    Google Scholar 

  21. Wang Y, Liu X, Wang M, Wang X, Ma W, Li J (2021) Facile synthesis of CDs@ZIF-8 nanocomposites as excellent peroxidase mimics for colorimetric detection of H2O2 and glutathione. Sensors Actuators B: Chem 329:129115

    CAS  Google Scholar 

  22. Zhou H-CJ, Kitagawa S (2014) Metal–organic frameworks (MOFs). Chem Soc Rev 43(16):5415–5418

    CAS  PubMed  Google Scholar 

  23. Stock N, Biswas S (2012) Synthesis of metal-organic frameworks (MOFs): routes to various mof topologies, morphologies, and composites. Chem Rev 112(2):933–969

    CAS  PubMed  Google Scholar 

  24. Jiao L, Seow JYR, Skinner WS, Wang ZU, Jiang H-L (2019) Metal–organic frameworks: structures and functional applications. Mater Today 27:43–68

    CAS  Google Scholar 

  25. Ashworth C (2017) Metal–organic frameworks: molten MOFs. Nat Rev Mater 2(11):17074

    ADS  Google Scholar 

  26. Pang Y, Cao Y, Han J, Xia Y, He Z, Sun L, Liang J (2022) A novel fluorescence sensor based on Zn porphyrin MOFs for the detection of bisphenol A with highly selectivity and sensitivity. Food Control 132:108551

    CAS  Google Scholar 

  27. Zheng X, Zhao Y, Jia P, Wang Q, Liu Y, Bu T, Zhang M, Bai F, Wang L (2020) Dual-emission Zr-MOF-based composite material as a fluorescence turn-on sensor for the ultrasensitive detection of Al3+. Inorg Chem 59(24):18205–18213

    CAS  PubMed  Google Scholar 

  28. Pan Y, Wang J, Guo X, Liu X, Tang X, Zhang H (2018) A new three-dimensional zinc-based metal-organic framework as a fluorescent sensor for detection of cadmium ion and nitrobenzene. J Colloid Interface Sci 513:418–426

    ADS  CAS  PubMed  Google Scholar 

  29. Kumar P, Deep A, Kim K-H (2015) Metal organic frameworks for sensing applications. TrAC, Trends Anal Chem 73:39–53

    CAS  Google Scholar 

  30. Xu L, Fang G, Liu J, Pan M, Wang R, Wang S (2016) One-pot synthesis of nanoscale carbon dots-embedded metal–organic frameworks at room temperature for enhanced chemical sensing. J Mater Chem A 4(41):15880–15887

    CAS  Google Scholar 

  31. Kumar A, Chowdhuri AR, Kumari A, Sahu SK (2018) IRMOF-3: a fluorescent nanoscale metal organic frameworks for selective sensing of glucose and Fe (III) ions without any modification. Mater Sci Eng C 92:913–921

    CAS  Google Scholar 

  32. Xu J, Shen X, Jia L, Zhou T, Ma T, Xu Z, Cao J, Ge Z, Bi N, Zhu T, Guo S, Li X (2018) A novel visual ratiometric fluorescent sensing platform for highly-sensitive visual detection of tetracyclines by a lanthanide-functionalized palygorskite nanomaterial. J Hazard Mater 342:158–165

    CAS  PubMed  Google Scholar 

  33. Chowdhuri AR, Singh T, Ghosh SK, Sahu SK (2016) Carbon dots embedded magnetic nanoparticles @chitosan @metal organic framework as a nanoprobe for pH sensitive targeted anticancer drug delivery. ACS Appl Mater Interfaces 8(26):16573–16583

    CAS  PubMed  Google Scholar 

  34. Wang Z, Cohen SM (2007) Postsynthetic covalent modification of a neutral metal−organic framework. J Am Chem Soc 129(41):12368–12369

    CAS  PubMed  Google Scholar 

  35. Rostamnia S, Morsali A (2014) Size-controlled crystalline basic nanoporous coordination polymers of Zn4O(H2N-TA)3: catalytically study of IRMOF-3 as a suitable and green catalyst for selective synthesis of tetrahydro-chromenes. Inorg Chim Acta 411:113–118

    CAS  Google Scholar 

  36. Wei J, Wang X, Sun X, Hou Y, Zhang X, Yang D, Dong H, Zhang F (2018) Rapid and large-scale synthesis of IRMOF-3 by electrochemistry method with enhanced fluorescence detection performance for TNP. Inorg Chem 57(7):3818–3824

    CAS  PubMed  Google Scholar 

  37. Wang Q, Qi X, Chen H, Li J, Yang M, Liu J, Sun K, Li Z, Deng G (2022) Fluorescence determination of chloramphenicol in milk powder using carbon dot decorated silver metal–organic frameworks. Microchim Acta 189(8):272

    CAS  Google Scholar 

  38. Zhao M, Deng K, He L, Liu Y, Li G, Zhao H, Tang Z (2014) Core–shell palladium nanoparticle@metal–organic frameworks as multifunctional catalysts for cascade reactions. J Am Chem Soc 136(5):1738–1741

    CAS  PubMed  Google Scholar 

  39. Liu S-Q, Zhu X-L, Zhou Y, Meng Z-D, Chen Z-G, Liu C-B, Chen F, Wu Z-Y, Qian J-C (2017) Smart photocatalytic removal of ammonia through molecular recognition of zinc ferrite/reduced graphene oxide hybrid catalyst under visible-light irradiation. Catal Sci Technol 7(15):3210–3219

    CAS  Google Scholar 

  40. Liu B, Fischer RA (2011) Liquid-phase epitaxy of metal organic framework thin films. Sci China Chem 54(12):1851–1866

    CAS  Google Scholar 

  41. Yoo Y, Jeong H-K (2012) Generation of covalently functionalized hierarchical IRMOF-3 by post-synthetic modification. Chem Eng J 181–182:740–745

    Google Scholar 

  42. Li C, Zhu L, Yang W, He X, Zhao S, Zhang X, Tang W, Wang J, Yue T, Li Z (2019) Amino-functionalized Al–MOF for fluorescent detection of tetracyclines in milk. J Agric Food Chem 67(4):1277–1283

    CAS  PubMed  Google Scholar 

  43. Lin M, Zou HY, Yang T, Liu ZX, Liu H, Huang CZ (2016) An inner filter effect based sensor of tetracycline hydrochloride as developed by loading photoluminescent carbon nanodots in the electrospun nanofibers. Nanoscale 8(5):2999–3007

    ADS  CAS  PubMed  Google Scholar 

  44. Zhou Y, Yang Q, Zhang D, Gan N, Li Q, Cuan J (2018) Detection and removal of antibiotic tetracycline in water with a highly stable luminescent MOF. Sensors Actuators B: Chem 262:137–143

    CAS  Google Scholar 

  45. Li X, Ma H, Deng M, Iqbal A, Liu X, Li B, Liu W, Li J, Qin W (2017) Europium functionalized ratiometric fluorescent transducer silicon nanoparticles based on FRET for the highly sensitive detection of tetracycline. J Mater Chem C 5(8):2149–2152

    CAS  Google Scholar 

  46. Chandra S, Bano D, Pradhan P, Singh VK, Yadav PK, Sinha D, Hasan SH (2020) Nitrogen/sulfur-co-doped carbon quantum dots: a biocompatible material for the selective detection of picric acid in aqueous solution and living cells. Anal Bioanal Chem 412(15):3753–3763

    CAS  PubMed  Google Scholar 

  47. Zhou C, He X, Ya D, Zhong J, Deng B (2017) One step hydrothermal synthesis of nitrogen-doped graphitic quantum dots as a fluorescent sensing strategy for highly sensitive detection of metacycline in mice plasma. Sensors Actuators B: Chem 249:256–264

    CAS  Google Scholar 

  48. Chen D, Tian J, Chen M, Liu C, Du M (2016) Moisture-stable Zn(II) metal–organic framework as a multifunctional platform for highly efficient CO2 capture and nitro pollutant vapor detection. ACS Appl Mater Interfaces 8(28):18043–18050

    CAS  PubMed  Google Scholar 

Download references

Funding

This study was financially supported by the Opening Project of Medical Imaging Key Laboratory of Sichuan Province (No. MIKL202203), the Sichuan Provincial Students’ Innovation and Entrepreneurship Training Program (No. S202314389202), and the Scientific Research Innovation Team Funds of Chengdu Normal University (No. CSCXTD2020A05).

Author information

Authors and Affiliations

Authors

Contributions

Qihui Wang: data curation, methodology, investigation, and writing—original draft; Haochen Du, Rui Tang, Xiaohui Wang, and Lei Xie: data curation; Jun Liu: writing—review; Kang Sun: investigation and writing—review and editing; Zhonghui Li: funding acquisition and project administration; Guowei Deng: writing—review and editing, funding acquisition, and project administration.

Corresponding authors

Correspondence to Qihui Wang or Guowei Deng.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1232 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Du, H., Tang, R. et al. Boron difluoride modified zinc metal–organic framework-based “off–on” fluorescence sensor for tetracycline and Al3+ detection. Microchim Acta 191, 144 (2024). https://doi.org/10.1007/s00604-024-06211-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06211-9

Keywords

Navigation